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S T R A N G E  Q U A R K  M A T T E R  A N D  MODELS OF S T R A N G E  STARS 

Yu. L. Vartanyan, A. R. Arutyunyan and A. K. Grigoryan UDC 524:354.6:539.12 

In the framework of the MIT  bag model we consider absolutel~t stable strange quark matter consisting 
of u, d, and s quarks and electrons. For a realistic range of parameters of the quark bag we compute the 
threshold density for the appearance of strange quark matter that is realized on the surface of self-sustaining 
strange stars. On the basis of twelve calculated equations of state we give a detailed study of the series 
of configurations of strange stars consistent with the best known observational data. We show that the 
binding energy of the models depends essentially on the quark-gluon interaction constant c~c. 

1. I n t r o d u c t i o n .  In the pioneering paper of Ambartsumyan and Saakyan [1] attention was first called 
to the fact that degenerate nuclear plasma may contain strange baryons--hyperons--as  well as neutrons 
and a small number of protons arid electrons. For the ideal gas model the thresholds of stability of various 
hyperons were computed and turned out to be significantly higher than the nuclear density, partly lying 
beyond the Landau-Oppenheimer-Volkov point (the point at which neutron stars become unstable). In the 
paper of Saakyan and Vartanyan [2] it was shown that taking account of nuclear interaction greatly lowers 
the threshold of stability of hyperons and makes it possible for them to exist in the cores of massive stable 
neutron stars, so that it would be more correct to call the latter baryon stars. 

In the mid-80's new interest arose in strange nuclear plasma in connection with the physics of quarks. 
Witten [3] showed that the transition to the quark phase with the formation of a mat ter  having strangeness 
- 1  per baryon is energetically more advantageous than nonstrange quark plasma. Such matter,  called 
strange quark matter ,  is assumed to be an absolutely stable state of cold superdense mat ter  and contains 
approximately equal amounts of u, d, and s quarks with a small admixture of electrons or positrons to 
provide electrical neutrality. It may form self-sustaining bound states in the form of so-called "strange" 
stars. 

The basic properties of strange stars were studied in [4] and [5]. The possibility that there exist 
arbitrarily small masses, an abrupt drop in density on the surface from supernuclear values to zero, and 
a rather weak increase in density toward the center are characteristic features of strange stars, connecting 
them with the pion stars proposed by Hartle [6] and studied in detail by Vartanyan et al. [7]. 

Due to the difficulties of the theory of strong interactions it is at present impossible to choose a single 
definite model of the equation of state for the quark phase. The criterion for the choice ought to be the 
identity of the computed integral parameters of superdense stars with the observational data on pulsars 
and compact X-ray sources, whose precision is unfortunately not yet sufficient. 

In the present paper we consider the bag model developed at MIT for the equation of state of strange 
quark matter  [8]. In this model the equation of state is determined by phenomenological parameters that 
are not known with sufficient precision--the bag constant B, the quark-gluon interaction constant o~c, and 
the mass of a strange quark ms. For different sets of these constants equations of state are obtained that 
may lead to the realization of both the strange stars considered in the present paper and neutron stars with 
a quark nucleus. 

We have studied twelve sets of bag parameters corresponding to their most probable ranges of vari- 
ation. For the computed equations of state the system of equations of stellar equilibrium (the Tolman- 
Oppenheimer-Volkoff equations) were integrated by the standard method, and the integral parameters of 
strange stars were obtained. We study in detail the models of maximal mass and also models with masses 
1.44 M| and 1.77 M| and gravitational redshift Z s  = 0.23, corresponding to the best known observational 
data. 

In the next two sections we give a brief discussion of the formalism of the equation of state of strange 
quark matter  and the Tolman-Oppenheimer-Volkoff system of equations. In Sect. 4 we give the results 
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of computing the integral parameters of strange stars and compare them with observational data. In the 
concluding section we discuss the problem of the side-by-side existence of neutron stars and strange stars. 

2. T h e  e q u a t i o n  o f  s t a t e .  In the present paper we use the "bag" phenomenological model to obtain 
the equation of state of strange quark matter.  In the approximation of this model strange quark matter  is 
a degenerate Fermi gas with u, d, and s quarks and electrons (positrons). It is assumed that the quarks 
and gluons are confined to a region of space called the "bag," in which vacuum pressure is maintained 
characterized by the bag constant B. The parameter of the model B is actually the energy density of 
the vacuum in the bag model. Other parameters determining the state of the strange quark matter  are 
the quark-gluon interaction constant ac and the mass of a strange quark m, .  We neglect the masses of u 
and d quarks and degenerate electrons due to their smallness. Equilibrium of a suspension of quarks in a 
quark-electron plasma is established by the weak interactions 

d--* u + e + t/ ~, 

u + e ~ d + u , ,  

S --'+ u + e + I /e ,  

u -l- e ---+ s + ~'e , 

u + s - - - + d + u .  

(1) 

From (1) we obtain the relations among the chemical potentials of the components: 

, d  = + ( 2 )  
#d = # ,  =-- IZ. 

Relations (2), supplemented by the condition of electrical neutrality of the system 

2 1 1 
- - - = 0 ,  ( 3 1  

where n i ( # i )  = - O Q i / O # i  are the concentrations of the corresponding components (i = u, d, s, e), make it 
possible to obtain the fundamental thermodynamic quantities as functions of a single independent param- 
eter, which we choose to be #: 

P(#)  = - E g / J (# ) -  B, ( 4 )  

( 5 )  

i 

i 

1 
'~Q = ~ ( n ,  + nd + n,) ,  (6) 

# Q ( P )  = ( p Q ( P ) c  2 + P ) / n Q ( P ) ,  (7) 

Here ~/~ (i = u, d, s, e) [9] are the thermodynamic potentials obtained in first approximation with respect to 
ac defining the properties of strange quark matter.  These quantities depend on ac and the corresponding 
#i, and in the case of ~ ,  also on rn, and PR, the renormalizing point for the mass of a strange quark, which 
is given the value 313 MeV [9]. Here pQ, nQ, and  #Q denote respectively the energy density, the baryon 
density, and the baryon chemical potential of the quark phase. 

Farhi and Jaffe [9] have studied in detail the influence of the parameters B, ms, and o~c on the stability 
of strange quark matter.  Benvenuto and Horvath [10] have studied the structure of strange stars in the 
entire range of values of the parameters of strong interaction in which strange quark mat ter  is stable. In 
the same paper, using a generalization of the phenomenological and theoretical data  of nonlepton physics, 
they have proposed realistic ranges of variation of the parameters of the bag model (B _~ 50-60 MeV/fm a, 
m,  " 175-200 MeV, and a ,  _~ 0.5-0.6). 

In the present paper for 12 sets of bag parameters grouped into four series according to the values 
of B and ms we have computed the equations of state. The main quantity that determines the binding 
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VALUE~ 

Series 

Table 1 
OF MINIMAL ENERGY AND CORRESPONDING BARYON DENSITIES 

B, MeV/fm 3 

55 

55 

60 

60 

ms,  M e V  

175 

200 

175 

200 

(Otc)lim 

0.38 

0.31 

0.26 

0.18 

Model a~ 

1.1 0.05 
1.2 0.17 
1.3 0.30 
1.4 0.38 

2.1 0.05 
2.2 0.17 
2.3 0.31 

3.1 0.05 
3.2 0.17 
3.3 0.26 

4.1 0.05 
4.2 0.18 

groin, MeV nmin/n 0 

-45.985 
-30.778 
-12.732 
-0.051 

-34.190 
-19.226 
-0 .012 

-28.452 
-13.022 
-0 .028 

1.84 
1.81 
1.78 
1.77 

1.83 
1.81 
1.78 

1.97 
1.94 
1.92 

-16.573 1.96 
-0 .004 1.93 

of strange quark mat ter  is the mean energy per baryon e as a function of the baryon concentration n, 
which is connected with the energy density p and the pressure P by the relations p = m0n(1 + e/mo) 
and P = n2Oe/On, where m0 = M(~6Fe)/56. For strange and pion stars [7] the curve e(n) has a negative 
minimum --r for a certain value nmin, and it is this phenomenon that brings about the existence of 
strange stars, which are giant nuclei held together by the strong interaction. The mass of such objects is 
bounded above only by the effects of the general theory of relativity. The presence of gravitation also leads 
to only an insignificant increase in the density from the surface (where the density corresponds to nmin) to 
the center. 

Table 1 gives the choices of the values of the quark-gluon interaction constant ac for each series 
corresponding to the realistic range of variation of the parameters B and m,  (B --- 55-60 MeV/fm a, rn, = 
175-200 MeV), from 0.05 to the limiting admissible value of (at)urn at which the mean energy per baryon is 
negative at the minimum point. Here also for each model we give the threshold density for the appearance 
of strange quark mat te r  nmin/no (no = 0.15fro -a is the nuclear density) which is realized on the surface 
of strange stars, and also the binding energy per baryon emin corresponding to that density, knowledge of 
which may be essential in the study of nuclear reactions occurring on the surface. For values of ac larger 
than (a~)lim conditions exist in each of these series under which the quark matter  may be in thermodynamic 
equilibrium with the nucleon component. The use of these equations of state leads to the realization of 
models of neutron stars with a quark nucleus not considered in the present paper. 

Figure 1 gives the dependence of the energy per baryon on the baryon density for two models differing 
in the value of a c. As can be seen from the figure, the values of the minimal energy depend to a considerable 
extent on the quark-gluon interaction constant. It should be noted that for computing the energy of strange 
quark matter  in the framework of the MIT model it is the dependence on this parameter of the quark bag 
that turns out to be decisive. 

3. T h e  f u n d a m e n t a l  e q u a t i o n s .  The fundamental parameters of spherically symmetric superdense stars 
are obtained by numerical integration of the relativistic equations of stellar equilibrium [11], supplemented 
by equations for determining the relativistic moment of inertia [12]. This system of equations has the 
following form [13]: 

dP/dr  = -0 .h rgmr -2 (P  + Q)(1 + br3P/m)/(1 - rgm/r) ,  

dm/dr  = bpr 2, 

dmo/dr = bpor2/(1 - rgm/r)  z/2, 

drnp/dr = bpr2 /(1 - rgm/r)  1/2, 

(e) 
(9) 

(lO) 
(11) 
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Fig.  1. D e p e n d e n c e  o f  the  e n e r g y  per  b a r y o n  e on  the  b a r y o n  c o n c e n t r a t i o n  n 
for m o d e l s  1.1 a n d  1.4. 

dv ldr  = rgmr-2(1 + br3 P / m ) / ( 1  - rgm/r) ,  

d w l d r  = 3rglr-4e~/21(1 - rgrnlr) 1/2, 

d l /dr  = 2/3bwpr4(1 + P / p ) e - " / 2 / ( 1  - rgm/ r )  1/2. 

(12) 
(13) 
(14) 

Here P,  p, and p0 axe determined from the equation of state, re(r) is the mass inside the sphere of radius 
r (re(R) = M ,  where M is the total mass of the star), and R is the radius of the star, which is determined 
from the condition P ( R )  = O. Also, Mo = rno(R) = moA,  where A is the total number of baxyons in 
the star and m0 = M(56Fe)/56. M p  = rnp(R)  is the proper mass. In the Newtonian limit both  the 
gravitational energy E c  and the total internal energy Ein axe determined by this quantity ( E a  = M - MR, 

EG = - ( G / c  2) fo M m ( r ) d m / r  and El, = MR - -Mo ,  Ei,  = 1/c ~ for n~dv).  The metric coefficient g00(r) 
(where ds 2 = g~k dx ~ dx k) is connected with the function v(r)  defined by (12) via the relation 

goo(r) = (1 - r g M / R ) e  ~(~)-~(R). (15) 

Through (15) we can compute the gravitational redshift 

Z = AA/A = [g00(r)]-'/2 - 1. (16) 

Equations (13) and (14) serve to determine the relativistic moment of inertia I 

I = I ( R ) / ~ ,  (17) 

where 
= w(n)e-~(R)(1 - r ~ M / n )  1/2 + r g l ( R ) / R  3. (18) 

In relations (8)-(14) the quantities P ,  p, and p0 are expressed in units of m,~ -- h = c --- 1, where rn,~ is 
the mass of a v-meson, h is Planck's constant, and c is the speed of light; m, m0, and rnp axe expressed in 
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D e p e n d e n c e  o f  the  to ta l  m a s s  M on the  rad ius  / /  for m o d e l s  1.1 and  

solar masses MO, r in kin, and the moment of inertia I in Mokm 2 (i.e., in units of 1.989�9 104a g. cm2). The 
coefficient rg = 2 G M |  2 = 2.949km is the gravitational radius of the Sun. The coefficient b = 5.546- 10 -4 
results from the change from the CGS system to the one we are using. 

The integration begins at the center of the configuration with r = 0 and ends with r = R when 
P ( R )  = 0: 

4. R e s u l t s  o f  t h e  c o m p u t a t i o n  and  o b s e r v a t i o n a l  d a t a .  The computations were carried out using the 
equations of state for the models considered above. Depending on the central density p0 we computed the 
series of values of the stellar radius R, total mass M, rest mass M0, proper mass Mp, relativistic moment 
of inertia I,  and redshift from the surface of the star Zs .  

Figure 2 gives the dependence of the mass on the radius for two models that  differ only in the choice of 
the value of the bag constant B. In contrast to the case of neutron stars, in our models the radius increases 
with the mass on almost the whole curve. This results from the fact that strange stars are held together 
by the strong interaction and may exist even without self-gravitation. Gravitation begins to dominate in 
models corresponding to the upper bend of the curve, leading to the existence of a maximal mass. 

Figure 3 shows the dependence of the total energy density on the distance from the center for con- 
figurations of various masses. Even for the stellar models with M = 1.44 Mo the density on the surface 
decreases relative to the central density only by a factor of 2, which indicates very small compressibility of 
the configurations considered. 

Table 2 gives the basic parameters of stellar configurations of maximal mass. For the range of bag 
parameters we are considering the following values are obtained for the maximal mass: Mmax = (1.75 - 
1.86) M| with corresponding radii Rm~x = ( 9 . 8 -  10.4)km and central densities (p0)m= = ( 2 . 2 -  2.5). 
10 is g /cm a. It is necessary to note that  only the bag parameter B has any significant influence on the 
maximal mass of strange stars, while the influence of ms and ac is negligibly small. The computation of the 
configurations of maximal mass was carried out because of the importance of comparing the parameters of 
the theoretical models with the observable parameters of stellar objects, by means of which the problem of 
deciding which of the various theoretical models to realize is solved. 

The double radio pulsar PSR 1913+16 is at present considered to have the most precisely determined 
mass M = (1�9 + 0�9174 [14], and it is reproduced in all our models. Of special interest to us is 
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Fig. 3. D e p e n d e n c e  of  t h e  t o t a l  e n e r g y  d e n s i t y  p on t h e  d i s t a n c e  f r o m  t h e  c e n t e r  
r for t h e  m o d e l  1.3 (a. M -- 0.5 M e ;  b. M = 1.44 M| c. M = Mm~x). 

Table 2 
INTEGRAL PARAMETERS OF STELLAR CONFIGURATIONS 

OF MAXIMAL MASS 

Model Mmax 
Me 

1.1 1.860 

1.2 1.860 

1.3 1.860 

1.4 i.861 

2.1 1.829 

2.2 1.827 

2.3 1.825 

3.1 1.785 

3.2 1.786 

3.3 1.787 

.4.1 1.756 

4.2 1.755 

Mo Mp po 
Me M e  1014 g/cm a Zs 

2.335 2.351 21.974 0.456 10.377 

2.296 2.352 22.064 0.458 10.361 

2.252 2.355 22.272 0.460 10.338 

2.223 2.356 22.289 0.460 10.333 

2.263 2.307 22.592 0.452 10.262 

2.223 2.308 22.681 0.453 10.236 

2.177 2.308 22.745 0.454 10.209 

2.200 2.258 23.863 0.457 9.955 

2.163 2.259 23.945 0.458 9.942 

2.134 2.261 24.030 0.459 9.932 

2.131 2.217 24.364 0.452 9.850 

2.092 2.117 24.577 0.454 9.821 

R I 
km 1045 �9 g.  cm 2 

1.883 

1.877 

1.871 

1.870 

1.802 

1.792 

1.784 

1.665 

1.662 

1.660 

1.596 

1.586 

the massive double X-ray pulsar 4U0900-40 with mass M = (1.56 - 1.98)M e [15]. The most probable 
value of the mass of this pulsar, M = 1.77Me, is not reached in our models of the fourth series. A 
more precise determination of the mass of 4U0900-40 may significantly limit the admissible range of bag 
parameters. Tables 3 and 4 give the basic parameters of stellar configurations with masses M = 1.44 M e 
and M = 1.77M e that  reproduce the most probable observed masses of the pulsars PSR 1913+16 and 
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Table S 

INTEGRAL PARAMETERS OF STELLAR CONFIGURATIONS 
WITH TOTAL MASS M -- 1.44 M| 

Model Mo Mp po Zs R 
Mo M| 1014 g/cm 3 km 

1.1 1.738 1.674 8.626 0.290 10.647 

1.2 1.709 1.674 8.662 0.290 10.631 

1.3 1.675 1.674 8.696 0.291 10.615 

1.4 1.655 1.677 8.726 0.292 10.607 

2.1 1.718 1.677 8.959 0.293 10.579 

2,2 1.690 1.678 9.035 0.294 10.553 

2.3 1.654 1.678 9.109 0.295 10.522 

3.1 1.713 1.685 9.833 0.305 10.282 

3.2 1.684 1.685 9.915 0.306 10.268 

3.3 1.661 1.686 9.944 0.306 10.260 

4.1 1.694 1.690 10.324 0.309 10.209 

4.2 1.663 1.690 10.396 0.310 10.183 

I 
1 0 4 s  . g .  c m  2 

1.500 

1.496 

1.491 

1.491 

1.480 

1.473 

1.465 

1.405 

1.402 

1.401 

1.385 

1.378 

Table 

INTEGRAL PARAMETERS OF STELLAR CONFIGURATIONS 

WITH TOTAL MASS M = 1.77 Mo 

Model Mo Mp Po Zs R 
M| M| 1014 g/cm 3 km 

1.1 2.202 2.158 13.343 0.391 10.810 

1.2 2.164 2.158 13.388 0.391 10.793 

1.3 2.122 2.159 13.426 0.392 10.777 

1.4 2.094 2.160 13.438 0.393 10.769 

2.1 2.175 2.170 14.752 0.400 10.658 

2.2 2.141 2.173 14.969 0.402 10.624 

2.3 2.098 2.175 15.146 0.404 10.500 

3.1 2.176 2.206 19.017 0.433 10.182 

3.2 2.141 2.208 19.021 0.434 10.167 

3.3 2.112 2.208 19.087 0.434 10.162 

I 
1045 . g .  cm 2 

1.947 

1.942 

1.937 

1.936 

1.888 

1.878 

1.867 

1.733 

1.729 

1.729 

4U0900-40 respectively. 
Another very important parameter for the observational manifestations of strange stars is the moment 

of inertia. The values of Imax = (1.58 - 1.88). 104s g" cm 2 obtained by us significantly exceed the estimate 
of the lower limit of the moment of inertia for the pulsar in the Crab Nebula: I > 0.8.1045 g.  cm 2 [16], but 
unfortunately there are as yet no other data. 

We have computed the gravitational redshift Zs from the surface of the star, which theoretically is also 
a directly observable parameter. The values obtained for Zs = 0.45 - 0.46, corresponding to configurations 
with maximal mass are smaller than in the case of neutron stars. In [17] and [18] there is a study of a 
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Table 5 
INTEGRAL PARAMETERS OF STELLAR CONFIGURATIONS 

WITH GRAVITATIONAL REDSHIFT Z s  = 0.23 

M M0 Mp P0 
Model 

M o  Mo M o  1014 g/cm3 

1.1 1.168 1.365 1.307 7.110 

1.2 1.167 1.354 1.319 7.180 

1.3 1.163 1.322 1.313 7.192 

1.4 1.160 1.301 1.310 7.198 

2.1 1.158 1.348 1.308 7.297 

2.2 1.157 1.325 1.308 7.350 

2.3 1.155 1.296 1.306 7.404 

3.1 1.121 1.297 1.266 7.776 

3.2 1.117 1.270 1.262 7.787 

3.3 1.114 1.250 1.259 7.794 

4.1 1.112 1.269 1.257 7.946 

4.2 1.111 1.246 1.256 7.994 

R 
km 

10.148 

10.153 

10.127 

10.112 

10.097 

10.071 

10.040 

9.752 

9.731 

9.716 

9.681 

9.657 

I 
1045 . g �9 cm 2 

1.071 

1.082 

1.072 

1.066 

1.059 

1.054 

1.046 

0.958 

0.951 

0.946 

0.936 

0.931 

mechanism for determining the gravitational redshift from the surface of superdense stars by measuring the 
redshift of the armihilation lines observed in the spectral interval between 300 and 511 keV during 7-bursts. 
From analysis of the illumination of the source of the March 7-burst in 1979, which was identified with the 
object SNR N49, a gravitational redshift of Z s  = 0.23 + 0.05 was obtained [19]. The large set of realistic 
equations of state of the matter  of neutron stars gave values of the mass M = (1.1 - 1.6) M| and radius 
R = (10 - 14) km for configurations with Z s  = 0.23. 

Table 5 gives the main parameters of the configurations with Z s  = 0.23 for the models of strange 
stars we are considering. The narrow intervals of values of M = (1.11 - 1.17) M| and R = (9.7 - 10.2) km 
obtained may significantly simplify the identification of strange stars in the case of determining the mass 
of SNR N49. 

In contrast to the preceding papers we have computed the binding energy of strange stars EB (EB = 
M0 - M). For all the models considered the binding energy has the normal sign and decreases significantly 
as ac increases, as shown by Fig. 4, which gives the dependence of the binding energy for two models that 
differ in the value of ac. The values obtained for the packing fraction a = 0.16 - 0.2 (a  = 1 - M / M o )  show 
that these models are significantly more strongly bound than neutron stars. 

The problem of rapid rotation of superdense stars has been studied by a number of authors (cf., 
for example, [20] and the references therein). As an absolute upper bound for the angular frequency of 
homogeneous rotation we have the Kepler frequency corresponding to the orbital velocity of a particle on 
the equator of the star. The minimal period of revolution of configurations with maximal mass can be well 
approximated by the expression [21] 

Pmin -- 0.0276[ ~ j msec. 

For the models we have considered the minimal period of revolution is Pmi, = (0.64 - 0.68) msec, while the 
most rapid pulsar recorded to date, PSR 1937+21 has period P = 1.558 msec [22]. More rapid rotation 
(P  -- 0.3 msec) is obtained in the case of pion stars. However, they satisfy the observational restrictions on 
the mass only for an extremely restrictive equation of state [23]. The discovery of submillisecond pulsars 
would advance the solution of the problem of choosing theoretical models. 
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Fig.  4. D e p e n d e n c e  o f  the  b i n d i n g  e n e r g y  EB on  t h e  t o t a l  m a s s  M for the  
m o d e l s  1.1 and  1.4.  

5. C o n c l u s i o n .  In the present paper we have studied models of strange stars for the most probable range 
of variation of bag parameters in the context of comparing them with observational data. It is important to 
consider the possibility of observationally distinguishing between these objects and neutron stars in order 
to estabhsh the existence of one or both types of superdense stars. 

Table 6 
COMPARISON OF MODELS OF NEUTRON STARS AND STRANGE 

STARS CORRESPONDING TO THE MASS OF PULSAR PSR 1913+16 

Model po/Pn.c Pmin (msec) log I Zs 

Neutron stars 2-5 0.7-1 44.95-45.2 0.23-0.45 

Strange stars 3.5-4.5 0.75-0.8 45.14-45.18 0.29-0.31 

Table 6 gives a comparison of the central density, Kepler period of revolution, moment of inertia, and 
redshift of strange stars and neutron stars with mass 1.44 Me.  For neutron stars we used the results of 
computation with the sixteen equations of state studied in [19], while for strange stars we used our own 
results. While noting the considerable similarity of the results, we remark that the gravitational redshift 
Z s appears to be the most important parameter distinguishing strange stars and neutron stars. In this 
connection one can place some hope in determining the mass of the object SNR N49, which would play 
an important role in choosing an equation of state for superdense matter.  We remark also that models of 
strange stars having no envelope encounter great difficulties in the standard explanation of pulsar glitches. 

It should be noted that if the assumption of the appearance of strange quark mat ter  at densities 
comparable with nuclear density is true, this casts doubt on the existence of massive neutron stars. In 
this case the range of existence of neutron stars would be bounded above not by the central density 
Pcapt corresponding to the maximum of the curve M(po) (the Landau-Oppenheimer-Volkov point), but 
by the density for appearance of strange quark matter  p@. For the models we have considered pq = 
(1.77 - 1.97)pnuc, and only the most restrictive equations of state [24, 25] could reproduce the masses 
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(1.1 - 1.8)M| under such central densities. These masses are the most commonly encountered ones for 
pulsars and X-ray sources [15]. The data of the discussion, of course, do not exclude the possibility that 
there exist neutron stars of small mass, for which, to be sure, no observational data yet exist. 

Taking account of the difficulties of the theory of strong interactions and the model character of our 
description of the quark phase, the authors believe that the question of the existence of strange stars remains 
open. In an alternative model of the equation of state [26] the formation of strange quark matter  occurs in 
the nuclei of neutron stars at densities more than five times as large as that of the nucleus. In this case even 
for certain realistic equations of state of neutron matter the side-by-side existence of massive neutron and 
strange stars is possible. Further theoretical study of models of strange stars and more precise observational 
data would seem to be helpful in solving this problem. 
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