Analyticity in Certain Banach Algebras
Author(s): Errett Bishop
Source: Transactions of the American Mathematical Society, Vol. 102, No. 3 (Mar., 1962), pp. 507-544
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/1993619

Accessed: 27/11/2009 07:46

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society.

ANALYTICITY IN CERTAIN BANACH ALGEBRAS

BY
ERRETT BISHOP ${ }^{(1)}$

1. Introduction. Consider a Riemann surface S. (All Riemann surfaces are surfaces without boundary and are assumed to be separable but not necessarily connected.) Consider also a set \mathfrak{A} of analytic (that is, holomorphic) functions on S which are not simultaneously constant on any component of S. From the functions in \mathfrak{U} it is possible to construct a wider class of functions analytic on S by the operations of addition, multiplication, and scalar multiplication. Further functions analytic on S are obtained by taking those functions which are uniform limits on each compact subset of S of functions already obtained. Thus from \mathfrak{A} we pass to the set $\overline{\mathfrak{V}}$-the holomorphic completion of \mathfrak{A}.

In the sequel we only study holomorphically complete sets \mathfrak{A} of analytic functions on a Riemann surface S. This means by definition that $1 \in \mathfrak{A}$, that the functions in \mathfrak{A} are not all constant on any component of S, that \mathfrak{A} is an algebra over the complex field with the natural algebraic operations, and that each function on S which can be uniformly approximated on each compact subset of S by functions in \mathfrak{A} is in \mathfrak{A}. The set \mathfrak{A} will be topologized by the topology of uniform convergence on compact subsets of S.

For such a holomorphically complete \mathfrak{A} there are certain natural questions: Given a sequence of points in S having no cluster point, does there exist a function in \mathfrak{U} having prescribed values at the given points? Or: When is it possible to approximate a function given on a compact subset of S uniformly by functions in \mathfrak{U} ? and so forth. It is well known (see for example [1]) that the space X should be holomorphically convex (or at least weakly holomorphically convex) relative to the given algebra \mathfrak{A} of analytic functions if such questions are to have satisfactory answers.

Definition 1. A Riemann surface S is holomorphically convex (respectively weakly holomorphically convex) relative to a holomorphically complete set \mathfrak{U} of analytic functions on S if for each compact subset K of S the set (respectively each component of the set)

$$
\tilde{K}=\{p \text { in } S:|f(p)| \leqq \sup \{|f(q)|: q \in K\} \text { for all } f \text { in } \mathfrak{A}\}
$$

is compact.
One of the purposes of this paper is to show that if \mathfrak{A} is a holomorphically complete algebra of analytic functions on a Riemann surface S then S can be canonically extended to a Riemann surface S^{\prime} and the functions in \mathfrak{A} can be extended to S^{\prime} to give an algebra \mathfrak{Y}^{\prime} of analytic functions on S^{\prime} with re-

[^0]${ }^{(}{ }^{1}$) This work was partially supported by the Sloan Foundation and the Office of Naval Research.
spect to which S^{\prime} is weakly holomorphically convex. Thus the condition of weak holomorphic convexity is always realized on a suitable extension of the given surface S^{\prime}. It might be thought that an analogous theorem would hold for a holomorphically complete algebra \mathfrak{N} of analytic functions on a higherdimensional complex analytic manifold S, but an example of Wermer [9] can easily be adapted to show that this is not the case. The following definition gives a precise meaning to the term extension just employed.

Definition 2. Let the pair (S, \mathfrak{Y}) consist of a Riemann surface S and a holomorphically complete algebra of analytic functions on S. An extension of (S, \mathfrak{Y}) consists of a second such pair $\left(S^{\prime}, \mathfrak{Y} \mathfrak{H}^{\prime}\right)$, of an analytic map σ from S to S^{\prime}, and of a one-one map τ of \mathfrak{A} onto \mathfrak{A}^{\prime} such that

$$
\begin{equation*}
(\tau(f))(\sigma(p))=f(p) \tag{}
\end{equation*}
$$

for all f in \mathfrak{N} and p in S.
Clearly σ need not be one-one since it is possible for σ to identify points of S which are identified by all functions in \mathfrak{A}.

One of our main results is then the following.
Theorem 2. Let the pair (S, \mathfrak{Y}) consist of a Riemann surface S and a holomorphically complete algebra \mathfrak{A} of analytic functions on S. Then (S, \mathfrak{A}) admits an extension ($S^{\prime}, \mathfrak{X}^{\prime}$) such that
(i) For each compact subset K of S^{\prime} there exists a compact subset K_{0} of S with

$$
K \subset \tilde{L}
$$

where $L=\sigma\left(K_{0}\right)$, and \tilde{L} is formed relative to \mathfrak{A}^{\prime}.
(ii) To each continuous homomorphism ϕ of \mathfrak{A} onto the complex numbers there exists p in S^{\prime} with

$$
(\tau(f))(p)=\phi(f)
$$

for all fin \mathfrak{A}.
(iii) The set

$$
T=\left\{(p, q): p \in S^{\prime}, q \in S^{\prime}, p \neq q, f(p)=f(q) \text { for all } f \text { in } \mathfrak{U}^{\prime}\right\}
$$

is a countable subset of $S^{\prime} \times S^{\prime}$ which has no cluster point in $S^{\prime} \times S^{\prime}$.
(iv) For each compact subset K of S^{\prime} the set \tilde{K} is the union of a compact set L and all points p in S^{\prime} for which there exists q in L with $(p, q) \in T$.

Added in proof. From the argument used in proving Theorem 3 below it follows that the set L of (iv) can in fact be taken to be the union of K and all those components of $S^{\prime}-K$ which are relatively compact subsets of S^{\prime}, so that in particular bdry $L \subset K$.

It follows from (iv) and the countability of T that S^{\prime} is weakly holomorphically convex relative to \mathfrak{Z}^{\prime}.

Property (ii) of Theorem 2 contains the key to the construction of the
extension ($S^{\prime}, \mathfrak{Y}^{\prime}$). The surface S^{\prime} is constructed abstractly by considering the set of continuous homomorphisms of \mathfrak{N} into the complex numbers and imposing the structure of a Riemann surface on this set. If a certain countable set of homomorphisms are counted more than once this can be done and gives the Riemann surface S^{\prime}. The mapping σ from S to S^{\prime} is then easily found, as is the mapping τ from \mathfrak{A} onto a certain set \mathfrak{Z}^{\prime} of analytic functions on S^{\prime}. The pair ($S^{\prime}, \mathfrak{Y}^{\prime}$) and the maps σ and τ are then shown to be an extension of (S, \mathfrak{H}) having the properties of Theorem 2 . Since a continuous homomorphism ϕ of $\mathfrak{A l}$ into the complex numbers has the property that there exists a compact subset K of S with

$$
|\phi(f)| \leqq \sup \{|f(p)|: p \in K\}
$$

for all f in \mathfrak{A}, to get all continuous homomorphisms ϕ it is sufficient to consider compact subsets K of S^{\prime} and homomorphisms ϕ satisfying the inequality.

Thus we come to a well-known problem in Banach algebras-the investigation of the set of continuous homomorphisms (called the spectrum) of an algebra of continuous complex-valued functions defined on a compact Hausdorff space K. Here continuous means continuous in the uniform norm for functions on K. The bulk of this paper is concerned with aspects of this problem, and the results obtained in this investigation are applied in the proof of Theorem 2. The particular type of Banach algebra which arises will be called a uniform algebra.

Definition 3. A uniform algebra is a Banach algebra with unit whose norm and spectral norm coincide.

If \mathfrak{A} is a uniform algebra with spectrum Y and Šilov boundary X, it is clear that \mathfrak{A} can be considered as a closed subalgebra of either $C(X)$ or $C(Y)$, where $C(\Gamma)$, for a compact Hausdorff space Γ, is the uniformly-normed algebra of all continuous complex-valued functions on Γ. Conversely it is clear that if Γ is a compact Hausdorff space then every closed subalgebra of $C(\Gamma)$ which contains the function 1 is a uniform algebra.

Most of this paper is a systematic investigation of conditions which imply that certain open subsets of the spectrum of a uniform algebra can be given the structure of a Riemann surface on which the functions of the algebra all are analytic functions. The following is the principal result of this investigation.

Theorem 1. Let \mathfrak{A} be a uniform algebra with Šilov boundary X and spectrum Y. Let \mathfrak{A} contain a function g which has the following properties:
(a) The interior of $g(X)$ is void.
(b) Each point of $g(X)$ is the vertex of some nondegenerate triangle whose interior lies in $-g(X)$.
(c) For each z in $g(X)$ there are only a finite number of points p in X with $g(p)=z$.
(d) If w_{1} and w_{2} are points in $-g(X)$ there exists a Jordan arc γ joining w_{1} and w_{2} and intersecting $g(X)$ in a finite number of points $z_{1}, \cdots, z_{\lambda}$. Each point z_{i} has the property that there exists a smooth open Jordan arc $J_{0} \subset g(X)$ which contains z_{i}, which is an open subset of $g(X)$, and which is the homeomorphic image under the mapping g of the subset $\left\{p: p \in X, g(p) \in J_{0}\right\}$ of X.

Then there is a Riemann surface S and a continuous map λ of S onto $Y-X$ such that $f \circ \lambda$ is analytic on S for all f in \mathfrak{A}, such that each point in $Y-X$ except for those in a countable set is the image of exactly one point in S, and such that when $-g(X)$ has a finite number of components j each point in $Y-X$ is the image of at most $j-1$ points in S.

In condition (d) a "smooth" arc is one with a continuously turning tangent. To introduce another piece of notation, g^{-}will denote the function (or relation) inverse to a function g, the designation g^{-1} being reserved for the function $1 / g$.

The investigations of this paper have their origin in ideas of Wermer [7; 8]. In particular special cases of Theorems 1 and 2 follow from Wermer's work. The present paper carries the theory further in certain directions than did Wermer's work and develops some of the material more systematically. In particular a definitive theorem (Theorem 2 above) about algebras of functions on Riemann surfaces is obtained. H. Royden has also extended Wermer's work, by methods different from those used here.
2. Functions rational over \mathfrak{A}. The motivations for the following definition are clear.

Definition 4. Let \mathfrak{A} be a uniform algebra with spectrum Y, and let X be the Šilov boundary of \mathfrak{A}. Let h be a function in $C(X)$, and let p_{1}, \cdots, p_{n} be points in Y, not necessarily distinct. Let G denote the set of all products of the form

$$
g=g_{1} g_{2} \cdots g_{n}
$$

with $g_{i} \in \mathfrak{A}$ and $g_{i}\left(p_{i}\right)=0$. Then h will be called a rational function over \mathfrak{A} with poles p_{1}, \cdots, p_{n} if
(i) $g h \in \mathfrak{A}$ for all g in G.
(ii) There exists g in G with $(g h)\left(p_{i}\right) \neq 0,1 \leqq i \leqq n$.

Lemma 1. Let h be a rational function over the Banach algebra \mathfrak{A} with poles p_{1}, \cdots, p_{n}. Let q_{1}, \cdots, q_{m} be another set of poles for h. Then $m=n$ and the sequence q_{1}, \cdots, q_{m} is a rearrangement of the sequence p_{1}, \cdots, p_{n}.

Proof. Assume that there is a point p which occurs j times in the sequence p_{1}, \cdots, p_{n} and $k<j$ times in the sequence q_{1}, \cdots, q_{m}. To prove the lemma, it will be enough to contradict this assumption. We may take it that $p_{1}=p_{2}$ $=\cdots=p_{j}=p, q_{1}=q_{2}=\cdots=q_{k}=p$. Choose $g=g_{1} \cdots g_{n}$ with $g_{i} \in \mathfrak{A}$, $g_{i}\left(p_{i}\right)=0, g h \in \mathfrak{A},(g h)(p) \neq 0$. For $k<i \leqq m$, choose f_{i} in \mathfrak{A} with $f_{i}\left(q_{i}\right)=0$, $f_{i}(p)=1$. Thus the function

$$
f=g_{1} \cdots g_{k} f_{k+1} \cdots f_{m}
$$

is in \mathfrak{A}, and $f h \in \mathfrak{A}$ because q_{1}, \cdots, q_{m} is a set of poles for h. Thus the function $\alpha=f h g_{k+1} \cdots g_{n}$ is in \mathfrak{A}. We have $\alpha(p)=0$, since $g_{k+1}(p)=g_{k+1}\left(p_{k+1}\right)=0$. But

$$
\alpha=g h f_{k+1} \cdots f_{m},
$$

and the quantities $(g h)(p), f_{k+1}(p), \cdots, f_{m}(p)$ do not vanish. This contradiction shows that our assumption was false, thereby proving the lemma.

We are now justified in speaking of the poles p_{1}, \cdots, p_{n} of a function h rational over \mathfrak{A}. If p is in the spectrum of \mathfrak{A} and k is a non-negative integer such that p occurs k times in the sequence p_{1}, \cdots, p_{n} we say that p is a pole of multiplicity k of h.

Lemma 2. Let h be a rational function over the uniform algebra \mathfrak{A} and let the point p with multiplicity $n>0$ be the only pole of h. Then there exists g in \mathfrak{A} such that $g h$ is rational over \mathfrak{A} and the point p with multiplicity $n-1$ is the only pole of gh .

Proof. Choose g_{1}, \cdots, g_{n} in \mathfrak{H} with $\alpha=g_{1} \cdots g_{n} h \in \mathfrak{A}, g_{i}(p)=0, \alpha(p) \neq 0$. Let $g=g_{1}$. It is clear that g satisfies the required conditions.

Lemma 3. Let h_{1} be a rational function over the uniform algebra \mathfrak{A} such that the point p with multiplicity $n \geqq 0$ is the only pole of h_{1}. Let the function h_{2} in $C(X)$, where X is the Šilov boundary of \mathfrak{A}, have the property that $h_{2} \in \mathfrak{A}$ for each g in G, where G is the set of all $g=g_{1} \cdots g_{n}$ with $g_{i} \in \mathfrak{H}$ and $g_{i}(p)=0$. Then there exist elements f_{1} and f_{2} in \mathfrak{H} with $h_{2}=f_{1} h_{1}+f_{2}$.

Proof. We proceed by induction on n. The theorem is clearly true if $n=0$, for then both h_{1} and h_{2} are in \mathfrak{N}. Assume now that the lemma is true for all integers up to and including $n-1$. By hypothesis, there exists g in G with $g h_{1}=\alpha \in \mathfrak{H}$ and $\alpha(p) \neq 0$, say $\alpha(p)=1$. If we let $\beta=1-\alpha$, then $\beta \in \mathfrak{A}, \beta(p)=0$, and $1=g h_{1}+\beta$. Multiplying this equality by h_{2}, we have

$$
h_{2}=g h_{1} h_{2}+\beta h_{2}=\left(g h_{2}\right) h_{1}+\beta h_{2}=\delta h_{1}+\beta h_{2},
$$

where $\delta \in \mathfrak{A}$. By the previous lemma, there exists γ in \mathfrak{A} with $\gamma(p)=0$ such that γh_{1} is rational over \mathfrak{Z} and has the point p with multiplicity $n-1$ as its only pole. By the hypothesis of the induction, we therefore have

$$
\beta h_{2}=\gamma_{0}\left(\gamma h_{1}\right)+\gamma_{1},
$$

where γ_{0} and γ_{1} are in \mathfrak{A}. Therefore

$$
h_{2}=\delta h_{1}+\beta h_{2}=\left(\delta+\gamma_{0} \gamma\right) h_{1}+\gamma_{1} .
$$

If we write $f_{1}=\delta+\gamma_{0} \gamma$ and $f_{2}=\gamma_{1}$, this proves the lemma.
Lemma 4. Let h be a rational function over the uniform algebra \mathfrak{Q}, with poles at the distinct points p_{1}, \cdots, p_{n} of multiplicities k_{1}, \cdots, k_{n} respectively. Then there exist functions $\alpha_{1}, \cdots, \alpha_{n}$ in \mathfrak{A} with $\alpha_{1}+\cdots+\alpha_{n}=1$ such that for each i the function $\alpha_{i} h=h_{i}$ is rational over \mathfrak{A} with a single pole of multiplicity k_{i} at p_{i}.

Proof. For $1 \leqq i \leqq n$ let G_{i} consist of all products $g_{1} g_{2} \cdots g_{k_{i}}$ with $g_{j} \in \mathfrak{Z}$ for $1 \leqq j \leqq k_{i}$ and $g_{j}\left(p_{i}\right)=0$. For $1 \leqq i \leqq n$ let F_{i} consist of all products of the form $f_{1} \cdots f_{i-1} f_{i+1} \cdots f_{n}$ with $f_{j} \in G_{j}$. Let \tilde{F}_{i} be the ideal which F_{i} generates in \mathfrak{A}. Since the ideals \widetilde{F}_{i} are simultaneously contained in no maximal ideal of $\mathfrak{A}, \tilde{F}_{1}+\cdots+\widetilde{F}_{n}$ is an ideal of \mathfrak{A} which is contained in no maximal ideal. There therefore exist elements α_{i} in \tilde{F}_{i} with $\alpha_{1}+\cdots+\alpha_{n}=1$. Let $h_{i}=\alpha_{i} h$. Clearly $h_{i} f_{i} \in \mathfrak{H}$ for each f_{i} in G_{i}. To complete the proof that h_{i} has a pole of order k_{i} at p_{i} and no other pole it is sufficient to show that there exists f_{i} in G_{i} with $\left(h_{i} f_{i}\right)\left(p_{i}\right) \neq 0$. By hypothesis and Definition 4 there exist elements f_{i} in G_{i} with $(f h)\left(p_{i}\right) \neq 0$ for all i, where $f=f_{1} \cdots f_{n}$. We shall show that $\left(h_{i} f_{i}\right)\left(p_{i}\right) \neq 0$, thereby completing the proof. Since clearly $\alpha_{j}\left(p_{i}\right)=0$ for $j \neq i$, we have $\alpha_{i}\left(p_{i}\right)=1$. Therefore

$$
\left(f h_{i}\right)\left(p_{i}\right)=(f h)\left(p_{i}\right) \alpha_{i}\left(p_{i}\right) \neq 0 .
$$

Since

$$
\left(f h_{i}\right)\left(p_{i}\right)=f_{1}\left(p_{i}\right) \cdots f_{i-1}\left(p_{i}\right) f_{i+1}\left(p_{i}\right) \cdots f_{n}\left(p_{i}\right)\left(f_{i} h_{i}\right)\left(p_{i}\right),
$$

it follows that $\left(f_{i} h_{i}\right)\left(p_{i}\right) \neq 0$. Thus h_{i} has a pole of order k_{i} at p_{i}, as was to be proved.

Lemma 5. Let h be a rational function over the uniform algebra \mathfrak{A} with poles at p_{1}, \cdots, p_{n}. There exists a unique continuousfunction \hat{h} on $Y-\left\{p_{1}, \cdots, p_{n}\right\}$, where Y is the spectrum of \mathfrak{A}, such that if f is any element of \mathfrak{A} for which $f h \in \mathfrak{A}$ then

$$
\begin{equation*}
(f h)(p)=f(p) \hat{h}(p) \quad \text { for all } p \text { in } Y-\left\{p_{1}, \cdots, p_{n}\right\} \tag{*}
\end{equation*}
$$

The function \hat{h} becomes infinite at the points p_{i}. Thus if we define \hat{h} to be infinity at the points p_{i} then \hat{h} is a continuous function from Y to the Riemann sphere.

Proof. Consider a point p in $Y-\left\{p_{1}, \cdots, p_{n}\right\}$. Choose $g=g_{1} \cdots g_{n}$ with $g_{i} \in \mathfrak{A}, g_{i}\left(p_{i}\right)=0, g_{i}(p) \neq 0$. Define $\hat{h}(q)=(g h)(q)[g(q)]^{-1}$ for all q in Y for which $g(q) \neq 0$. Now if f is any function in \mathfrak{A} such that $f h \in \mathfrak{A}$, and if q is a point in Y with $g(q) \neq 0$, then $f(q)(g h)(q)=(f g h)(q)=(f h)(q) g(q)$, so that

$$
\begin{equation*}
(f h)(q)=f(q) \hat{h}(q) \tag{*}
\end{equation*}
$$

as was required. This equation can be written $\hat{h}(q)=(f h)(q)[f(q)]^{-1}$, which shows that \hat{h} is independent of the choice of g. Since \hat{h} is clearly continuous, it remains only to prove the last statement of the lemma. To this end, choose g as above with $(g h)\left(p_{i}\right) \neq 0,1 \leqq i \leqq n$. Since $g(q) \hat{h}(q)=(g h)(q)$, we have $g(q) \neq 0$ for all q sufficiently near p_{i}. The equations $\hat{h}(q)=(g h)(q)[g(q)]^{-1}$ and $g\left(p_{i}\right)=0$ then show that $|\hat{h}(q)| \rightarrow \infty$ as $q \rightarrow p_{i}$, as was to be proved.

To simplify notation we shall write simply $h(p)$ for $\hat{h}(p)$ in the situation of Lemma 5. By a rational function h over a uniform algebra \mathfrak{A} with a simple pole at p we shall mean a rational function h over \mathfrak{A} which has $\{p\}$ as its complete set of poles.

Definition 5. Let h be a rational function over the uniform algebra \mathfrak{A} with a simple pole at the point p. We define the transformation T_{h} from \mathfrak{A} to \mathfrak{A} by

$$
T_{h} f=h(f-f(p))
$$

It is clear that $\left\|T_{h}\right\| \leqq 2\|h\|$, where $\|h\|$ will now be defined.
Definition 6. Let h be a rational function over the uniform algebra \mathfrak{A}. We define

$$
\|h\|=\sup \{|h(x)|: x \in X\}
$$

where X is the Šilov boundary of \mathfrak{A}, and $[h]=(2\|h\|)^{-1}$.
Definition 7. If h is a rational function over a uniform algebra \mathfrak{A} with a simple pole at a point p, D_{h} will denote the set $\{z:|z|<[h]\}$ in the complex plane. If $f \in \mathfrak{A}$ the expansion of f in powers of h^{-1} will denote the power series $a_{0}+a_{1} z+\cdots$, where $a_{n}=f_{n}(p)$ with $f_{n}=\left(T_{h}\right)^{n} f$.

Lemma 6. Under the hypothesis of Definition 7, the expansion of f in powers of h^{-1} converges for all z in D_{h}.

Proof. We have

$$
\left|a_{n}\right| \leqq\left\|T_{h}\right\| n\|f\| \leqq(2\|h\|)^{n}\|f\|,
$$

and so the series converges for $|z|<[h]$.
Definition 8. Under the hypothesis of Definition 7, the value of the sum of the power series at the point z in D_{h} will be denoted by $P(f, h, z)$.

Definition 9. If h is a rational function over a uniform algebra \mathfrak{A} with a simple pole p, if z is any point in D_{h}, and if x is any point in the Silov boundary X of \mathfrak{A}, then we define the quantity $u(h, z)$ in $C(X)$ by the equation

$$
u(h, z, x)=h(x)(1-z h(x))^{-1},
$$

where $u(h, z, x)$ denotes the value of $u(h, z)$ at x. (It should be noted that $1-z h(x) \neq 0$ for all z in D_{h} since $|z|<[h]$.)

Lemma 7. Let h be a rational function over the uniform algebra \mathfrak{N} which has a simple pole p. Let f be an element of \mathfrak{N}. Then $\sigma(z)=[f-P(f, h, z)] u(h, z)$ defines an analytic mapping σ from D_{h} into \mathfrak{N}.

Proof. We have seen that $P(f, h, \cdot)$ is an analytic complex-valued function

$$
P(f, h, z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

where $a_{n}=f_{n}(p)$ and $f_{n}=\left(T_{h}\right)^{n} f$. It is easily seen by induction that

$$
f_{n}=h^{n}\left(f-a_{0}\right)-\sum_{k=1}^{n-1} h^{k} a_{n-k}
$$

for $n \geqq 1$. We also have $|z|<[h]=(2\|h\|)^{-1}$, which implies that $\|z h\|<1$ for all z in D_{h}. Thus the mapping $z \rightarrow u(h, z)$ is an analytic mapping from D_{h} into $C(X)$ and has the power series expansion

$$
u(h, z)=\sum_{n=0}^{\infty} z^{n} h^{n+1} .
$$

It follows that σ is an analytic mapping from D_{h} into $C(X)$ with the power series expansion

$$
\begin{aligned}
\sigma(z) & =\left(f-a_{0}-\sum_{n=1}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} z^{n} h^{n+1}\right) \\
& =h\left(f-a_{0}\right)+\sum_{n=1}^{\infty} f_{n+1} z^{n}=\sum_{n=0}^{\infty} f_{n+1} z^{n},
\end{aligned}
$$

with f_{n} as above. Since $f_{n} \in \mathfrak{A}$ for all values of n, we see that $\sigma(z) \in \mathfrak{A}$, as was to be proved.

Lemma 8. Under the hypothesis of Definitions 7 and 8 the mapping

$$
\lambda_{h}(z): f \rightarrow P(f, h, z)
$$

is a homomorphism of \mathfrak{Q} into the complex numbers, for each z in D_{h}, and therefore is a point in the spectrum of \mathfrak{A}. The mapping $\lambda_{h}: z \rightarrow \lambda_{h}(z)$ is a continuous mapping of D_{h} into the spectrum of \mathfrak{N}.

Proof. It is only necessary to prove that this map is multiplicative, the other properties of a homomorphism being obvious. Fix z in D_{h} and write $u=u(h, z)$. Since $|z|<(2\|h\|)^{-1}$, we have $\|z h\|<1 / 2$, so that

$$
\|u\|=\left\|h(1-z h)^{-1}\right\|<\|h\|(1-1 / 2)^{-1}=2\|h\| .
$$

Thus $\|z u\|<1$. It follows that $1+z u$ has an inverse in $C(X)$. Therefore $h=u(1+z u)^{-1}$. Now if u were in \mathfrak{A} we should have $(1+z u)^{-1} \in \mathfrak{A}$, since $\|z u\|<1$, and therefore $h \in \mathfrak{A}$. Since h has a pole, it is not in \mathfrak{N}, and therefore u is not in \mathfrak{N}.

Consider functions f and g in \mathfrak{A}. By Lemma 7, we see that the functions

$$
g(f-P(f, h, z)) u \quad \text { and } \quad P(f, h, z)(g-P(g, h, z)) u
$$

are in \mathfrak{A}. It follows that their sum

$$
[f g-P(f, h, z) P(g, h, z)] u
$$

is in \mathfrak{A}. Since also $(f g-P(f g, h, z)) u$ is in \mathfrak{N}, we see that

$$
[P(f g, h, z)-P(f, h, z) P(g, h, z)] u
$$

is in \mathfrak{N}. Since u itself is not in \mathfrak{A}, this implies $P(f g, h, z)-P(f, h, z) P(g, h, z)$ $=0$. Thus $\lambda_{h}(z)$ is a homomorphism of \mathfrak{A} into the complex numbers and there-
fore is a point in the spectrum of \mathfrak{A} (see [5, p. 68]). The fact that λ_{h} is continuous follows from the fact that for each f in \mathfrak{A} the composite map $f \circ \lambda_{h}$ $=P(f, h, \cdot)$ is continuous.

Definition 10. Let h be a rational function with a simple pole p over a uniform algebra \mathfrak{A}. For each z in D_{h} the quantity $\lambda_{h}(z)$ is the point in the spectrum Y of \mathfrak{A} defined by

$$
f\left(\lambda_{h}(z)\right)=P(f, h, z)
$$

for all f in \mathfrak{A}. E_{h} will denote the subset of Y of all $\lambda_{h}(z)$ for z in D_{h}. The mapping $z \rightarrow \lambda_{h}(z)$ of D_{h} onto E_{h} will be denoted by λ_{h}.

Lemma 9. Let h be a rational function with a simple pole p over the uniform algebra \mathfrak{N}. Then for each z in $D_{h}, u(h, z)$ is a rational function over \mathfrak{N} with a simple pole at $\lambda_{h}(z)$. For all z and t in D_{h} with $t \neq 0$ and $t \neq z$ respectively we have

$$
h\left(\lambda_{h}(t)\right)=t^{-1}, \quad u\left(h, z, \lambda_{h}(t)\right)=(t-z)^{-1} .
$$

For any q in the spectrum Y of \mathfrak{A} with $q \neq \lambda_{h}(z)$ and $q \neq p$ we have

$$
u(h, z, q)[1-z h(q)]=h(q) .
$$

Proof. Let f be any element in \mathfrak{A} such that $f(p) \neq 0$ and $f_{1}(p) \neq 0$, where $f_{1}=h(f-f(p))$. Then $P(f, h, z)$ has the expansion $a_{0}+a_{1} z+\cdots$ with $a_{1}=f_{1}(p)$ $\neq 0$. Thus the set S of points z in D_{h} with $P(f, h, z)=a_{0}$ is isolated. Since $P(f, h, z)=f\left(\lambda_{h}(z)\right)$ and $a_{0}=f(p)$, it follows that $\lambda_{h}(z) \neq p$ for all z in $D_{h}-S$. Now the function σ defined by $\sigma(z)=[f-P(f, h, z)] u(h, z)$ has been seen in Lemma 7 to be an analytic map from D_{h} to \mathfrak{N}, and therefore it has an expansion

$$
\sigma(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n}
$$

converging on D_{h}, with $\alpha_{n} \in \mathfrak{H}$. For each x in the spectrum Y of \mathfrak{A}, let

$$
\sigma(z, x)=(\sigma(z))(x)=\sum_{n=0}^{\infty} \alpha_{n}(x) z^{n} .
$$

Thus if we define $w(z) \equiv \sigma\left(z, \lambda_{h}(z)\right)$ it follows that

$$
w(z)=\sum_{n=0}^{\infty} \alpha_{n}\left(\lambda_{h}(z)\right) z^{n} .
$$

Since $\alpha_{n} \in \mathfrak{Y}$, we see that $\alpha_{n} \circ \lambda_{h}=P\left(\alpha_{n}, h, \cdot\right)$ is analytic on D_{h} and has absolute values there which do not exceed $\left\|\alpha_{n}\right\|$. It follows that w is an analytic function on D_{h}. Since $\sigma(0)=(f-f(p)) h=f_{1}$, we have

$$
w(0)=\sigma(0, p)=f_{1}(p) \neq 0,
$$

so that the set T of all z in D_{h} with $w(z)=0$ is isolated.

Consider now any point z in $D_{h}-S-T$. From the defining equations for σ and $u(h, z)$ we obtain

$$
\left[f-f\left(\lambda_{h}(z)\right)\right] h=\sigma(z)(1-z h) .
$$

By Lemma 5 , since $\lambda_{h}(z) \neq p$, we may evaluate both sides of this equality at the point $\lambda_{h}(z)$ in Y, obtaining

$$
0=w(z)\left(1-z h\left(\lambda_{h}(z)\right)\right) .
$$

Since z is not in T, this gives $h\left(\lambda_{h}(z)\right)=z^{-1}$. Since h is continuous on Y, by Lemma 5, it follows that $h\left(\lambda_{h}(t)\right)=t^{-1}$ for all $t \neq 0$ in D_{h}.

Since by Lemma 7 we see that $u(h, z)\left(f-f\left(\lambda_{h}(z)\right)\right) \in \mathfrak{Z}$ for all f in \mathfrak{N}, to show that $u(h, z)$ is rational over \mathfrak{A} with a simple pole at $\lambda_{h}(z)$, it is sufficient to show that there exists f in \mathfrak{A} such that $u(h, z)\left(f-f\left(\lambda_{h}(z)\right)\right)$ does not vanish at $\lambda_{h}(z)$. To this end, we consider an element f in \mathfrak{H} with the property that $u f \in \mathfrak{A}$, where $u=u(h, z)$. By the definition of u, we have

$$
(1-z h) u f=h f .
$$

so that

$$
u f=h(f+z u f) .
$$

For t in D_{h} and $t \neq 0$, this implies by Lemma 5 that

$$
(u f)\left(\lambda_{h}(t)\right)=h\left(\lambda_{h}(t)\right)\left[f\left(\lambda_{h}(t)\right)+z(u f)\left(\lambda_{h}(t)\right)\right] .
$$

Since $h\left(\lambda_{h}(t)\right)=t^{-1}$ this gives

$$
\begin{equation*}
(u f)\left(\lambda_{h}(t)\right)=(t-z)^{-1} f\left(\lambda_{h}(t)\right) \tag{*}
\end{equation*}
$$

if $t \neq 0$ and $t \neq z$. By continuity, $\left(^{*}\right)$ is valid whenever t and z are in D_{h} and $t \neq z$.

Now let f be any element in \mathfrak{A} with $f\left(\lambda_{h}(z)\right)=0, f(p)=f\left(\lambda_{h}(0)\right) \neq 0$. Let $f_{n}=u^{n} f$. Assume that $f_{n} \in \mathscr{A}$ for all n and that $f_{n}\left(\lambda_{h}(z)\right)=0$ for all n. It follows by induction from the formula $\left(^{*}\right)$ that $f_{n}\left(\lambda_{h}(t)\right)=(t-z)^{-n} f\left(\lambda_{h}(t)\right)$, for all $t \neq z$. Thus $f\left(\lambda_{h}(\cdot)\right)=f \circ \lambda_{h}$ is an analytic function on D_{h} which is not identically zero such that the function $(\cdot-z)^{-n} f\left(\lambda_{h}(\cdot)\right)$ is analytic for each n. This contradiction shows that our assumption was false. Thus there exists a positive integer n such that $f_{n-1} \in \mathfrak{H}$ and $f_{n-1}\left(\lambda_{h}(z)\right)=0$ and either $f_{n} \in \mathscr{H}$ or $f_{n} \in \mathcal{H}$ and $f_{n}\left(\lambda_{h}(z)\right) \neq 0$. We must have $f_{n} \in \mathfrak{A}$, since $f_{n-1} \in \mathfrak{A}$ and $f_{n-1}\left(\lambda_{h}(z)\right)=0$. Thus $f_{n}\left(\lambda_{h}(z)\right)=\left(u f_{n-1}\right)\left(\lambda_{h}(z)\right) \neq 0$. This is just what was needed to show that u is rational over \mathfrak{U} with a simple pole at $\lambda_{h}(z)$. By the formula (*), we have $u\left(h, z, \lambda_{h}(t)\right)=(t-z)^{-1}$.

Now if p is any point in Y with $q \neq \lambda_{h}(z)$ and $q \neq p$, choose f in \mathfrak{A} with $f(q)=1, f\left(\lambda_{h}(z)\right)=0$. By the above, we have $u f=h(f+z u f)$. Evaluating at q, we have

$$
\begin{aligned}
u(q)=u(q) f(q) & =(u f)(q)=h(q)(1+z(u f)(q)) \\
& =h(q)(1+z u(q))
\end{aligned}
$$

so that

$$
u(q)(1-z h(q))=h(q)
$$

as was to be proved.
Lemma 10. Let h be a rational function over the uniform algebra \mathfrak{A} with a simple pole p. The mapping λ_{h} is a homeomorphism of D_{h} onto E_{h} and E_{h} is an open set in the spectrum Y of \mathfrak{N}.

Proof. The mapping λ_{h} is one-to-one because we have seen that $h\left(\lambda_{h}(z)\right)$ $=z^{-1}$ for all z in D_{h}. We shall show that $\lambda_{h}(U)$ is open in Y for all open subsets U of D_{h}. Since λ_{h} is continuous and one-one, it will follow that λ_{h} is a homeomorphism. By taking $U=D_{h}$, it will follow that E_{h} is open.

Assume then that $\lambda_{h}(U)$ is not open, and let z in U be chosen so that $\lambda_{h}(z)$ is not in the interior of $\lambda_{h}(U)$. Since h is continuous on Y and since $\left[h\left(\lambda_{h}(z)\right)\right]^{-1}=z$ is in D_{h}, it follows that $t=[h(q)]^{-1}$ will be in D_{h} whenever the point q in $Y-\lambda_{h}(U)$ is near enough to $\lambda_{h}(z)$. Choose such a point q. Since $q \notin \lambda_{h}(U)$ we have $q \neq p$ and $q \neq \lambda_{h}(t)$. By Lemma 9 it follows that

$$
\begin{aligned}
t^{-1} & =h(q)=u(h, t, q)[1-\operatorname{th}(q)] \\
& =u(h, t, q)\left[1-t t^{-1}\right]=0
\end{aligned}
$$

a contradiction. Thus $\lambda_{h}(U)$ is open, as was to be proved.
Definition 11 and Lemma 11. Let \mathfrak{A} be a uniform algebra and \mathscr{A}_{0} the set of functions rational over \mathfrak{A}, so that $\mathfrak{A} \subset \mathfrak{H}_{0}$. We define $\Lambda=\Lambda(\mathfrak{H})$, called the analytic part of Y, to be the set of all points p in the spectrum Y of \mathfrak{A} such that there exists h in \mathfrak{N}_{0} with a simple pole at p. Thus the poles of any function in \mathscr{N}_{0} lie in Λ. The set Λ is open in Y and can be given uniquely the structure of a Riemann surface in such a way that all functions h in \mathscr{N}_{0} are analytic on Λ except for a finite number of poles which with their multiplicities coincide with the poles and multiplicities of h when considered as a function rational over \mathfrak{A}. A point p in Λ is said to be a zero of order k of a function h in \mathfrak{A}_{0} if the analytic function h on Λ has a zero of order k at p. For each p in Λ there exists g in \mathfrak{A} with a zero of order 1 at p. If h is in \mathfrak{q}_{0}, if the points p_{1}, \cdots, p_{n} in Λ with multiplicities k_{1}, \cdots, k_{n} respectively are the poles of ζ, and if h_{1}, \cdots, h_{n} are elements of \mathfrak{A}_{0} having simple poles at p_{1}, \cdots, p_{n} respectively then h can be written in the form

$$
\begin{equation*}
h=\sum_{i=1}^{n} \sum_{j=1}^{k_{i}} a_{i j}\left(h_{i}\right)^{j}+f \tag{}
\end{equation*}
$$

where the $a_{i j}$ are constants and f is in \mathfrak{A}. The set \mathfrak{N}_{0} is a subalgebra of $C(X)$,
where X is the Šilov boundary of \mathfrak{U}. If h_{1} and h_{2} are in \mathfrak{A}_{0} and if the point p in Y is a pole of neither then

$$
\left(h_{1} h_{2}\right)(p)=h_{1}(p) h_{2}(p)
$$

and

$$
\left(a_{1} h_{1}+a_{2} h_{2}\right)(p)=a_{1} h_{1}(p)+a_{2} h_{2}(p)
$$

for all scalars a_{1} and a_{2}.
Proof of Lemma 11. Lemma 10 establishes a local coordinate system at each point of Λ. Since the functions in \mathfrak{N} separate points on Λ and are analytic in each such local coordinate system, we see that overlapping coordinate systems are analytically related. Thus Λ can uniquely be given the structure of a Riemann surface on which the functions in \mathfrak{A} are analytic. If $h \in \mathfrak{A}_{0}$ and $p \in \Lambda$ is not a pole of h, then there exists g in \mathfrak{A} with $g(p)=1$ and $g h=f \in \mathfrak{H}$. Thus $g(q) h(q)=f(q)$ for all q near p, so that h is analytic at p. If on the other hand p is a pole of h of order n, let h_{1} have a simple pole p. Such an h_{1} exists by Lemmas 2 and 4 . Thus $p \in \Lambda$. There exists g in \mathfrak{N} with $g(p)=0$ and $f_{1}(p) \neq 0$, where $f_{1}=g h_{1}$. Since by Lemma 10 the function h_{1}-as a meromorphic function on Λ-has a simple pole at p, we see that g has a simple zero at p. Since the element $g^{n} h$ of \mathfrak{A}_{0} is analytic at p, we see that as a meromorphic function on Λ, h has a pole at p of order at most n. On the other hand, there exists g_{1}, \cdots, g_{n} in \mathfrak{A} with $g_{i}(p)=0$ and $g_{1} \cdots g_{n} h=f \in \mathfrak{A}_{0}, f(p) \neq 0$. This shows that as a meromorphic function on Λ, h has a pole at p of order at least n. Thus, as a meromorphic function on Λ, the order of the pole of h at p is exactly n. It follows that the poles of h and their orders are the same whether h is considered to be a meromorphic function on Λ or as a function rational over \mathfrak{N}. We have incidentally constructed a function, g above, with a zero of order 1 at any point p in Λ. The fact that Λ is open in Y follows from Lemma 10.

We now prove the representation (*) for an arbitrary h in \mathfrak{H}_{0}. To this end, notice that it is sufficient to consider the case in which h has only one pole, since by Lemma 4 an arbitrary h can be written as a linear combination of such h. We assume therefore that h has the single pole p of multiplicity k, and that h_{1} is any function in \mathfrak{A}_{0} with a simple pole at p. The representation $\left(^{*}\right)$ which we wish to obtain now reduces to

$$
\begin{equation*}
h=\sum_{==1}^{k} a_{j}\left(h_{1}\right)^{i}+f \tag{**}
\end{equation*}
$$

with $f \in \mathfrak{H}$. Since h and h_{1} are meromorphic on Λ with poles of orders k and 1 respectively at p, we can find constants a_{1}, \cdots, a_{j} such that the function

$$
h-\sum_{j=1}^{k} a_{j}\left(h_{1}\right)^{j}
$$

is regular at p, where h and h_{1} are considered as meromorphic functions on Λ.

If we let g be the function $\sum_{j=1}^{k} a_{j}\left(h_{1}\right)^{i}$ in $C(X)$, it follows from Lemma 3 that there exist f_{1} and f_{2} in \mathfrak{A} with $g=f_{1} h+f_{2}$. For all j it is clear that $\left(h_{1}\right)^{j}$ is in \mathfrak{A}_{0} with a pole of order j at p, and that $\left(h_{1}\right)^{i}(q)=\left(h_{1}(q)\right)^{i}$ for all q in $Y-\{p\}$. If β in \mathfrak{U} has a simple zero at p and $\alpha=\beta^{k}$ we see that $\alpha h_{1}^{j} \in \mathfrak{A}$ for $j \leqq k,\left(\alpha h_{1}^{j}\right)(p)=0$ for $j<k,\left(\alpha h_{1}\right)^{k}(p) \neq 0$. Since $a_{k} \neq 0$, it follows that $\alpha g \in \mathfrak{A}$ and $(\alpha g)(p) \neq 0$. For all q near p we have $(\alpha h)(q)=\alpha(q) h(q)$ and

$$
\left(\alpha h_{1}^{j}\right)(q)=\alpha(q)\left(h_{1}^{j}\right)(q)=\alpha(q)\left(h_{1}(q)\right)^{j} .
$$

Thus

$$
(\alpha h)(q)-(\alpha g)(q)=\alpha(q)\left[h(q)-\sum_{j=1}^{k} a_{j}\left(h_{1}(q)\right)^{j}\right]
$$

Since the function

$$
h-\sum_{j=1}^{k} a_{j} h_{1}^{j},
$$

where h and h_{1} are considered as meromorphic functions on Λ, is regular at p, it follows that $\alpha h-\alpha g$ has a zero of order at least k at p. Since

$$
\alpha g=f_{1} \alpha h+f_{2} \alpha
$$

it follows that

$$
\begin{aligned}
(\alpha g)\left(1-f_{1}\right) & =\alpha g-f_{1} \alpha g \\
& =\alpha g-f_{1} \alpha h+f_{1}(\alpha h-\alpha g)=f_{2} \alpha+f_{1}(\alpha h-\alpha g)
\end{aligned}
$$

has a zero of order at least k at p. But $(\alpha g)(p) \neq 0$ so that $1-f_{1}$ therefore has a zero of order at least k at p. Therefore $\left(1-f_{1}\right) h_{1}$ is in \mathfrak{H} and has a zero of order at least $k-1$ at p. Therefore $\left(1-f_{1}\right) h_{1}^{2}$ is in \mathfrak{A} and has a zero of order at least $k-2$ at \mathfrak{A}. Continuing this argument we see finally that $\left(1-f_{1}\right) h_{1}^{k}$ is in $\mathfrak{\vartheta}$. Since by Lemma $3 h$ has the form

$$
h=\gamma_{1}\left(h_{1}\right)^{k}+\gamma_{2}
$$

with γ_{1} and γ_{2} in \mathfrak{U}, it follows that $\left(1-f_{1}\right) h \in \mathfrak{A}$. Therefore

$$
g=f_{1} h+f_{2}=h-\left(1-f_{1}\right) h+f_{2}=h-f,
$$

where $f \in \mathfrak{A}$. But this is just (${ }^{* *}$).
It remains to show that \mathfrak{N}_{0} is an algebra. Let f and g be in \mathfrak{N}_{0}. Let the points p_{1}, \cdots, p_{n} in Λ include the poles of f and g, and let $h_{i}, 1 \leqq i \leqq n$, be in \mathfrak{H}_{0} and have a simple pole at p_{i}. Thus both f and g have representations of the form (${ }^{*}$). It follows that $f+g$ has a representation of the form (${ }^{*}$). It therefore suffices to prove that the element h of $C(X)$ defined by $\left(^{*}\right)$ is in \mathfrak{A}_{0}, for arbitrary constants $a_{i j}$ and an arbitrary f in \mathfrak{A}. We may assume that $a_{i k_{i}} \neq 0$ for each i. For each i, choose α_{i} in \mathfrak{A} with a simple zero at p_{i} and with $\alpha_{i}\left(p_{j}\right) \neq 0$
for $i \neq j$. Set $\beta_{i}=\left(\alpha_{i}\right)^{k_{i}}$ and $\beta=\beta_{1} \cdots \beta_{n}$. Thus $\beta_{i}\left(h_{i}\right)^{j} \in \mathfrak{Z}$ for $j \leqq k_{i}$. Now $\left(\beta\left(h_{i}\right)^{j}\right)\left(p_{i}\right)$ is 0 if $j<k_{i}$ and not zero if $j=k_{i}$. Also $\left(\beta\left(h_{m}\right)^{j}\right)\left(p_{i}\right)=0$ if $j \leqq k_{m}$ and $m \neq i$. It follows that βh is in \mathfrak{A} and $(\beta h)\left(p_{i}\right) \neq 0$ for all i. Thus h is rational over \mathfrak{A} with poles p_{1}, \cdots, p_{n} having respective multiplicities k_{1}, \cdots, k_{n}. It follows that \mathfrak{A}_{0} is closed under addition.

To see that \mathscr{A}_{0} is closed under multiplication, it is sufficient to consider elements f and g in \mathfrak{H}_{0} each of which has at most one pole, since by Lemma 4 any element in \mathfrak{A}_{0} is a linear combination of such elements, and since we have already seen \mathfrak{A}_{0} to be closed under addition. First let f have a pole of multiplicity n at the point p, and let g have a pole of multiplicity m at the same point p, where $m>0, n>0$. We show that in this case $f g$ has a pole of multiplicity $n+m$ at p. It is clear that $h=g_{1} \cdots g_{n+m} f g \in \mathfrak{H}_{0}$ whenever $g_{i}(p)=0$ for $1 \leqq i \leqq n+m$, since we can write

$$
h=g_{1} \cdots g_{n} f g_{n+1} \cdots g_{n+m} g .
$$

It is also clear that we can choose the g_{i} to give $h(p) \neq 0$, since we can choose them to give

$$
\left(g_{1} \cdots g_{n} f\right)(p) \neq 0, \quad\left(g_{n+1} \cdots g_{n+m} g\right)(p) \neq 0
$$

This shows that $f g \in \mathfrak{A}$. We now consider the case for $f \in \mathfrak{A}, g$ has a pole of multiplicity $m>0$ at the point q. By the decomposition (**), it is sufficient to consider functions g of the form ($h)^{i}$, where h has a simple pole at q. If r is the order of the zero of f at q, it is clear from successive multiplications by h that $h^{i} f$ is in \mathfrak{H} for $i \leqq r$ and has a zero of order $r-i$ at q. If $j \leqq r$, this shows that $f g \in \mathfrak{A}$. If $j>r$, we see that $\alpha=h^{r} f$ is in \mathfrak{A} and does not vanish at q, and that $f g=\alpha h^{i-r}$. From this it is clear that $f g$ is in \mathfrak{H}_{0} with a pole of order $j-r$ at q.

There remains the case in which f has a pole of order $n>0$ at p and g has a pole of order $m>0$ at q, with $p \neq q$. Let h_{1} with $h_{1}(q) \neq 0$ have a simple pole at p and h_{2} with $h_{2}(p) \neq 0$ have a simple pole at q. By the representation (**), it is sufficient to assume that either $f=\left(h_{1}\right)^{i}$ for $j>0$ or $f \in \mathfrak{A}$, and $g=\left(h_{2}\right)^{k}$ for $k>0$ or $g \in \mathfrak{A}$. Since we have already settled the cases $f \in \mathfrak{A}$ or $g \in \mathfrak{A}$, we assume $f=\left(h_{1}\right)^{i}$ and $g=\left(h_{2}\right)^{k}$.

It is then clear that

$$
\alpha=f_{1} \cdots f_{j} g_{1} \cdots g_{k} f g \in \mathfrak{A}
$$

whenever $f_{i} \in \mathfrak{N}, f_{i}(p)=0, g_{i} \in \mathfrak{N}, g_{i}(q)=0$. Also, if we choose each f_{i} to have a simple zero at p and not to vanish at q, and each g_{i} to have a simple zero at q and not to vanish at p, we see that $\alpha(p) \neq 0, \alpha(q) \neq 0$. Thus $f g$ is in \mathscr{A}_{0}. This completes the proof that \mathfrak{N}_{0} is an algebra.

Now consider h_{1} and h_{2} in \mathscr{A}_{0} and p in Y which is a pole of neither h_{1} nor h_{2}. If g in \mathfrak{A} vanishes to sufficiently large order at the poles of h_{1} and h_{2} then $g h_{1} \in \mathfrak{A}, g h_{2} \in \mathfrak{H}$, and $g h_{1} h_{2} \in \mathfrak{A}$. Choose such a g with $g(p) \neq 0$. We then have

$$
g(p)\left(h_{1} h_{2}\right)(p)=\left(g h_{1} h_{2}\right)(p)=\left(g h_{1}\right)(p) h_{2}(p)=g(p) h_{1}(p) h_{2}(p),
$$

so that $\left(h_{1} h_{2}\right)(p)=h_{1}(p) h_{2}(p)$. The proof that $\left(h_{1}+h_{2}\right)(p)=h_{1}(p)+h_{2}(p)$ is similar.

Lemma 12. Let \mathfrak{A} be a uniform algebra with spectrum Y whose analytic part is Λ. Let U be an open subset of Λ. Let ϕ be a bounded linear functional on $C(Y-U)$ which vanishes on \mathfrak{A}. Then there exists a unique analytic differential $d \omega_{\phi}$ on U such that

$$
\begin{equation*}
\phi(h)=(2 \pi i)^{-1} \int_{C} h d \omega_{\phi}, \tag{*}
\end{equation*}
$$

if h is any rational function over \mathfrak{A} whose poles all lie in U, if C is the union of a finite set of disjoint simple, closed rectifiable curves lying in U, and if C bounds a relatively compact open set $V \subset U$ which contains the poles of h.

Proof. Let p be any point in U and choose h in \mathfrak{H}_{0} with a simple pole at p. Thus h^{-1} is analytic at p, so that $d\left(h^{-1}\right)$, considered at p, is in the space of differentials at p (see Chevalley [2] for this notion). We define the form $d \omega_{\phi}$ to have the value $\phi(h) d\left(h^{-1}\right)$ at p. To see that this does not depend on the choice of h, consider a second function g in \mathfrak{N}_{0} with a simple pole at p. By Lemma 11, there exists a constant λ such that $g-\lambda h \in \mathfrak{A}$. Therefore $\phi(g)$ $=\lambda \phi(h)$. Viewing g and h as meromorphic functions on Λ we see that $g-\lambda h$ is regular at p. Since g^{-1} and h^{-1} are regular at p and vanish there we see that

$$
g^{-1} h^{-1}(g-\lambda h)=h^{-1}-\lambda g^{-1}
$$

has a zero of order at least 2 at p. Therefore we have $d\left(h^{-1}\right)=\lambda d\left(g^{-1}\right)$ at p. We therefore have

$$
\phi(g) d\left(g^{-1}\right)=\phi(h) d\left(h^{-1}\right)
$$

at p, so that $d \omega_{\phi}$ is uniquely defined.
To see that $d \omega_{\phi}$ is an analytic differential, notice that the function $u(h, z)$ of Definition 9 has a simple pole at $\lambda_{h}(z)$ for each z in D_{h}. If we consider h, which is defined on $Y-\{p\}$, to be an element of $C(Y-U)$ then the mapping

$$
z \rightarrow u(h, z)=h(1-z h)^{-1}
$$

is an analytic mapping from D_{h}^{0} to $C(Y-U)$, where

$$
D_{h}^{0}=\{z:|z|<r\}
$$

with r chosen so small that $|z h(p)|<1$ for all z in D_{h}^{0} and all p in $Y-U$. Thus

$$
z \rightarrow \phi(u(h, z))
$$

is an analytic function on D_{h}^{0}, so that

$$
q \rightarrow \phi\left[u\left(h, \gamma_{h}(q)\right)\right]
$$

is an analytic function on E_{h}^{0}, where $E_{h}^{0}=\lambda_{h}\left(D_{h}^{0}\right)$ and γ_{h} denotes the mapping of E_{h} onto D_{h} which is inverse to λ_{h}. If h and $u(h, z)$ are considered as meromorphic functions on Λ, it follows from Lemma 10 that

$$
u(h, z)(1-z h)=h
$$

Therefore

$$
[u(h, z)]^{-1}=h^{-1}-z
$$

so that

$$
d[u(h, z)]^{-1}=d h^{-1} .
$$

Thus we see that the differential $d \omega_{\phi}$ is given on E_{h}^{0} by

$$
\begin{aligned}
{\left[d \omega_{\phi}\right]_{q} } & =\phi\left[\left(u\left(h, \gamma_{h}(q)\right)\right]\left[d\left[u\left(h, \gamma_{h}(q)\right)\right]^{-1}\right]_{q}\right. \\
& =\phi\left[u\left(h, \gamma_{h}(q)\right)\right] d h^{-1}(q),
\end{aligned}
$$

and is therefore an analytic differential.
To prove the formula [*], we avail ourselves of the representation $\left(^{*}\right)$ of Lemma 11. Thus in proving [*] it suffices to consider functions h^{n}, where h has a simple pole in V, and functions f in \mathfrak{A}. Now if $f \in \mathfrak{A}$, both sides of [*] vanish, the left side by the hypothesis on ϕ and the right side because $f d \omega_{\phi}$ is analytic on $V \cup C$.

Thus we consider h with a simple pole at a point p in V. Since $h^{n} d \omega_{\phi}$ is analytic on $V \cup C$ except at p, we may replace the contour C by any simple contour about p. Thus in proving [*] we may choose C to be a simple closed rectifiable curve lying in E_{n}^{0} and surrounding the point p. Using the representation obtained above for $d \omega_{\phi}$ in E_{h}^{0}, we now compute, letting B be the curve in D_{n}^{0} corresponding to the curve C in E_{n}^{0},

$$
\begin{aligned}
\int_{C} h^{n} d \omega_{\phi} & =\int_{C} h^{n}(q) \phi\left(u\left[h, \gamma_{h}(q)\right]\right) d h^{-1}(q) \\
& =\int_{B} z^{-n} \phi(u(h, z)) d z=\phi\left[\int_{B} z^{-n} u(h, z) d z\right] \\
& =\phi\left[\int_{B} z^{-n} h(1-z h)^{-1} d z\right]=\phi\left[\sum_{k=0}^{\infty} \int_{B} z^{k-n} h^{k+1} d z\right] \\
& =\phi\left[2 \pi i h^{n}\right]=2 \pi i \phi\left(h^{n}\right) .
\end{aligned}
$$

This proves [*] and thereby completes the proof of Lemma 12, since the fact that $d \omega_{\phi}$ is unique clearly follows from [*].

Lemma 13. Let \mathfrak{A} be a uniform algebra with spectrum Y whose analytic part is Λ and whose Šilov boundary is X. Let U be an open set in Λ, and let B be the boundary of U. Let \mathfrak{B}_{1} consist of all rational functions over \mathfrak{A} whose poles lie in
U, and let \mathfrak{B} be the closure in $C(Y-U)$ of \mathfrak{B}_{1}. Then $Y-U$ is the spectrum of \mathfrak{B} and the Šilov boundary of \mathfrak{B} is a subset of $X \cup B$.

Proof. Consider any element λ in the spectrum of \mathfrak{B}. The restriction of λ to \mathfrak{H} is some point p in Y, so that

$$
\lambda(f)=f(p)
$$

for all f in \mathfrak{N}. Assume that $p \in U$. Choose h in $\mathfrak{\Re}_{0}$ with a simple pole at p and f in \mathfrak{A} with $f(p)=0,(f h)(p) \neq 0$. Then

$$
0 \neq(f h)(p)=\lambda(f h)=\lambda(f) \lambda(h)=0 \cdot \lambda(h)=0
$$

This contradiction proves that $p \in Y-U$. For any h in \mathfrak{B}_{1} choose g in \mathfrak{A} with $g(p) \neq 0$ and $g h \in \mathfrak{A}$. Then

$$
g(p) \lambda(h)=\lambda(g) \lambda(h)=\lambda(g h)=(g h)(p)=g(p) h(p)
$$

so that $\lambda(h)=h(p)$. Since this is true for all h in \mathfrak{B}_{1} it is true for all h in \mathfrak{B}. Thus $Y-U$ is the spectrum of \mathfrak{B}.

We now show that the Silov boundary of \mathfrak{B} is a subset of $X \cup B$. Consider a point p in $Y-U-(X \cup B)$. Since X is the Silov boundary of \mathfrak{A} there exists a bounded linear functional ϕ_{0} on $C(X)$ such that

$$
\phi_{0}(f)=f(p)
$$

for all f in \mathfrak{A}. Define the bounded linear functional ϕ on $C(X \cup\{p\})$ by

$$
\phi(f)=\phi_{0}(f)-f(p)
$$

Thus $\phi(f)=0$ for all f in \mathfrak{A}. Let V be any relatively compact subset of U whose boundary C consists of a finite number of disjoint rectifiable simple closed curves. Let \mathfrak{B}_{V} consist of all functions in \mathfrak{B}_{1} whose poles lie in V. From [*] of Lemma 12 it follows that

$$
\phi(h)=(2 \pi i)^{-1} \int_{C} h d \omega_{\phi}
$$

for all h in \mathfrak{B}_{V}. If we define the bounded linear functional ϕ_{1} on $C(C)$ by

$$
\phi_{1}(f)=(2 \pi i)^{-1} \int_{C} f d \omega_{\phi}
$$

it follows that $\phi_{2}=\phi_{0}-\phi_{1}$ is a bounded linear functional on $C(X \cup C)$ and that $\phi_{2}(h)=h(p)$ for all h in \mathfrak{B}_{V}. Thus, for each positive integer n,

$$
|h(p)|^{n}=\left|\phi_{2}\left(h^{n}\right)\right| \leqq\left\|\phi_{2}\right\|[\sup \{|h(q)|: q \in X \cup C\}]^{n}
$$

for all h in \mathfrak{B}_{V}. By taking roots and letting $n \rightarrow \infty$ it follows that

$$
|h(p)| \leqq \sup \{|h(q)|: q \in X \cup C\} .
$$

Now an arbitrary element h of \mathfrak{B}_{1} will be in \mathfrak{B}_{V} if V is a large enough subset of U, and the inequality just derived will obtain. Letting V converge to U it follows that

$$
|h(p)| \leqq \sup \{|h(q)|: q \in X \cup B\}
$$

for all h in \mathfrak{B}_{1}. This inequality therefore holds for all h in \mathfrak{B}, so that $X \cup B$ contains the Silov boundary of \mathfrak{B}.

Lemma 14. Let $\mathfrak{\Re}$ be a uniform algebra with spectrum Y whose analytic part is Λ. Let X be the Šilov boundary of \mathfrak{N}. Let g be a rational function over \mathfrak{N} such that g vanishes at only a finite set p_{1}, \cdots, p_{n} of points in Y, all of which lie in Λ. Then g^{-1} is a rational function over \mathfrak{A}.

Proof. Let k_{1}, \cdots, k_{n} be the orders to which g vanishes at p_{1}, \cdots, p_{n} respectively. Let U be an open set in Λ containing the poles and zeros of g such that the boundary C of U consists of a finite set of disjoint rectifiable Jordan arcs lying in Λ. Let \mathfrak{B}_{1} consist of all rational functions over \mathfrak{A} whose poles lie in U. Let \mathfrak{B} be the closure of \mathfrak{B}_{1} in $C(Y-U)$. By Lemma $13, Y-U$ is the spectrum of \mathfrak{B}.

Now since $g \in \mathfrak{B}$ and g does not vanish on $Y-U$, it follows that $g^{-1} \in \mathfrak{B}$.
Let ϕ be any bounded linear functional on $C(X)$ which vanishes on \mathfrak{A}. By Lemma 12, we have

$$
\phi(h)=(2 \pi i)^{-1} \int_{C} h d \omega_{\phi}
$$

for all h in \mathfrak{B}_{1}, and therefore for all h in \mathfrak{B}. Now let f be any function in \mathfrak{A} which vanishes at p_{1}, \cdots, p_{n} to orders at least k_{1}, \cdots, k_{n}. We shall show that $\mathrm{fg}^{-1} \in \mathfrak{A}$. This will help prove that g^{-1} is rational over \mathfrak{A} with poles at p_{1}, \cdots, p_{n} of multiplicities k_{1}, \cdots, k_{n}. To see that $g^{-1} \in \mathfrak{N}$, notice that $f g^{-1} \in \mathfrak{O}$, so that

$$
\phi\left(f g^{-1}\right)=(2 \pi i)^{-1} \int_{C} f g^{-1} d \omega_{\phi}=0
$$

since $f g^{-1}$ is regular on Λ. Since ϕ is an arbitrary bounded linear function on $C(X)$ which annihilates \mathfrak{N}, it follows that $f g^{-1} \in \mathfrak{N}$. To complete the proof that g^{-1} is rational over \mathfrak{A}, choose $g_{i} \in \mathfrak{N}, 1 \leqq i \leqq n$, such that g_{i} has a simple zero at p_{i} and $g_{i}\left(p_{j}\right) \neq 0$ for $i \neq j$. Write $f=\left(g_{1}\right)^{k_{1}} \cdots\left(g_{n}\right)^{k_{n}}$. By the above we have $f g^{-1} \in \mathfrak{A}$. Since $\left(f g^{-1}\right) g=f$ and g have zeros of the same order at p_{1}, \cdots, p_{n}, it follows that $\left(g^{-1}\right)\left(p_{i}\right) \neq 0$ for $1 \leqq i \leqq n$. This completes the proof that g^{-1} is rational over \mathfrak{N}.
3. Conditions for analyticity of the spectrum. In this section we derive conditions which imply that certain points in the spectrum of a uniform algebra belong to the analytic part of the spectrum. Somewhat more exact conditions could be given, by refining the techniques employed here, but the
added generality which would be obtained does not seem to justify the attendant complication of the proofs.

Lemma 15. Let \mathfrak{A} be a uniform algebra with Šilov boundary X and spectrum Y with analytic part Λ. Let g be a function in \mathfrak{A} which vanishes at a finite set p_{1}, \cdots, p_{n} of points in Y, all of which lie in Λ and are simple zeros of g. Let $A=\inf \{|g(x)|: x \in X\}$. Let f in \mathfrak{A} have the properties $f\left(p_{1}\right)=1$ and $f\left(p_{i}\right)=0$ for $2 \leqq i \leqq n$. Then there exists a neighborhood F_{1} of p_{1} in Λ which g maps homeomorphically onto $\left\{z:|z|<A\left(32| | f \|^{3}\right)^{-1}\right\}$.

Proof. By Lemmas 11 and 14 , we see that $h=f^{2} g^{-1}$ is rational over \mathfrak{A} with a simple pole at p_{1}. Let D be the set

$$
\left\{z:|z| \leqq(4\|f\|)^{-1}[h]\right\} .
$$

Since $\|f\| \geqq\left|f\left(p_{1}\right)\right|=1$, we see that

$$
D \subset D_{h}=\{z:|z| \leqq[h]\}
$$

so that $E=\lambda_{h}(D)$ is a subset of E_{h}. By Lemma $9, h^{-1} \circ \lambda_{h}$ is the identity map on $D \subset D_{h}$. Since $\left\|g^{-1}\right\| \leqq A^{-1}$, we have $\|h\| \leqq A^{-1}\|f\|^{2}$ so that $[h]=(2\|h\|)^{-1}$ $\geqq A\left(2 \mid\|f\|^{2}\right)^{-1}$. Now $|f(q)-1| \leqq 2\|f\|$ for q in E_{h}, and $f\left(p_{1}\right)-1=0$. Since h^{-1} maps E_{h} homeomorphically onto D_{h}, it follows by Schwarz's lemma that

$$
|f(q)-1| \leqq 2| | f \|\left|\left|h^{-1}(q)\right|[h]^{-1}\right.
$$

for all q in E_{h}. In particular, for q in E this gives

$$
|f(q)-1| \leqq 2\|f\|(4\|f\|)^{-1}[h][h]^{-1}=1 / 2
$$

so that $|f(q)| \geqq 1 / 2$. Thus for q in the boundary of E we have

$$
\begin{aligned}
|g(q)| & =|f(q)|^{2}|h(q)|^{-1} \geqq 1 / 4(4\|f\|)^{-1}[h] \\
& \geqq 1 / 4(4\|f\|)^{-1} A\left(2\|f\|^{2}\right)^{-1}=A\left(32\|f\|^{3}\right)^{-1} .
\end{aligned}
$$

Assume for the moment that p_{1} is the only point in E at which g vanishes. Then this last inequality when combined with Rouche's theorem tells us that each value of z with $|z|<A\left(32\|f\|^{3}\right)^{-1}$ is assumed by g exactly once on the set E. If we set

$$
F_{1}=\left\{q: q \in E,|g(q)|<A\left(32\|f\|^{3}\right)^{-1}\right\},
$$

the set F_{1} has the required properties.
It only remains to see that p_{1} is the only point in E at which g vanishes, i.e., that none of the points $p_{i}, 2 \leqq i \leqq n$, is in E. If such a p_{i} were in E, we would have $h\left(p_{i}\right)=f\left(p_{i}\right)\left(f g^{-1}\right)\left(p_{i}\right)=0$, contradicting the fact that h does not vanish on E_{h}. This completes the proof of Lemma 15.

Definition 12. Let \mathfrak{A} be a uniform algebra with Silov boundary X and with spectrum Y whose analytic part is Λ. Let g be a function in \mathfrak{N}. A point z in $-g(X)$ will be called g-regular of multiplicity n if $g^{-}(\{z\})$ consists of n
points p_{1}, \cdots, p_{n} of Y, all of which lie in Λ and at each of which $g-z$ has a simple zero. A component U of $-g(X)$ will be called g-regular of multiplicity n if all points in U with the exception of an isolated set in U are g-regular of multiplicity n.

Definition 13. A point p in the spectrum Y of a uniform algebra \mathfrak{A} will be called one-dimensional of multiplicity n if there exists a connected neighborhood U of p such that
(i) $U-\{p\}$ consists of n components U_{1}, \cdots, U_{n} each of which is a subset of Λ.
(ii) For $1 \leqq i \leqq n$ there exists a homeomorphism σ_{i} of $U_{i} \cup\{p\}$ onto $\{z:|z|<1\}$ which is analytic on U_{i}.

Lemma 16. Let V be a bounded open set in the complex plane with boundary B. Let N be a relatively open subset of B and Δ an analytic function in V such that

$$
\lim _{z \rightarrow t} \Delta(z)=0
$$

for each t in N. Then N is an isolated set (the relative topology of N is discrete).
Proof. Let t_{0} be any point in N and let L be some neighborhood

$$
L=\left\{z:\left|z-t_{0}\right|<\epsilon\right\}
$$

of t_{0} with the property that $L \cap B \subset N$. Define the function Δ_{0} on L by $\Delta_{0}(z)$ $=\Delta(z)$ if $z \in V$ and $\Delta_{0}(z)=0$ otherwise. Thus Δ_{0} is continuous on L and analytic at those points where it does not vanish. By a theorem of Radó (see [3]), Δ_{0} is analytic on L. Since Δ_{0} vanishes on $L \cap N$, the point t_{0} is isolated in $L \cap N$ and therefore isolated in N. This completes the proof.

Lemma 17. If \mathfrak{A} is a uniform algebra with spectrum Y and Šilov boundary X and if g is a function in \mathfrak{A}, then any component U of $-g(X)$ which contains a g-regular point z_{0} of multiplicity n is g-regular of multiplicity n. If z is any point in U then there are at most n points p in Y with $g(p)=z$, each of which is one-dimensional. If there are exactly n such p then they all lie in Λ and are simple zeros of $g-z$.

Proof. Let f be any function in \mathfrak{N} with $\|f\| \leqq 1 / 2$ which has distinct values at the points p in Λ with $g(p)=z_{0}$. Let U_{0} consist of all points in U which are g-regular of multiplicity n. For each z in U_{0} let $p_{2}^{1}, \cdots, p_{z}^{n}$ be the points in Λ where g takes the value z, and define the function Δ on U_{0} by

$$
\Delta(z)=\prod_{1 \leqq i<j \leqq n}\left(f\left(p_{z}^{i}\right)-f\left(p_{z}^{j}\right)\right)^{2}
$$

Let V be the set of all z in U_{0} with $\Delta(z) \neq 0$, so that $z_{0} \in V$. For each z in U_{0} define the functions f_{z}^{i} in $\mathfrak{V}, 1 \leqq i \leqq n$, by

$$
f_{z}^{i}(p)=\prod_{j \neq i}\left(f(p)-f\left(p_{z}^{j}\right)\right)
$$

Since $\|f\| \leqq 1 / 2$ we have $|\Delta(z)| \leqq 1,\left\|f_{z}^{i}\right\| \leqq 1$. Also,

$$
|\Delta(z)|=\prod_{i=1}^{n}\left|\Delta_{i}(z)\right|
$$

where

$$
\Delta_{i}(z)=f_{z}^{i}\left(p_{z}^{i}\right) .
$$

We therefore see that $\left|\Delta_{i}(z)\right| \geqq|\Delta(z)|$ for $1 \leqq i \leqq n$ and z in U_{0}. For z in V we define

$$
g_{z}^{i}=\left(\Delta_{i}(z)\right)^{-1} f_{z}^{i} .
$$

It follows that $g_{z}^{i} \in \mathfrak{A}$, that $\| g_{z}^{i}| | \leqq\left|\Delta_{i}(z)\right|^{-1} \leqq|\Delta(z)|^{-1}$, that $g_{z}^{i}\left(p_{z}^{i}\right)=1$, and that $g_{2}^{i}\left(p_{2}^{j}\right)=0$ for $j \neq i$. It follows from Lemma 15 that there exists a neighborhood of p_{z}^{i} in Λ which $g-z$ maps homeomorphically onto

$$
\left\{t:|t|<A_{z}\left(32\left\|g_{z}^{i}\right\|^{3}\right)^{-1}\right\}
$$

where A_{z} is the distance of z to $g(X)$. Thus g maps some neighborhood F_{z}^{i} of p_{z}^{i} homeomorphically onto

$$
D_{z}=\left\{t:|t-z|<K_{z}\right\}
$$

where

$$
K_{z}=1 / 32 A_{z}|\Delta(z)|^{3} .
$$

For $i \neq j$ there thus exists a unique analytic homeomorphism σ of F_{z}^{i} onto F_{z}^{\prime} which identifies points at which g has equal values. Now if F_{z}^{i} and F_{z}^{j} had a common point q, it would follow that $\sigma(q)=q$. Thus $\Omega=F_{z}^{i} \cap F_{z}^{j}$ would be nonvoid and σ is the identity map on Ω. Clearly Ω is open in F_{z}^{i} because both F_{z}^{i} and F_{z}^{j} are open. Since Ω is the fixed set of σ on F_{z}^{i} it is also clear that Ω is closed in F_{z}^{i}. Since F_{z}^{i} is connected it follows that $F_{z}^{i}=\Omega$ if Ω is nonvoid. From this it would follow that $\sigma(p)=p$ for all p in F_{z}^{i}, so that $p_{z}^{j}=\sigma\left(p_{z}^{i}\right)=p_{z}^{i}$, a contradiction. Therefore the sets $F_{z}^{1}, \cdots, F_{z}^{n}$ are disjoint for each z in V.

If $z \in V$ and $t \in D_{z}$, it follows that $g-t$ has exactly one simple zero in each of the sets F_{z}^{i}, which we denote by $p_{t}^{1}, \cdots, p_{t}^{n}$. If we can show that $g-t$ vanishes at no other point of Y, it will follow that $t \in U_{0}$. To see this, let H be the set of all t in D_{z} such that $g(p)=t$ for some p in $Y-F_{z}^{1}-\cdots-F_{z}^{n}$. Clearly H is a closed subset of D_{z} and $z \notin H$. To see that H is open in D_{z} or that $D_{z}-H$ is closed in D_{z}, let t in D_{z} be in the closure of $D_{z}-H$, so that there exists u in $D_{z}-H$ arbitrarily near to t. By Lemma $14,(g-u)^{-1}$ is in \mathscr{N}_{0}, so
that $\left(h-h\left(p_{u}^{1}\right)\right) \cdots\left(h-h\left(p_{u}^{n}\right)\right)(g-u)^{-1}$ is in \mathfrak{A}, for each h in \mathfrak{A}. Letting u converge to t, we see that

$$
\left(h-h\left(p_{t}^{1}\right)\right) \cdots\left(h-h\left(p_{t}^{n}\right)\right)(g-t)^{-1}=h_{0}
$$

is in $\mathfrak{\imath}$. Thus for any p in Y with $g(p)=t$ we have

$$
\left(h(p)-h\left(p_{t}^{1}\right)\right) \cdots\left(h(p)-h\left(p_{t}^{n}\right)\right)=(g(p)-t) h_{0}(p)=0 .
$$

Since h was any element in \mathfrak{A}, it follows that p is one of the points p_{t}^{i}. Thus $t \in D_{z}-H$. Since H is both open and closed, and since $z \in H$, we see that H is void. Therefore $D_{z} \subset U_{0}$. Since $\Delta(z) \neq 0$ and the p_{t}^{i} depend continuously on t for t in D_{z}, we see that $\Delta(t) \neq 0$ for all t sufficiently near z. Thus V is an open subset of U.

Now Δ is an analytic function on V, because for $1 \leqq i \leqq n$ the mapping $t \rightarrow p_{t}^{i}$ is an analytic function from D_{z} to Λ. We see by the above formula for K_{z} that every boundary point of V is either a point of $g(X)$ or a point at which Δ converges to 0 . Let B be the boundary of V. It follows from Lemma 16 that $N=B-g(X)$ is an isolated set. Therefore $U-V$ is an isolated subset of U. Therefore U is a g-regular component of $-g(X)$ of multiplicity n. If $p \in Y$ and $g(p) \in V$, then $p \in \Lambda$ so that p is a one-dimensional point of Y of multiplicity 1 . If, on the other hand, $g(p) \in U-V$, let W be a neighborhood of $z=g(p)$ such that $W-\{z\} \subset V$. Thus $g^{-}(W-\{z\})$ (where g^{-}is the relation inverse to g) is an n-sheeted Riemann surface S over $W-\{z\}$ and the functions in \mathfrak{A} are all analytic and bounded on S. Thus S can be completed to a Riemann surface S_{0} over W, with possible branch points at z, on which the functions in \mathfrak{A} can be extended to be analytic. Thus S_{0} has a natural mapping into Y, and it is clear that every point in the image T_{0} of $S_{0}-S$ in Y is onedimensional. It is also clear that there are at most n such points. It remains to prove that $p \in T_{0}$. To see this, we use the same type of proof that was used above to show that $g-t$ vanishes only at $p_{t}^{1}, \cdots, p_{t}^{n}$. Thus we consider arbitrary functions h_{1}, \cdots, h_{n} in \mathfrak{X}, so that

$$
\left(h_{1}-h_{1}\left(p_{u}^{1}\right)\right) \cdots\left(h_{n}-h_{n}\left(p_{u}^{n}\right)\right)(g-u)^{-1}
$$

is in \mathfrak{A} for each u in $W-\{z\}$. Letting u converge to z we see that

$$
\left(h_{1}-h_{1}\left(p^{1}\right)\right) \cdots\left(h_{n}-h_{n}\left(p^{n}\right)\right)(g-z)^{-1}=h_{0}
$$

is in \mathfrak{A}, where p^{1}, \cdots, p^{n} are certain points (not necessarily distinct) in T_{0} with $g\left(p^{i}\right)=z$. We therefore have

$$
\left(h_{1}(p)-h_{1}\left(p^{1}\right)\right) \cdot \cdot\left(h_{n}(p)-h_{n}\left(p^{n}\right)\right)=(g(p)-z) h_{0}(p)=0 .
$$

Since h_{i} is any element of \mathfrak{A}, p is one of the points p^{i}, as was to be proved.
It remains to show that $(g-z)^{-1}$ is rational over \mathfrak{A} with poles p^{1}, \cdots, p^{n} whenever p^{1}, \cdots, p^{n} are distinct points in Y with $g\left(p^{i}\right)=z \in U, 1 \leqq i \leqq n$.

Since we have just seen that the function h_{0} is in \mathfrak{A} for all choices of the h_{i}, this will follow from the following lemma.

Lemma 18. Let g be a function in a uniform algebra \mathfrak{A} and let p_{1}, \cdots, p_{n} be points in the spectrum Y of \mathfrak{A} such that $h_{0}=g^{-1} h_{1} \cdots h_{n}$ is in \mathfrak{A} whenever the functions h_{i} are in \mathfrak{A} and $h_{i}\left(p_{i}\right)=g\left(p_{i}\right)=0$ for $1 \leqq i \leqq n$. Then g^{-1} is rational over \mathfrak{A} with poles p_{1}, \cdots, p_{n}.

Proof. Let

$$
h_{i}=t g+f_{i}
$$

where $f_{i} \in \mathfrak{H}, f_{i}\left(p_{i}\right)=0, f_{i}\left(p_{j}\right)=1$ for $j \neq i$ and where t will be chosen. It is clear that $h_{0}\left(p_{i}\right)$ is a polynomial F_{i} of degree $\leqq n$ in t and that the coefficient of t in F_{i} is 1 . Thus t may be chosen so that $F_{i}(t) \neq 0$ for all i, and thus $h_{0}\left(p_{i}\right) \neq 0$ for all i. It follows from Definition 4 that g^{-1} is rational over \mathfrak{U} with poles p_{1}, \cdots, p_{n}.

We next investigate the nature of points p in $Y-X$ with $g(p) \in g(X)$.
Lemma 19. Let \mathfrak{A} be a uniform algebra with Šilov boundary X and spectrum Y. Let g be a function in \mathfrak{A} and U be a g-regular component of $-g(X)$ of multiplicity n. Let the point z_{0} in $g(X)$ be the vertex of a nondegenerate triangle whose interior lies in U. Let there exist only a finite number of points q in X with $g(q)=z_{0}$. Then there exist at most n points p_{0} in $Y-X$ with $g\left(p_{0}\right)=z_{0}$, and each of these points is a one-dimensional point of $Y-X$.

Proof. It is no loss of generality to assume that $z_{0}=0$ and that the segment $(0,1]$ of the real axis lies interior to the triangle in question. There therefore exists a constant $K>0$ such that

$$
\operatorname{dist}(x, g(X)) \geqq K x
$$

for $0<x \leqq 1$.
Let p_{0} be any point in $Y-X$ such that $g\left(p_{0}\right)=z_{0}=0$. The idea of the proof will be to perturb g to a function g_{0} such that $g_{0}\left(p_{0}\right)$ will lie in a g_{0}-regular component of $-g_{0}(X)$, thereby showing that p_{0} is one-dimensional. The perturbing function h will be any function in \mathscr{A} such that $h\left(p_{0}\right)=1$ and $h(q)=0$ whenever $q \in X$ and $g(q)=0$. Such a function h exists because the number of such points q is finite.

Since h vanishes on the set $g^{-}(0) \cap X$, there exists x in (0,1$]$ such that $|h(p)|<K$ whenever $p \in X$ and $|g(p)| \leqq(1+K / 2) x$. Write $g_{0}=g+M h$, where $M=\min \left\{x / 2,(2\|h\|)^{-1} K x\right\}$. Let p be any point in Y with $g_{0}(p)=x$. Then

$$
|g(p)-x| \leqq M|h(x)| \leqq M\|h\| \leqq \frac{1}{2} K x<\operatorname{dist}(x, g(X)) .
$$

It follows that $g(p) \in U$, so that p is a one-dimensional point, and some neighborhood of p with p deleted lies in Λ. It also follows that there are only
a finite number of such p, since an accumulation point of $\left(g_{0}\right)^{-}(x)$ would be a point in $\left(g_{0}\right)^{-}(x)$ which could not be one-dimensional. Thus $\left(g_{0}\right)^{-}(x)$ is finite and consists of points each of which has a deleted neighborhood lying in Λ. It follows that y is a g_{0}-regular point of $-g_{0}(X)$ for all y sufficiently near to x. Choose such a y with $M<y \leqq x$, and let V be the component of $-g_{0}(X)$ which contains y. By Lemma $17, V$ is g_{0}-regular. We shall show that the interval $[M, x]$ belongs to V. It will follow that p_{0} is one-dimensional, since $g_{0}\left(p_{0}\right)=g\left(p_{0}\right)+M h\left(p_{0}\right)=0+M=M \in V$ and V is g_{0}-regular.

To see that $[M, x] \subset V$, it is clearly enough to show $z \notin g_{0}(X)$ for z in $[M, x]$. Therefore consider z with $M \leqq z<x$, and let p be any point in X. To show that $g_{0}(p) \neq z$, there are two cases to consider. First consider the case $|g(p)|>(1+K / 2) x$. Then

$$
\left|g_{0}(p)\right| \geqq|g(p)|-M\|h\|>\left(1+\frac{1}{2} K\right) x-\frac{1}{2} K x=x>z
$$

so that $g_{0}(p) \neq z$. Next consider the case $|g(p)| \leqq(1+K / 2) x$, so that $|h(p)|$ $<K$. Then

$$
\begin{aligned}
\operatorname{dist}\left(g_{0}(p), g(X)\right) & \leqq\left|g_{0}(p)-g(p)\right|=M|h(p)|<M K \leqq z K \\
& \leqq \operatorname{dist}(z, g(X))
\end{aligned}
$$

so that $g_{0}(p) \neq z$ in this case also.
Thus we have shown that every p_{0} in $Y-X$ with $g\left(p_{0}\right)=0$ is a onedimensional point of Y which has a deleted neighborhood consisting of points in Λ. Thus for each neighborhood N of p_{0} we see that $g(N)$ is a neighborhood of 0 . It follows that there are at most n such points p_{0}, since otherwise all points t in the complex plane which are sufficiently near to 0 would be the images under g of more than n points in Y, and we know that this is not the case for t in U. This completes the proof of Lemma 19.

It remains to give conditions which make a component of $-g(X) g$ regular. In doing this we essentially follow Wermer [1], although the details are different. The idea is to start from the unbounded component of $-g(X)$, which is obviously g-regular, and to proceed step by step, showing that a component of $-g(X)$ which is close enough to a g-regular component is itself g-regular. The crucial lemma is the following, which is derived following Wermer.

Lemma 20. Let \mathfrak{N} be a uniform algebra with Šilov boundary X and spectrum Y. Let g be a function in \mathfrak{N} and U and V components of $-g(X)$, such that there exists z in V with $(g-z)^{-1} \in \mathfrak{A}$ for some z in V (so that V is g-regular of multiplicity 0). Let there exist an open Jordan arc J_{1} which is an open subset of $g(X)$ such that $J=g^{-}\left(J_{1}\right) \cap X$ is mapped homeomorphically by g onto J_{1} and such that U and V are the components of $-g(X)$ which border on J_{1}. Then U is g regular of multiplicity 0 or 1 .

Proof. By replacing the function g in \mathfrak{A} by the function $(g-z)^{-1}$ in \mathfrak{A} we reduce to the case in which V is the unbounded component of $-g(X)$. After replacing the arc J_{1} by a slightly smaller arc-if necessary-we can find a simple closed curve Γ in the complex plane with interior Φ such that $g(J)$ $=J_{1} \subset \Gamma$ and $g(X) \subset \Gamma \cup \Phi$. Let ϕ be a conformal map of Φ onto $\{w:|w|<1\}$, so that ϕ can be extended to a homeomorphism of $\Gamma \cup \Phi$ onto

$$
D=\{w:|w| \leqq 1\} .
$$

By a theorem of Mergelyan [6] we see that ϕ is a uniform limit on $\Gamma \cup \Phi$ of polynomials, so that $g_{0}=\phi \circ g$ is in \mathfrak{A}.

Let z_{0} be any point in U. Write $w_{0}=\phi\left(z_{0}\right)$ and $U_{0}=\phi(U)$. Let ψ be the inverse mapping to ϕ, so that $g=\psi \circ g_{0}$. Now if $g_{0}-w_{0}$ vanishes at a unique point p_{0} in Y then clearly $g-z_{0}$ vanishes at the unique point p_{0} in Y. If p_{0} lies in Λ and $g_{0}-w_{0}$ vanishes to multiplicity 1 at p_{0} then, since $g=\psi \circ g_{0}$, the function $g-z_{0}$ also vanishes to multiplicity 1 at p_{0}. It follows that to show z_{0} is g-regular of multiplicity 1 it is sufficient to show that w_{0} is g_{0}-regular of multiplicity 1 . The same statement holds of multiplicity 0 . Thus to show that z_{0} is g-regular of multiplicity 0 or 1 (and thereby prove the lemma) it is sufficient to show that w_{0} is g_{0}-regular of multiplicity 0 or 1 . There are two cases to consider, depending on whether $\left(g_{0}-w_{0}\right)^{-1}$ is in \mathfrak{A}. If it is then w_{0} is g_{0-} regular of multiplicity 0 . Thus we have left the case $\left(g_{0}-w_{0}\right)^{-1} \notin \mathscr{Y}$. Under this assumption there exists a finite, complex-valued Baire measure μ on X with

$$
\int\left(g_{0}-w_{0}\right)^{-1} d \mu \neq 0
$$

and

$$
\int f d \mu=0
$$

for all f in \mathfrak{A}. Now

$$
0 \neq \int\left(g_{0}-w_{0}\right)^{-1} d \mu=\int\left(w-w_{0}\right)^{-1} d \nu(w)
$$

where $\nu=g_{0}(\mu)$. If we let J_{0} be the arc $g_{0}(J)=\phi\left(J_{1}\right)$ of the boundary of D, and $X_{0}=g_{0}(X)$, we see that J_{0} is open in X_{0} and that g_{0} maps $J=g_{0}^{-}\left(J_{0}\right)$ homeomorphically onto J_{0}. Also U_{0} and the unbounded component of $-X_{0}$ are the components of $-X_{0}$ which adjoin J_{0}. Clearly ν is a measure on X_{0}.

For each f in \mathfrak{A} the measure $f \mu$ on X defined by

$$
(f \mu)(S)=\int_{S} f d \mu
$$

for all Baire sets S will be orthogonal to \mathfrak{N}. In particular $f \mu$ is orthogonal to all polynomials in g_{0} so that the measure

$$
\nu_{f}=g_{0}(f \mu)
$$

on X_{0} is orthogonal to all polynomials. Clearly $\nu_{1}=\nu$. For each f in \mathfrak{A} define the analytic function \tilde{f} on U_{0} by

$$
\tilde{f}(w)=\int(t-w)^{-1} d v_{f}(t)=\int\left(g_{0}-w\right)^{-1} f d \mu .
$$

We have

$$
\tilde{\mathrm{i}}\left(w_{0}\right)=\int\left(w-w_{0}\right)^{-1} d \nu(w) \neq 0,
$$

so that $\tilde{1}$ does not vanish identically on U_{0}. Thus the set T of zeros of $\tilde{1}$ is an isolated subset of U_{0}. Since ν_{f} is orthogonal to all polynomials,

$$
\int(t-w)^{-1} d \nu_{f}(t)=0
$$

for all w in $-D$. Since J_{0} separates $-D$ from U_{0}, it follows (see for example Wermer [7, p. 49]) that \bar{f} has nontangential boundary values $\bar{f}\left(t_{0}\right)$ at almost all points t_{0} in J_{0}, given by

$$
\tilde{f}\left(l_{0}\right)=2 \pi i\left[\frac{d \nu_{f}(t)}{d t}\right]_{t=t_{0}},
$$

where $d \nu_{f}(t) / d t$ is the Radon-Nikodym derivative of the measure ν_{f} on J_{0} with respect to the measure $d t$ on J_{0}. If we let h be the map of J_{0} onto J which is inverse to g_{0} then the restriction of ν_{f} to J_{0} has the representation

$$
\nu_{f}=g_{0}(f \mu)=(f \circ h) g_{0}(\mu)=(f \circ h) \cdot \nu
$$

for all f in \mathfrak{Q}. It follows that

$$
\tilde{f}\left(t_{0}\right)=(f \circ h) \cdot \tilde{1}\left(t_{0}\right)
$$

for almost all t_{0} in J_{0}. It follows that for arbitrary f_{1} and f_{2} in \mathfrak{N} the function $\alpha=\bar{f}_{1} \tilde{f}_{2}-\left[f_{1} f_{2}\right]^{\sim} \cdot \overline{1}$ on U_{0} has nontangential boundary values which vanish almost everywhere on J_{0}. Therefore α vanishes identically on U_{0}. If T denotes the isolated subset of U_{0} on which $\overline{1}$ vanishes, for each f in \mathfrak{U} define the function \bar{f} on $U_{0}-T$ by

$$
\bar{f}=\bar{f} / \overline{1}
$$

Thus \bar{f} is analytic in $U_{0}-T$ and $\bar{f}_{1} \bar{f}_{2}=\left[f_{1} f_{2}\right]^{-}$for all f_{1} and f_{2} in \mathfrak{N}. For each w in $U_{0}-T$ it follows that the map $f \rightarrow \bar{f}(w)$ is a homomorphism of \mathfrak{A} into the complex numbers and therefore defines a point in the spectrum Y of \mathfrak{N}. Thus we see that $|\bar{f}(w)| \leqq\|f\|$ for all w in $U_{0}-T$. It follows that \bar{f} can be extended
to all of U_{0} and has nontangential boundary values $f \circ h$ at almost all points of J_{0}.

To show that w_{0} is g_{0}-regular of multiplicity 1 , let p be the point in Y defined by

$$
f(p)=\bar{f}\left(w_{0}\right)
$$

for all f in \mathfrak{A}. It is enough to show that $\left(g_{0}-w_{0}\right)^{-1}$ is rational over \mathfrak{A} with a simple pole at p. To do this, consider f in \mathfrak{A} with $f(p)=\bar{f}\left(w_{0}\right)=0$. Then

$$
\begin{aligned}
\int f\left(g_{0}-w_{0}\right)^{-1} d \mu & =\int\left(g_{0}-w_{0}\right)^{-1} d(f \mu) \\
& =\int\left(w-w_{0}\right)^{-1} d \nu_{f}(w)=\tilde{f}\left(w_{0}\right)=\tilde{f}\left(w_{0}\right) \cdot \tilde{1}\left(w_{0}\right) \\
& =f(p) \tilde{1}\left(w_{0}\right)=0 .
\end{aligned}
$$

Now μ can be any measure on X which is orthogonal to \mathfrak{A} and which is not orthogonal to $\left(g-z_{0}\right)^{-1}$. Since such a μ exists, every measure σ on X which is orthogonal to \mathfrak{A} can be written as the difference of two such μ. Thus

$$
\int f\left(g_{0}-w_{0}\right)^{-1} d \sigma=0
$$

for all f in \mathfrak{A} with $f(p)=0$ and all such σ. The function $f_{1}=f\left(g_{0}-w_{0}\right)^{-1}$ is therefore in $\mathfrak{\ell}$. If $f=\left(g_{0}-w_{0}\right)$ then $f_{1}(p)=1 \neq 0$. Thus $\left(g_{0}-w_{0}\right)^{-1}$ is rational over \mathfrak{A} with a simple pole at p. It follows that $g_{0}-w_{0}$ vanishes on Y at the unique point p in Λ which is a simple zero of $g_{0}-w_{0}$. Thus w_{0} is g_{0}-regular of multiplicity 1 , as was to be proved.

Lemma 21. Let \mathfrak{A} be a uniform algebra with spectrum Y and Šilov boundary X. Let Λ be the analytic part of Y. Let g be a function in \mathfrak{A} and U and V be components of $-g(X)$. Let J_{0} be a smooth simple open Jordan arc which is an open subset of $g(X)$ such that the set $J=g^{-}\left(J_{0}\right) \cap X$ is mapped homeomorphically by g onto J_{0}. Let U and V be the components of $-g(X)$ which adjoin J_{0}. Let V be g-regular of multiplicity n. Then U is g-regular of multiplicity $n, n+1$, or $n-1$.

Proof. By the smoothness of J_{0}, all points in J_{0} are vertices of nondegenerate triangles whose interiors lie in V. Consider f in \mathfrak{A} and form the function Δ on V defined at any g-regular point z of V by

$$
\Delta(z)=\prod_{1 \leq i<j \leqslant n}\left(f\left(p_{z}^{i}\right)-f\left(p_{z}^{j}\right)\right)^{2}
$$

where $p_{2}^{1}, \cdots, p_{z}^{n}$ are the points in $g^{-}(\{z\})$. The definition of Δ is completed by defining it to be 0 at other points of V, so that Δ is an analytic function on
V. If f is chosen to have distinct values at the points $p_{z}^{1}, \cdots, p_{z}^{n}$ for some particular z then Δ will not vanish identically on V. Let f be so chosen. Then the set Γ of points z_{0} in J_{0} such that $\Delta(z)$ does not converge to 0 as $z \rightarrow z_{0}$ is dense in J_{0}. For each z_{0} in Γ there exist at least n distinct points q in Y with $g(q)=z_{0}$. Now for any z_{0} in J_{0} there exists exactly one q in X with $g(q)=z_{0}$ and by Lemma 19 there are at most n such q in $Y-X$. Thus there are at most $n+1$ distinct points q in Y with $g(q)=z_{0}$, for all z_{0} in J_{0}. Let z_{0} be chosen to be a point in J_{0} for which the number k of such points q is a maximum. Thus $k \leqq n+1$. On the other hand, $k \geqq n$ because for z_{0} in Γ there exist n such points q. The rest of the proof of Lemma 21 divides into the consideration of two cases. Case 1 will be the case $k=n+1$ and Case 2 the case $k=n$.

We consider first Case 1 . Since there is exactly 1 point q in X with $g(q)$ $=z_{0}$, there are exactly n points q_{1}, \cdots, q_{n} in $Y-X$ with $g\left(q_{i}\right)=z_{0}$. By Lemma 19 , each q_{i} is a one-dimensional point of Y and therefore has a deleted neighborhood which lies in Λ. Thus if we replace z_{0} by a sufficiently near point of J_{0} we may asume that $q_{i} \in \Lambda, 1 \leqq i \leqq n$, and that $g-z_{0}$ has a simple zero at each of the points q_{i}. Thus there exist disjoint neighborhoods W_{1}, \cdots, W_{n} in Λ of q_{1}, \cdots, q_{n} respectively whose closures lie in Λ each of which g maps homeomorphically onto a neighborhood T of z_{0}. We may choose T so that $U \cap T$ and $V \cap T$ are connected. Write

$$
W=W_{1} \cup \cdots \cup W_{n}
$$

and $B=$ bdry W. Let \mathfrak{B}_{1} be all rational functions over \mathfrak{N} whose poles lie in W. Let \mathfrak{B} be the closure of \mathfrak{B}_{1} in the space $C(Y-W)$. We see by Lemma 13 that the Šilov boundary X_{0} of \mathfrak{B} is a subset of $X \cup B$. Thus $g\left(X_{0}\right) \subset($ bdry $T)$ $\cup_{g}(X)$. It follows that there are unique components U_{0} and V_{0} of $-g\left(X_{0}\right)$ with $U_{0} \supset T \cap U$ and $V_{0} \supset T \cap V$. Since V is g-regular for \mathfrak{A} of multiplicity n, and since $T \subset g\left(W_{i}\right)$ for each i, we see that $g^{-}(T \cap V) \subset W_{i}$, so that $T \cap V \subset$ $-g(T-W)$. Since $T-W$ is the spectrum of \mathfrak{B} it follows that V_{0} is g-regular of multiplicity 0 for the algebra \mathfrak{B}. If U_{0} and V_{0} are the same component of $-g\left(X_{0}\right)$ then U_{0} is g-regular for the algebra \mathfrak{B} of multiplicity 0 . Otherwise (by Lemma 20) U_{0} is g-regular for the algebra \mathfrak{B} of multiplicity either 0 or 1. Thus in either case U_{0} is g-regular for the algebra \mathfrak{B} of multiplicity 0 or 1 . In case U_{0} is g-regular for \mathfrak{B} of multiplicity 0 then for each z in $U_{0} g-z$ does not vanish on $Y-W$ so that z is g-regular for \mathfrak{A} of multiplicity n. Thus in this case U is g-regular of multiplicity n. In case U_{0} is g-regular of multiplicity 1 for \mathfrak{B} let z be any point in $T \cap U$ and let p_{0} be the point in $Y-W$ with $g\left(p_{0}\right)=z$. Thus $g-z$ vanishes on Y at exactly the points $p_{0}, p_{1}, \cdots, p_{n}$, where p_{i} for $1 \leqq i \leqq n$ is that point in W_{i} with $g\left(p_{i}\right)=z$. To show that U is a g-regular component of multiplicity $n+1$ for the algebra \mathfrak{N} it suffices to show that $(g-z)^{-1}$ is rational over \mathfrak{A} with poles $p_{0}, p_{1}, \cdots, p_{n}$. To this end consider f in \mathfrak{A} vanishing at p_{0}, \cdots, p_{n}. Since z is a g-regular point for \mathfrak{B} of multiplicity 1 and $f\left(p_{0}\right)=0$ we see that $f(g-z)^{-1} \in \mathfrak{B}$. Thus if ϕ is a bounded linear functional on $C(X)$ which vanishes on \mathfrak{A} we have

$$
\phi\left[f(g-z)^{-1}\right]=\int_{B} f(g-z)^{-1} d \omega_{\phi}=0
$$

since $f(g-z)^{-1}$ is analytic in W and on the boundary B of W. Since this is true for all ϕ we have $f(g-z)^{-1} \in \mathfrak{A}$. By Lemma 18 it follows that $(g-z)^{-1}$ is rational over \mathfrak{A} with poles p_{0}, \cdots, p_{n} and therefore that U is g-regular for \mathfrak{A} of multiplicity $n+1$. Thus we see that in Case $1, U$ is g-regular of multiplicity n or $n+1$.

It remains to consider Case 2 , so that there are $n-1$ points, say q_{1}, \cdots, q_{n-1} in $Y-X$ with $g\left(q_{i}\right)=z_{0}$. Since by Lemma 19 each q_{i} has a deleted neighborhood which lies in Λ, we may assume-by replacing z_{0} by a nearby point of J_{0} if necessary-that each q_{i} belongs to Λ and is a simple zero of $g-z_{0}$. Choose disjoint neighborhoods W_{1}, \cdots, W_{n-1} in Λ of q_{1}, \cdots, q_{n-1} respectively which g maps homeomorphically onto a neighborhood T of z_{0} such that the \bar{W}_{i} are disjoint subsets of Λ and such that $T \cap U$ and $T \cap V$ are connected. If T is chosen small enough then $T=(T \cap U) \cup(T \cap V) \cup\left(T \cap J_{0}\right)$. Write

$$
\Omega=W_{1} \cup \cdots \cup W_{n-1} \cup g^{-}(T \cap V)
$$

We first show that $\Omega \subset \Lambda$. To do this it is sufficient to show that

$$
H=g^{-}(T \cap V)-W_{1}-\cdots-W_{n-1} \subset \Lambda .
$$

Consider p_{0} in H, so that $z=g\left(p_{0}\right)$ is in V. Thus there exist p_{1} in W_{1}, \cdots, p_{n-1} in W_{n-1} with $g\left(p_{i}\right)=z$. Thus p_{0}, \cdots, p_{n-1} are distinct points in $g^{-}(\{z\})$. Since $z \in V$ and V is g-regular of multiplicity n these points are all of $g^{-}(\{z\})$. It follows from Lemma 17 that $p_{0} \in \Lambda$. Therefore $\Omega \subset \Lambda$.

Now let \mathfrak{B}_{1} be the set of all functions rational over \mathfrak{A} whose poles lie in Ω and let \mathfrak{B} be the closure of \mathfrak{B}_{1} in the space $C(Y-\Omega)$. Thus the Silov boundary X_{0} of \mathfrak{B} is a subset of $X \cup$ bdry Ω. Since $U \cap T$ and $V \cap T$ are connected these sets are therefore contained respectively in components U_{0} and V_{0} of $-g\left(X_{0}\right)$. The component V_{0} of $-g\left(X_{0}\right)$ is g-regular of multiplicity 0 relative to the algebra \mathfrak{B} since $g-z$ does not vanish on $Y-\Omega$ whenever $z \in V \cap T$. By Lemma $20, U_{0}$ is g-regular of multiplicity 0 or 1 for the algebra \mathfrak{B}. Now if U_{0} is g-regular for \mathfrak{B} of multiplicity 0 then $g-z$ does not vanish on $Y-\Omega$ for z in $U \cap T \subset U_{0}$, so that for such z the zeros of $g-z$ are in $W_{1} \cup \cdots \cup W_{n-1}$. Therefore z is a g-regular point of $-g(X)$ of multiplicity $n-1$. Thus we need only consider the case in which U_{0} is g-regular for \mathfrak{B} of multiplicity 1 . In this case for each z in $T \cap U \subset U_{0}$ there is exactly one point $\lambda(z)$ in $Y-\Omega$ with $g(\lambda(z))=z$, and the map $z \rightarrow \lambda(z)$ is a homeomorphism of $T \cap U$ onto an open subset of $\Lambda(\mathfrak{B})$, where $\Lambda(\mathfrak{B}) \subset Y-\Omega$ is the analytic set for the algebra \mathfrak{B}. We now extend the function λ from $T \cap U$ to the entire set $T=(T \cap U) \cup(T \cap V)$ $\cup\left(T \cap J_{0}\right)$. For each z in $T \cap J_{0}$ let $\lambda(z)$ be the point in X with $g(\lambda(z))=z$, so that λ is a homeomorphism of $T \cap J_{0}$ onto a subset of J. For each z in $T \cap V$ let $\lambda(z)$ be that point in H with $g(\lambda(z))=z$. There exists one such point $\lambda(z)$ because otherwise $g-z$ would vanish on Y only at the points p_{1}, \cdots, p_{n-1}
in Λ, at which points $g-z$ has simple zeros, contradicting the fact that V is g-regular of multiplicity n. On the other hand there is at most one such point $\lambda(z)$ in H, again because V is g-regular of multiplicity n. Thus $\lambda(z)$ is uniquely defined on $T \cap V$. From Lemma 17 it follows that $\lambda(z) \in \Lambda$ for all z in $T \cap V$. Clearly λ is an analytic homeomorphism of $T \cap V$ onto an open subset of Λ. Thus we have defined a map λ from T to Y. Since λ is continuous on each of the sets $T \cap U, T \cap V$ and $T \cap J_{0}$, to show that λ is continuous on T it is only necessary to show that λ is continuous at points of $T \cap J_{0}$. If this were not so there would exist z in $T \cap J_{0}$ and a sequence $\left\{z_{i}\right\}$ in T converging to z with $\lambda\left(z_{i}\right)$ converging to a point $q \neq \lambda(z)$ in Y. Since $\lambda\left(z_{i}\right) \in Y-W_{1}-\cdots$ $-W_{n-1}$ we have $q \in Y-W_{1}-\cdots-W_{n-1}$. Let $u_{i}, 1 \leqq i \leqq n-1$, be the point in W_{i} for which $g\left(u_{i}\right)=z$. Thus $u_{1}, \cdots, u_{n-1}, q, \lambda(z)$ are distinct points in Y mapping by g onto z. Since $z \in J_{0}$ this contradicts the fact that $k=n$ in Case 2. This contradiction shows that λ is a continuous map of T into Y. Now for each f in \mathfrak{U} the function $f \circ \lambda$ is continuous on T and analytic on $T-J_{0}$. Since J_{0} is smooth, $f \circ \lambda$ is analytic on T. Thus $f \circ \lambda$ has no strong maximum interior to T so that f has no strong maximum on the set $\lambda(T)$. Thus $\lambda\left(J_{0}\right) \subset J$ is an open subset of X such that every f in \mathfrak{A} assumes its maximum on $X-\lambda\left(J_{0}\right)$. This contradicts the fact that X is the Silov boundary of \mathfrak{A}. This contradiction shows that U_{0} can not be a g-regular component of $-g\left(X_{0}\right)$ of multiplicity 1 for the algebra \mathfrak{B}. This was the last remaining case so that the proof of Lemma 21 is complete.

4. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Let U be any component of $-g(X)$ and let w_{2} be any point of U. Let w_{1} be any point of the unbounded component of $-g(X)$. Let γ be a Jordan arc which joins w_{1} to w_{2} and fulfills conditions (d) of the statement of Theorem 1. If $-g(X)$ has a finite number j of components then clearly γ can be chosen to intersect $g(X)$ in at most $j-1$ points. Thus $\gamma-g(X)$ consists of a finite number of components $\gamma_{1}, \cdots, \gamma_{k}$, which we order according to the direction along γ from w_{1} to w_{2}. If $-g(X)$ has a finite number j of components then $k \leqq j$. Now each γ_{i} belongs to some component U_{i} of $-g(X)$. Clearly $w_{1} \in U_{1}$ and $w_{2} \in U_{k}$, so that U_{1} is the unbounded component of $-g(X)$ and $U_{k}=U$. We thereby see by applying Lemma $21 k-1$ times that $U=U_{k}$ is a g-regular component of $-g(X)$ of multiplicity at most $k-1$. By Lemma 19, each p in $Y-X$ for which $g(p)$ is the vertex of some nondegenerate triangle whose interior lies in U is a one-dimensional point of $Y-X$, and at most $k-1$ such points lie over a given point in $g(Y)$. Thus $Y-X$ is the union of Λ and the set T of one-dimensional points of $Y-X$ which are not in Λ. Clearly T has no cluster point in $Y-X$ and so is an isolated set. To each p in T choose a deleted neighborhood U of p in Λ such that U is a finitelysheeted covering space by the map g of $g(U)=\{z: 0<|z-g(p)|<r\}$. Thus U is a finite Riemann surface over $g(U)$. Therefore U can be completed to a finite Riemann surface V over $g(U) \cup\{g(p)\}$. Let p_{1}, \cdots, p_{m} be those points
in V which cover $g(p)$. Consider the set S consisting of Λ and the points p_{1}, \cdots, p_{m} for all p in T. This set can be given as follows the structure of a Riemann surface. At each p in Λ, S has the structure of Λ, and at each of the points p_{i}, S has the structure of V. Clearly S is a Riemann surface which satisfies the conditions of Theorem 1.

Proof of Theorem 2. Since S is separable it has only a countable number of components. Since the functions in \mathfrak{A} are constant on no component of S, by a standard construction there exists g in \mathfrak{N} which is constant on no component of S. Let

$$
K_{1} \subset K_{2} \subset \cdots \subset K_{n} \subset \cdots
$$

be an increasing sequence of compact subsets of S whose union is S. By induction we choose open sets $U_{i} \subset S$ with the following properties:
(1) $\bar{U}_{i-1} \cup K_{i} \subset U_{i}$ and \bar{U}_{i} is compact.
(2) The boundary γ_{i} of U_{i} is the union of a finite number of disjoint smooth closed Jordan curves.
(3) $d g$ vanishes nowhere on γ_{i}.
(4) $g\left(p_{1}\right)=g\left(p_{2}\right)$ for at most a finite set of pairs $\left(p_{1}, p_{2}\right)$ of distinct points of γ_{i}.
(5) $g\left(\gamma_{i}\right) \cap g\left(\gamma_{i-1}\right)$ is a finite set.
(6) $g\left(\gamma_{i}\right) \cap g\left(\gamma_{i-1}\right) \cap g\left(\gamma_{i-2}\right)$ is void.

Assume that U_{1}, \cdots, U_{i-1} have been chosen. Since $\bar{U}_{i-1} \cup K_{i}$ is compact, there exist U_{i} and γ_{i} satisfying (1) and (2). Since g is nonconstant on each component of S, the curves γ_{i} can be moved slightly, if necessary, so that (3), (4), and (5) are satisfied. Since by the induction hypothesis $g\left(\gamma_{i-1}\right)$ $\cap g\left(\gamma_{i-2}\right)$ is finite, we may choose γ_{i} so that (6) is also satisfied.

Having chosen the sets U_{i} and γ_{i} for all i, we let $\mathfrak{A}_{\boldsymbol{i}}$ be the closure of \mathfrak{H} in $C\left(\bar{U}_{i}\right)=C\left(U_{i} \cup \gamma_{i}\right)$. Let Y_{i} be the spectrum and X_{i} the Silov boundary of \mathfrak{N}_{i}. Let π_{i} be the natural map of \bar{U}_{i} into Y_{i}. Since every function in \mathfrak{N}_{i} assumes its maximum for the set \bar{U}_{i} on γ_{i}, it is clear that

$$
X_{i} \subset \pi_{i}\left(\gamma_{i}\right)
$$

Because of this and the properties (3) and (4) above we see that the algebra \mathfrak{N}_{i} and the function g in \mathscr{A}_{i} satisfy all conditions of Theorem 1. Let Λ_{i} be the analytic part of Y_{i} and let $T_{i}=Y_{i}-X_{i}-\Lambda_{i}$, so that T_{i} is a countable isolated set. Let S_{i} be the Riemann surface corresponding to the algebra \mathfrak{Y}_{i} constructed in the proof of Theorem 1 . Let λ_{i} be the map of S_{i} onto $Y_{i}-X_{i}$.

Since $\bar{U}_{i} \subset \bar{U}_{j}$ for $i<j$, there is a natural homeomorphism $\phi_{j i}$ of Y_{i} into Y_{j} such that

$$
f\left(\phi_{j i}(p)\right)=f(p)
$$

for all p in Y_{i} and all f in \mathfrak{A}, where f on the left of this equation is considered as a function in \mathfrak{A}_{j} and f on the right is considered as a function in \mathfrak{A}_{i}. Clearly

$$
\phi_{k j} \circ \phi_{j i}=\phi_{k i}
$$

for $i<j<k$.
If $s_{i} \in S_{i}$ and $s_{j} \in S_{j}$ write $s_{i} \equiv s_{j}$ in case there exists a neighborhood V_{i} of s_{i} in S_{i}, a neighborhood V_{j} of s_{j} in S_{j}, and a homeomorphism β of V_{i} onto V_{j} such that

$$
\begin{equation*}
f \circ \lambda_{i}=f \circ \lambda_{j} \circ \beta \quad \text { on } V_{i} \tag{}
\end{equation*}
$$

for all f in \mathfrak{A}. Since $f \circ \lambda_{i}$ and $f \circ \lambda_{j}$ are analytic on S_{i} and S_{j} respectively, it follows that β is necessarily an analytic homeomorphism of V_{i} onto V_{j}. It is clear that $s_{i} \equiv s_{j}$ implies that $\beta(s) \equiv s$ for all s in V_{i}. If $i=j$ and $s_{i} \neq s_{j}$, so that $S_{i}=S_{j}$, it follows that $s \equiv \beta(s)$ for some s in S_{i} with $\beta(s)$ in $S_{i}, s \neq \beta(s)$, $\lambda_{i}(s) \notin T_{i}, \lambda_{i}(\beta(s)) \notin T_{i}$. This contradicts the equation (*) because there exists f in \mathfrak{H} assuming distinct values at the distinct points $\lambda_{i}(s)$ and $\lambda_{i}(\beta(s))$ of Y_{i}. Therefore no two distinct points in S_{i} are equivalent. It is clear that \equiv is an equivalence relation on the set $U_{i} S_{i}$, where the S_{i} are taken to be disjoint. Let S^{\prime} be the set of all equivalence classes of $U_{i} S_{i}$. We thus have a natural one-one map σ_{i} of S_{i} onto a subset S_{i}^{\prime} of S^{\prime}, where S_{i}^{\prime} consists of those equivalence classes which contain elements of S_{i}. It is clear that for each f in \mathfrak{A} there exists a unique function f^{\prime} on S^{\prime} with

$$
f^{\prime}\left(\sigma_{i}\left(s_{i}\right)\right)=f\left(\lambda_{i}\left(s_{i}\right)\right)
$$

for all s_{i} in $S_{i}, 1 \leqq i<\infty$. Define

$$
\mathfrak{H}^{\prime}=\left\{f^{\prime}: f \in \mathfrak{M}\right\}
$$

so that \mathfrak{H}^{\prime} is an algebra of functions on S^{\prime}. Let τ be the mapping $f \rightarrow f^{\prime}$ from \mathfrak{A} onto \mathfrak{A}^{\prime}.

We topologize S^{\prime} by defining $W \subset S^{\prime}$ to be open if $\sigma_{i}^{-}(W)$ is open in S_{i} for all i. Clearly this gives a topology on S^{\prime} and the functions in \mathfrak{U}^{\prime} are all continuous in this topology. The maps σ_{i} are also clearly continuous. Consider an open set $W_{i} \subset S_{i}$. We shall show that $W=\sigma_{i}\left(W_{i}\right)$ is open in S^{\prime}. To this end we must show that $\sigma_{j}^{-}(W)=W_{j}$ is open for all j. Now if $s_{j} \in W_{j}$ then $s_{j} \equiv s_{i}$, where $s_{i}=\sigma_{i}^{-}\left(\sigma_{j}\left(s_{j}\right)\right)$ is in W_{i}. Thus there exists a neighborhood $V_{i} \subset W_{i}$ of s_{i}, a neighborhood V_{j} of s_{j}, and a homeomorphism β of V_{i} onto V_{j} such that $\beta(s) \equiv s$ for all s in V_{i}. Therefore $\sigma_{j}(\beta(s))=\sigma_{i}(s)$ so that $\beta(s) \in W_{j}$. Thus $V_{j} \subset W_{j}$. It follows that W_{j} is open for each j so that W is open in S^{\prime}. Thus σ_{i} is a homeomorphism of S_{i} onto the open subset S_{i}^{\prime} of S^{\prime}. It follows that $\left\{S_{i}^{\prime}\right\}$ is a covering of S^{\prime} by open sets, each of which is homeomorphic to a Riemann surface S_{i} by a given map σ_{i}. Thus to give S^{\prime} the structure of a Riemann surface it is sufficient to show that the map $\sigma_{j}^{-} \circ \sigma_{i}$ of $\sigma_{i}^{-}\left(S_{i}^{\prime} \cap S_{j}^{\prime}\right)$ onto $\sigma_{j}^{-}\left(S_{i}^{\prime} \cap S_{j}^{\prime}\right)$ is analytic for all i and j. Let p_{i} be any point in $\sigma_{i}^{-}\left(S_{i}^{\prime} \cap S_{j}^{\prime}\right)$, so that

$$
p_{j}=\sigma_{j}^{-}\left(\sigma_{i}\left(p_{i}\right)\right) \in \sigma_{j}^{-}\left(S_{i}^{\prime} \cap S_{j}^{\prime}\right)
$$

and $p_{i} \equiv p_{j}$. There therefore exist neighborhoods V_{i} and V_{j} of p_{i} and p_{j} respectively and an analytic homeomorphism β of V_{i} onto V_{j} satisfying (*). As above, $\sigma_{i}(s)=\sigma_{j}(\beta(s))$ for all s in V_{i}. Thus on $V_{i}, \beta=\sigma_{j}^{-} \circ \sigma_{i}$, so that $\sigma_{j}^{-} \circ \sigma_{i}$ is analytic at the point p_{i}. Thus $\sigma_{j}^{-} \circ \sigma_{i}$ is analytic on $\sigma_{i}^{-}\left(S_{i}^{\prime} \cap S_{j}^{\prime}\right)$. It follows that S^{\prime} can uniquely be given the structure of a Riemann surface in such a way that the maps σ_{i} are all analytic. As a consequence the functions f^{\prime} in \mathfrak{Y}^{\prime} are all analytic on S^{\prime}.

Now let ϕ be a continuous homomorphism of \mathfrak{A} onto the complex numbers. Thus there exists a compact subset K of S with

$$
|\phi(f)| \leqq \sup \{|f(p)|: p \in K\}
$$

for all f in \mathfrak{A}. Since the U_{i} cover S there exists n with $K \subset U_{n}$. Since $g\left(\gamma_{n}\right)$ $\cap g\left(\gamma_{n+1}\right) \cap g\left(\gamma_{n+2}\right)$ is void we may choose m with $\phi(g) \nsubseteq g\left(\gamma_{m}\right)$, where $m=n$, $n+1$, or $n+2$. Thus $K \subset U_{m}$. Therefore

$$
|\phi(f)| \leqq \sup \left\{|f(p)|: p \in \bar{U}_{m}\right\}
$$

for all f in \mathfrak{N}. There therefore exists q_{0} in Y_{m} with $\phi(f)=f\left(q_{0}\right)$ for all f in \mathfrak{A}. Since $g\left(q_{0}\right)=\phi(g) \oplus g\left(X_{m}\right)$ it follows that $q_{0} \in Y_{m}-X_{m}$. Let p_{m} be any point in S_{m} with $\lambda_{m}\left(p_{m}\right)=q_{0}$. Write $p=\sigma_{m}\left(p_{m}\right)$. It follows that $p \in S^{\prime}$ and

$$
f^{\prime}(p)=f^{\prime}\left(\sigma_{m}\left(p_{m}\right)\right)=f\left(\lambda_{m}\left(p_{m}\right)\right)=f\left(q_{0}\right)=\phi(f)
$$

for all f in \mathfrak{A}. This proves (2) of Theorem 2.
Now let p be any point in S. As above there exists i with $p \in U_{i}, g(p)$ $\notin g\left(X_{i}\right)$. Thus $\pi_{i}(p) \notin X_{i}$ so that $\pi_{i}(p) \in Y_{i}-X_{i}$. Let V be a neighborhood of p in U_{i} with $\pi_{i}(V) \subset Y_{i}-X_{i}$ and $g(q) \neq g(p)$ for all q in $V-\{p\}$. Thus $\pi_{i}(q) \neq \pi_{i}(p)$ for all such q. Since the points of $T_{i}=Y_{i}-X_{i}-\Lambda_{i}$ are isolated in $Y_{i}-X_{i}$, we may choose V so small that $\pi_{i}(V-\{p\}) \subset \Lambda_{i}$. Now $f_{i} \circ \pi_{i}=f$ for all f in \mathfrak{A}, where we have subscripted f on the left to show that it is considered as a function on Y_{i}. Since f_{i} is analytic on Λ_{i} and f is analytic on V and since f can be chosen to have a simple zero at any point in Λ_{i}, the map π_{i} of $V-\{p\}$ into Λ_{i} is analytic. Therefore the map $\lambda_{i}^{-} \circ \pi_{i}$ of $V-\{p\}$ into S_{i} is analytic. Since $\lambda_{i}\left(\pi_{i}(q)\right)$ must converge as $q \rightarrow p$ to one of the points t in S_{i} for which $\lambda_{i}(t)=\pi_{i}(p)$, it follows that $\lambda_{i} \circ \pi_{i}$ has a unique extension to an analytic map α_{0} from V into S_{i}. Write $\alpha=\sigma_{i} \circ \alpha_{0}$. It is clear that α is an analytic map from V into S^{\prime} such that

$$
\begin{equation*}
f^{\prime} \circ \alpha=f \circ \lambda_{i} \circ \alpha_{0}=f \circ \pi_{i}=f \quad \text { on } V \tag{**}
\end{equation*}
$$

for all f in \mathfrak{A}.
Thus each p in S has a neighborhood V which admits an analytic map α into S^{\prime} satisfying ${ }^{(* *)}$. Assume that some open set V in S admits two analytic maps α_{1} and α_{2} into S^{\prime} both satisfying (${ }^{* *}$). We show that $\alpha_{1}=\alpha_{2}$. Assume otherwise. There therefore exists p in V with $\alpha_{1}(p) \neq \alpha_{2}(p)$ and $d \alpha_{1}(p)$ $\neq 0, d \alpha_{2}(p) \neq 0$. Thus there exists a neighborhood V_{0} of p which α_{1} and α_{2}
respectively map homeomorphically onto disjoint open sets V_{1} and V_{2} in S^{\prime}. Since $\left\{S_{i}\right\}$ is an open cover of S^{\prime} we may assume $V_{1} \subset S_{i}^{\prime}, V_{2} \subset S_{j}^{\prime}$ for certain i and j. Thus $\beta_{0}=\alpha_{2} \circ \alpha_{\overline{1}}$ maps V_{1} homeomorphically onto V_{2}. Thus $\beta=\sigma_{j}^{-} \circ \beta_{0} \circ \sigma_{i}$ maps an open set in S_{i} homeomorphically onto an open set in S_{j}. For each f in \mathfrak{U} we have

$$
\begin{aligned}
f \circ \lambda_{j} \circ \beta & =f^{\prime} \circ \sigma_{j} \circ \beta=f^{\prime} \circ \beta_{0} \circ \sigma_{i} \\
& =f \circ \alpha_{1}^{-} \circ \sigma_{i}=f^{\prime} \circ \sigma_{i}=f \circ \lambda_{i} .
\end{aligned}
$$

Therefore $\beta(s) \equiv s$ for all s in $\sigma_{2}^{-}\left(V_{1}\right)$. It follows that $\beta_{0}\left(s^{\prime}\right)=s^{\prime}$ for all s^{\prime} in V_{1}. This contradicts the fact that V_{1} and V_{2} are disjoint, proving that $\alpha_{1}=\alpha_{2}$. Thus we may define a map σ of S into S^{\prime} by defining $\sigma(p)=\alpha(p)$ for each p in S, where α is an analytic map of some neighborhood V of p into S^{\prime} which satisfies ${ }^{(* *)}$. Since α is unique the map σ is well-defined. Clearly σ is an analytic map from S into S^{\prime} such that $f^{\prime} \circ \sigma=f$ for all f in \mathfrak{N}, or

$$
(\tau(f))(\sigma(p))=f(p)
$$

for all p in S and f in \mathfrak{N}. This is just (${ }^{*}$) of Definition 2. Thus to show that ($\mathfrak{H}^{\prime}, S^{\prime}$) and the mappings σ, τ define an extension of (\mathfrak{N}, S) it only remains to prove that \mathfrak{X}^{\prime} is holomorphically complete. Clearly \mathfrak{U}^{\prime} is an algebra. Since g is not constant on any component of $\Lambda_{i}, 1 \leqq i<\infty, g \circ \lambda_{i}$ is not constant on any component of S^{\prime}.

Thus it remains to show that \mathfrak{Q}^{\prime} is closed in the topology of uniform convergence on compact subsets of S^{\prime}. Consider therefore a sequence $\left\{f_{i}^{\prime}\right\}$ of elements in \mathfrak{X}^{\prime} converging uniformly on compact subsets of S^{\prime} to a function F on S^{\prime}. The sequence $\left\{f_{i}\right\}$ then converges uniformly on compact subsets of S to $F \circ \sigma$. Thus $f=F \circ \sigma \in \mathfrak{A}$. It follows that $F-f^{\prime}$ vanishes on $\sigma(S)$. Once condition (1) of Theorem 2 is verified it will follow from this that $F-f^{\prime}$, which is a uniform limit on compact subsets of S^{\prime} of elements in \mathfrak{X}^{\prime}, vanishes on all of S^{\prime}. Thus $F=f^{\prime}$ will be in \mathfrak{X}^{\prime}, as was to be proved.

It only remains to verify conditions (1), (3), and (4) of Theorem 2. To verify (1) consider a compact subset K of S^{\prime}. Since $\left\{S_{i}^{\prime}\right\}$ is an open cover of S^{\prime} there exist $S_{i_{1}}^{\prime}, \cdots, S_{i_{n}}^{\prime}$ which cover K. Let $k=1+\sup \left\{i_{1}, \cdots, i_{n}\right\}$. Since $\sigma\left(\gamma_{k}\right)$ is a compact subset of S^{\prime}, it is enough to show that $S_{\boldsymbol{i}}^{\prime} \subset \tilde{\sigma}\left(\gamma_{k}\right)$ for all $i<k$. (Here $\tilde{\sigma}\left(\gamma_{k}\right)=\tilde{G}$, where $G=\sigma\left(\gamma_{k}\right)$.) Since

$$
\sigma\left(\gamma_{i}\right) \subset \tilde{\sigma}\left(\bar{U}_{k}\right) \subset \tilde{\sigma}\left(\gamma_{k}\right)
$$

for $i<k$, it is sufficient to show that

$$
S_{i}^{\prime} \subset \tilde{\sigma}\left(\gamma_{i}\right)
$$

for all i. Consider p_{0} in S_{i}^{\prime} and write $p=\lambda_{i}\left(\sigma_{i}\left(p_{0}\right)\right)$ so that $p \in Y_{i}$ and $f(p)$ $=f^{\prime}\left(p_{0}\right)$ for all f in \mathfrak{A}. Thus

$$
\begin{aligned}
\left|f^{\prime}\left(p_{0}\right)\right| & =|f(p)| \leqq \sup \left\{|f(q)|: q \in X_{i}\right\} \\
& \leqq \sup \left\{|f(q)|: q \in \gamma_{i}\right\} \\
& =\sup \left\{\left|f^{\prime}(q)\right|: q \in \sigma\left(\gamma_{i}\right)\right\}
\end{aligned}
$$

so that $p_{0} \in \tilde{\sigma}\left(\gamma_{i}\right)$. This proves (1) of Theorem 2.
We turn to the proof of (3). Assume that (3) is false so that T intersects some compact subset of $S^{\prime} \times S^{\prime}$ in an infinite set. Then there exists a sequence $\left\{\left(p_{n}^{\prime}, q_{n}^{\prime}\right)\right\}$ of distinct elements of T converging to an element (p^{\prime}, q^{\prime}) in $S^{\prime} \times S^{\prime}$. We may assume that the p_{n} are distinct. Choose S_{i}^{\prime} and S_{j}^{\prime} with $p^{\prime} \in S_{i}^{\prime}, q^{\prime} \in S_{j}^{\prime}$. We may assume that $p_{n}^{\prime} \in S_{i}^{\prime}$ and $q_{n}^{\prime} \in S_{j}^{\prime}$ for all n. Let $p_{n}=\sigma_{i}^{-}\left(p_{n}^{\prime}\right), q_{n}=\sigma_{\dot{j}}^{-}\left(q_{n}^{\prime}\right), p=\sigma_{i}^{-}\left(p^{\prime}\right), q=\sigma_{j}^{-}\left(q^{\prime}\right)$, so that $\left\{p_{n}\right\}$ converges to p in S_{i} and $\left\{q_{n}\right\}$ converges to q in S_{j}. Choose k with $k>i, k>j$, and $g^{\prime}\left(p^{\prime}\right)$ $\notin g\left(X_{k}\right)$. Now λ_{i} is a homeomorphism of some neighborhood V in S_{i} of p into Y_{i}. Thus $\phi_{k i} \circ \lambda_{i}$ gives a homeomorphism of V into Y_{k}. Since λ_{j} is a homeomorphism of some neighborhood W of q into $Y_{j}, \phi_{k j} \circ \lambda_{j}$ is a homeomorphism of W into Y_{k}. We may assume that $p_{n} \in V$ and $q_{n} \in W$ for all n. For each f in \mathfrak{A} we have

$$
f \circ \phi_{k i} \circ \lambda_{i}=f \circ \lambda_{i}=f^{\prime} \circ \sigma_{i} \quad \text { on } V .
$$

Similarly,

$$
f \circ \phi_{k j} \circ \lambda_{j}=f \circ \lambda_{j}=f^{\prime} \circ \sigma_{j} \quad \text { on } W .
$$

In particular,

$$
\begin{aligned}
f\left(\phi_{k i}\left[\lambda_{i}\left(p_{n}\right)\right]\right) & =f^{\prime}\left(\sigma_{i}\left(p_{n}\right)\right)=f^{\prime}\left(p_{n}^{\prime}\right) \\
& =f^{\prime}\left(q_{n}^{\prime}\right)=f^{\prime}\left(\sigma_{j}\left(q_{n}\right)\right)=f\left(\phi_{k j}\left[\lambda_{j}\left(q_{n}\right)\right]\right)
\end{aligned}
$$

for all f in \mathfrak{A}. Thus $\phi_{k i}\left(\lambda_{i}\left(p_{n}\right)\right)$ and $\phi_{k j}\left(\lambda_{j}\left(q_{n}\right)\right)$ are the same point y_{n} in Y_{k}. Now $g\left(\phi_{k i}\left[\lambda_{i}(p)\right]\right)=g\left(\lambda_{i}(p)\right)=g^{\prime}\left(p^{\prime}\right) \notin g\left(X_{k}\right)$ so that $\phi_{k i}\left(\lambda_{i}(p)\right) \in Y_{k}-X_{k}$ for all n sufficiently large. Since T_{k} is isolated in $Y_{k}-X_{k}$ it follows that $y_{n} \in Y_{k}$ $-X_{k}-T_{k}=\Lambda_{k}$ for all n sufficiently large. Fix such a value of n. There exists a neighborhood V_{n} of p_{n} in S_{i} which $\phi_{k i} \circ \lambda_{i}$ maps homeomorphically into Λ_{k}. Since S_{i} and Λ_{k} are Riemann surfaces it follows from invariance of domain (see [4, p. 95]) that $\phi_{k i} \circ \lambda_{i}$ maps V_{n} homeomorphically onto an open set in Λ_{k} containing y_{n}. Similarly $\phi_{k j} \circ \lambda_{j}$ maps some neighborhood W_{n} of q_{n} homeomorphically onto an open set in Λ_{k} containing y_{n}. We may assume that $\phi_{k i}\left(\lambda_{i}\left(V_{n}\right)\right)=\phi_{k j}\left(\lambda_{j}\left(W_{n}\right)\right)$. Thus

$$
\beta=\left(\phi_{k j} \circ \lambda_{j}\right)^{-} \circ\left(\phi_{k i} \circ \lambda_{i}\right)
$$

is a homeomorphism of V_{n} onto W_{n}. Now

$$
f \circ \lambda_{j} \circ \beta=f \circ \overline{\phi_{k j}} \circ \phi_{k i} \circ \lambda_{i}=f \circ \phi_{k i} \circ \lambda_{i}=f \circ \lambda_{i}
$$

on V_{n} for all f in \mathfrak{A}. It follows that

$$
p_{n} \equiv \beta\left(p_{n}\right)=\left(\phi_{k j} \circ \lambda_{j}\right)-y_{n}=q_{n} .
$$

Thus $\sigma_{i}\left(p_{n}\right)=\sigma_{j}\left(q_{n}\right)$, or $p_{n}^{\prime}=q_{n}{ }^{\prime}$. This contradicts the fact that $\left(p_{n}^{\prime}, q_{n}^{\prime}\right) \in T$ and thereby establishes the truth of (3) of Theorem 2.

It remains to prove (4) of Theorem 2. We first show that the closure of S_{i}^{\prime} is a compact subset of S^{\prime} for each i. Since the set

$$
R_{i}^{\prime}=\sigma_{i}\left(R_{i}\right) \quad \text { where } \quad R_{i}=\lambda_{i}\left(\Lambda_{i}\right)
$$

is dense in S_{i}^{\prime}, it is enough to show that the closure of R_{i}^{\prime} is compact. Let $\left\{p_{n}{ }^{\prime}\right\}$ be a sequence of points of R_{i}^{\prime}. Let $p_{n}=\lambda_{i}\left(\sigma_{i}\left(p_{n}^{\prime}\right)\right)$, so that $p_{n} \in \Lambda_{i}$. We may assume, by passing to a subsequence if necessary, that $\left\{p_{n}\right\}$ converges to a point p in Y_{i}. Choose $m>i$ with $g(p) \notin g\left(\gamma_{m}\right)$. Then $\phi_{m i}(p) \notin X_{m}$. We have the following diagram

$$
S_{i} \xrightarrow{\lambda_{i}} Y_{i} \xrightarrow{\phi_{m i}} Y_{m} \stackrel{\lambda_{m}}{\leftarrow} S_{m},
$$

and $p_{n} \rightarrow p$ in Y_{i} as $n \rightarrow \infty$. Since $\phi_{m i}$ is continuous, $\phi_{m i}\left(p_{n}\right) \rightarrow \phi_{m i}(p)$ as $n \rightarrow \infty$, so that $\phi_{m i}\left(p_{n}\right) \in \Lambda_{m}$ for all n sufficiently large, say for all n. Thus for each n there exists a unique point t_{n} in S_{m} with $\lambda_{m}\left(t_{n}\right)=\phi_{m i}\left(p_{n}\right)$. Let q_{1}, \cdots, q_{k} be those points in S_{m} with $\lambda_{m}\left(q_{j}\right)=\phi_{m i}(p), 1 \leqq j \leqq k$. Thus to each open set V in S_{m} containing the points q_{1}, \cdots, q_{k} corresponds a neighborhood V_{0} of $\phi_{m i}(p)$ in Y_{m} with $\lambda_{m}^{-}\left(V_{0}\right) \subset V$. Thus $t_{n} \in V$ for all n sufficiently large. We may therefore assume, by passing to a subsequence if necessary, that t_{n} converges to one of the points q_{1}, \cdots, q_{k}, call it t. Let W be a neighborhood of t in S_{m} mapped homeomorphically by λ_{m} into Y_{m}. Take W so small that $\lambda_{m}(W-\{t\}) \subset \Lambda_{m}$, so that λ_{m} is a homeomorphism of $W-\{t\}$ onto an open set in Y_{m}. We may assume that $t_{n} \in W$ for all n so that $\phi_{m i}\left(p_{n}\right)=\lambda_{m}\left(t_{n}\right) \in \lambda_{m}(W)$. Now $p_{n} \in \Lambda_{i}$ and $\phi_{m i}\left(p_{n}\right) \in \Lambda_{m}$. Since $\phi_{m i}$ maps a neighborhood of p_{n} homeomorphically into Λ_{m}, we may assume by invariance of domain that $\phi_{m i}$ maps a neighborhood V_{n} in Λ_{i} of p_{n} homeomorphically onto a neighborhood of $\phi_{m i}\left(p_{n}\right)$ in Λ_{m}. We may assume that $\phi_{m i}\left(V_{n}\right) \subset \lambda_{m}(W-\{p\})$. Thus $\lambda_{m}^{-} \circ \phi_{m i}$ maps V_{n} homeomorphically onto a neighborhood W_{n} of t_{n} in S_{n} and λ_{i}^{-}maps V_{n} homeomorphically onto a neighborhood W^{n} of $\lambda_{i}\left(p_{n}\right)$ in S_{i}. Therefore the map

$$
\beta=\lambda_{m}^{-} \circ \phi_{m i} \circ \lambda_{i} \quad \text { on } W^{n}
$$

maps W^{n} homeomorphically onto W_{n}. If f is any function in \mathfrak{A} then

$$
f \circ \lambda_{i}=f \circ \phi_{m i} \circ \lambda_{i}=f \circ \lambda_{m} \circ \beta \quad \text { on } W^{n} .
$$

Therefore

$$
\lambda_{i}\left(p_{n}\right) \equiv \beta\left(\lambda_{i}\left(p_{n}\right)\right)=t_{n},
$$

so that

$$
p_{n}^{\prime}=\sigma_{i}\left(\lambda_{i}^{-}\left(p_{n}\right)\right)=\sigma_{m}\left(t_{n}\right)
$$

Therefore $\left\{p_{n}^{\prime}\right\}$ converges to the point $\sigma_{m}(t)$ in S^{\prime}. Thus there is a convergent subsequence of $\left\{p_{n}^{\prime}\right\}$. Therefore the closure of S_{i}^{\prime} is compact.

Consider any compact subset K of S^{\prime}. We have seen above that $K \subset \tilde{\sigma}\left(\gamma_{i}\right)$ for some i. Therefore $\tilde{K} \subset \tilde{\sigma}\left(\gamma_{i}\right)$. The set

$$
H=\bar{S}_{i}^{\prime} \cup_{\sigma\left(\gamma_{i}\right)}
$$

is a subset of $\tilde{\sigma}\left(\gamma_{i}\right)$ because it was shown above that $S_{i}^{\prime} \subset \tilde{\sigma}\left(\gamma_{i}\right)$. Since \bar{S}_{i}^{\prime} is compact H is compact. The set

$$
L=\tilde{K} \cap H
$$

is also compact. Clearly \tilde{K} contains all points p such that $(p, q) \in T$ for some q in L. We shall complete the proof by showing that conversely if $p \in \tilde{K}-L$ then $(p, q) \in T$ for some q in L. Consider p in $\tilde{K}-L$. Thus

$$
p \in \tilde{\sigma}\left(\gamma_{i}\right)-H
$$

It follows that

$$
\left|f^{\prime}(p)\right| \leqq \sup \left\{|f(q)|: q \in \gamma_{i}\right\}
$$

for all f in \mathfrak{N}. There therefore exists q_{0} in Y_{i} with $f^{\prime}(p)=f\left(q_{0}\right)$ for all f in \mathfrak{N}. Thus either $q_{0} \in X_{i}$ or $q_{0}=\lambda_{i}\left(q_{1}\right)$ for some q_{1} in S_{i}. In the first case let q_{1} be a point in γ_{i} with $\pi_{i}\left(q_{1}\right)=q_{0}$, so that in the first case $q=\sigma\left(q_{1}\right) \in H$ and

$$
f^{\prime}(q)=f\left(q_{1}\right)=f\left(q_{0}\right)=f^{\prime}(p)
$$

for all f in $\mathfrak{\imath}$. Thus $(p, q) \in T$. In the second case let $q=\sigma_{i}\left(q_{1}\right)$. Thus $q \in S_{i}^{\prime} \subset H$ and $f^{\prime}(q)=f\left(\lambda_{i}\left(q_{1}\right)\right)=f\left(q_{0}\right)=f^{\prime}(p)$ for all f in \mathfrak{N}. Thus $(p, q) \in T$. Thus in either case there exists q in H such that $(p, q) \in T$. Also $q \in \tilde{K}$ because $f^{\prime}(q)=f^{\prime}(p)$ for all f in \mathfrak{A}. Therefore $q \in \tilde{K} \cap H=L$. This completes the proof of Theorem 2.

We end with a result which completely describes the uniform closure of an algebra of analytic functions on a compact subset of a Riemann surface.

Theorem 3. Let K be a compact subset of a Riemann surface S. Let \mathfrak{A} be a holomorphically complete algebra of analytic functions on S. Let \mathfrak{B} be the uniform closure of \mathfrak{A} on K. Let Y be the spectrum of \mathfrak{B}. Let ($S^{\prime}, \mathfrak{Y}^{\prime}$) be the extension of (S, \mathfrak{Y}) described in Theorem 2, and σ and τ the maps there described. Let M be the union of $L=\sigma(K)$ and all of those components of $S^{\prime}-L$ which are relatively compact subsets of S^{\prime}. Then
(a) \mathfrak{B} is isomorphic to the uniform closure of \mathfrak{A}^{\prime} on M, via the maps σ and τ.
(b) For each ϕ in Y there exists p in M with $\phi(f)=f(p)$ for all f in \mathfrak{B}, where \mathfrak{B} is considered as a subalgebra of $C(M)$.
(c) The linear space \mathfrak{B} is of finite codimension in the space \mathfrak{B}_{0} of all continuous functions on M which are analytic at interior points of M.

Proof. From Theorem 2 it is clear that for each f in \mathfrak{A} the uniform norm of f on K and the uniform norm of $\tau(f)$ on L are equal. From this (a) follows readily.

Now by Theorem 2 there exists a compact set $D \subset \tilde{M}$ such that for each ϕ in Y there exists p in D with $\phi(f)=f(p)$ for all f in \mathfrak{A}^{\prime}. By (iv) of Theorem 2 and the principal theorem of [1] it follows that \mathfrak{B}^{\prime} is of finite codimension d in \mathfrak{B}_{1}, where \mathfrak{B}^{\prime} is the uniform closure of \mathfrak{A}^{\prime} on D and where \mathfrak{B}_{1} is the set of all continuous functions on D which are analytic at interior points of D. Assume that $D-M$ is not a finite set. Thus there exist distinct points p_{1}, \cdots, p_{d+1} in $D-M$. Since $D \subset \tilde{M}$, for each i there exists a finite measure μ_{i} on M such that $\delta_{i}-\mu_{i} \perp \mathfrak{H}^{\prime}$, where δ_{i} is the point mass at p_{i}. Now considered as linear functionals on \mathfrak{B}_{1} these measures $\delta_{i}-\mu_{i}$ are all linearly independent because by Runge's theorem there exists f_{i} in \mathfrak{B}_{1} which has the value 1 at p_{i} and 0 at the other p 's and is arbitrarily small on M. But since these $d+1$ measures annihilate \mathfrak{B}^{\prime} we have a contradiction. Thus $D-M$ is finite. Thus if ϕ in Y does not have property (b) above then ϕ corresponds to a point p in $D-M$. Since p is isolated in D an easy argument shows that ϕ is isolated in Y. By a theorem of Silov it follows that ϕ is in the Silov boundary of \mathfrak{B}. This contradiction shows that (b) is valid for all ϕ in Y. Finally (c) follows from Theorem 2 and the principal theorem of [1].

References

1. E. Bishop, Subalgebras of functions on a Riemann surface, Pacific J. Math. 8 (1958), 29-50.
2. C. Chevalley, Theory of Lie groups, Princeton Univ. Press, Princeton, N. J., 1949.
3. E. Heinz, Eine elementarer Beweis des Satzes von Rad δ-Behnke-Stein-Cartan über analytischen Funktionen, Math. Ann. 131 (1956), 258-259.
4. W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1948.
5. L. H. Loomis, Abstract harmonic analysis, Van Nostrand, New York, 1953.
6. S. N. Mergelyan, Uniform approximation to functions of a complex variable, Amer. Math. Soc. Transl. 101 (1954).
\rightarrow J. Wermer, Function rings and Riemann surfaces, Ann. of Math. 67 (1958), 45-77.
$\rightarrow 3$. ——, Rings of analytic functions, Ann. of Math. 67 (1958), 497-516.
7. -, An example concerning polynomial convexity, Math. Ann. 139 (1959), 147-150.

University of California,

 Berkeley, California
[^0]: Received by the editors January 3, 1961.

