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ANALYTICITY IN CERTAIN BANACH ALGEBRAS 
BY 

ERRETT BISHOP(1) 

1. Introduction. Consider a Riemann surface S. (All Riemann surfaces 
are surfaces without boundary and are assumed to be separable but not 
necessarily connected.) Consider also a set 21 of analytic (that is, holomorphic) 
functions on S which are not simultaneously constant on any component of S. 
From the functions in 2 it is possible to construct a wider class of functions 
analytic on S by the operations of addition, multiplication, and scalar multi- 
plication. Further functions analytic on S are obtained by taking those func- 
tions which are uniform limits on each compact subset of S of functions 
already obtained. Thus from 21 we pass to the set 2-the holomorphic comple- 
tion of 2. 

In the sequel we only study holomorphically complete sets 2f of analytic 
functions on a Riemann surface S. This means by definition that 1 G2, that 
the functions in 21 are not all constant on any component of 5, that 21 is an 
algebra over the complex field with the natural algebraic operations, and that 
each function on S which can be uniformly approximated on each compact 
subset of S by functions in 21 is in 21. The set 21 will be topologized by the 
topology of uniform convergence on compact subsets of S. 

For such a holomorphically complete 21 there are certain natural ques- 
tions: Given a sequence of points in S having no cluster point, does there 
exist a function in 21 having prescribed values at the given points? Or: When 
is it possible to approximate a function given on a compact subset of S uni- 
formly by functions in 2? and so forth. It is well known (see for example 
[1]) that the space X should be holomorphically convex (or at least weakly 
holomorphically convex) relative to the given algebra 21 of analytic functions 
if such questions are to have satisfactory answers. 

DEFINITION 1. A Riemann surface S is holomorphically convex (respec- 
tively weakly holomorphically convex) relative to a holomorphically complete 
set 21 of analytic functions on S if for each compact subset K of S the set 
(respectively each component of the set) 

K = {p in S: If(p) I _ sup{ |f(q) I : q E K} for allf in 21} 

is compact. 
One of the purposes of this paper is to show that if 21 is a holomorphically 

complete algebra of analytic functions on a Riemann surface S then S can 
be canonically extended to a Riemann surface S' and the functions in 21 can 
be extended to S' to give an algebra 2' of analytic functions on S' with re- 
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spect to which S' is weakly holomorphically convex. Thus the condition of 
weak holomorphic convexity is always realized on a suitable extension of the 
given surface S'. It might be thought that an analogous theorem would hold 
for a holomorphically complete algebra 2f of analytic functions on a higher- 
dimensional complex analytic manifold S, but an example of Wermer [9] 
can easily be adapted to show that this is not the case. The following defini- 
tion gives a precise meaning to the term extension just employed. 

DEFINITION 2. Let the pair (S, tf) consist of a Riemann surface S and a 
holomorphically complete algebra of analytic functions on S. An extension of 
(S, W) consists of a second such pair (S', f'), of an analytic map a. from S 
to S', and of a one-one map r of ? onto t' such that 

(*) (r(f))(ao(p)) = f(p) 

for all f in t and p in S. 
Clearly a. need not be one-one since it is possible for a. to identify points 

of S which are identified by all functions in 91. 
One of our main results is then the following. 

THEOREM 2. Let the pair (S, W) consist of a Riemann surface S and a 
holomorphically complete algebra 21 of analytic functions on S. Then (S, 21) 
admits an extension (S', 21') such that 

(i) For each compact subset K of S' there exists a compact subset Ko of S with 

KCL, 

where L =- (Ko), and L is formed relative to '. 
(ii) To each continuous homomorphism 4 of 2 onto the complex numbers 

there exists p in S' with 

(r(f))(P) = p(f) 

for allf in 21. 
(iii) The set 

T {(p,q):peS',qES',p 7 q, f(p) = f(q) for all f in 2'} 

is a countable subset of S' X S' which has no cluster point in S' X S'. 
(iv) For each compact subset K of S' the set R is the union of a compact set 

L and all points p in S' for which there exists q in L with (p, q) E T. 

Added in proof. From the argument used in proving Theorem 3 below it 
follows that the set L of (iv) can in fact be taken to be the union of K and 
all those components of S'-K which are relatively compact subsets of S', so 
that in particular bdry L CK. 

It follows from (iv) and the countability of T that S' is weakly holo- 
morphically convex relative to 2['. 

Property (ii) of Theorem 2 contains the key to the construction of the 
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extension (S', Wf'). The surface S' is constructed abstractly by considering 
the set of continuous homomorphisms of 2{ into the complex numbers and 
imposing the structure of a Riemann surface on this set. If a certain countable 
set of homomorphisms are counted more than once this can be done and gives 
the Riemann surface S'. The mapping oa from S to S' is then easily found, 
as is the mapping Xr from 2f onto a certain set t' of analytic functions on S'. 
The pair (S', ') and the maps a. and r are then shown to be an extension of 
(S, 21) having the properties of Theorem 2. Since a continuous homomorphism 
4) of 21 into the complex numbers has the property that there exists a compact 
subset K of S with 

I (f)I J sup { If(p)I :p K} 

for all f in 21, to get all continuous homomorphisms 4) it is sufficient to con- 
sider compact subsets K of S' and homomorphisms 4) satisfying the inequal- 
ity. 

Thus we come to a well-known problem in Banach algebras-the investi- 
gation of the set of continuous homomorphisms (called the spectrum) of an 
algebra of continuous complex-valued functions defined on a compact Haus- 
dorff space K. Here continuous means continuous in the uniform norm for 
functions on K. The bulk of this paper is concerned with aspects of this prob- 
lem, and the results obtained in this investigation are applied in the proof 
of Theorem 2. The particular type of Banach algebra which arises will be 
called a uniform algebra. 

DEFINITION 3. A uniform algebra is a Banach algebra with unit whose 
norm and spectral norm coincide. 

If 21 is a uniform algebra with spectrum Y and Silov boundary X, it is 
clear that 21 can be considered as a closed subalgebra of either C(X) or C( Y), 
where C(r), for a compact Hausdorff space F, is the uniformly-normed 
algebra of all continuous complex-valued functions on P. Conversely it is 
clear that if r is a compact Hausdorff space then every closed subalgebra of 
C(F) which contains the function 1 is a uniform algebra. 

Most of this paper is a systematic investigation of conditions which 
imply that certain open subsets of the spectrum of a uniform algebra can be 
given the structure of a Riemann surface on which the functions of the algebra 
all are analytic functions. The following is the principal result of this investi- 
gation. 

THEOREM 1. Let 2 be a uniform algebra with Silov boundary X and spectrum 
Y. Let 2 contain a function g which has the following properties: 

(a) The interior of g(X) is void. 
(b) Each point of g(X) is the vertex of some nondegenerate triangle whose 

interior lies in -g(X). 
(c) For- each z in g(X) there are only a finite number of points p in X with 

g(p) = z. 
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(d) If w1 and W2 are points in - g(X) there exists a Jordan arc y joining 
wi and W2 and intersecting g(X) in a finite number of points zi, * * *, zx. Each 
point zi has the property that there exists a smooth open Jordan arc Jo Cg(X) 
which contains zi, which is an open subset of g(X), and which is the homeomorphic 
image under the mapping g of the subset I P: pC X, g(p) C Jo } of X. 

Then there is a Riemann surface S and a continuous map X of S onto Y-X 
such that f o X is analytic on S for all f in X, such that each point in Y- X except 
for those in a countable set is the image of exactly one point in S, and such that 
when -g(X) has a finite number of components j each point in Y-X is the 
image of at most j-1 points in S. 

In condition (d) a "smooth" arc is one with a continuously turning 
tangent. To introduce another piece of notation, g- will denote the function 
(or relation) inverse to a function g, the designation g-' being reserved for 
the function 1/g. 

The investigations of this paper have their origin in ideas of Wermer [7; 
8]. In particular special cases of Theorems 1 and 2 follow from Wermer's 
work. The present paper carries the theory further in certain directions than 
did Wermer's work and develops some of the material more systematically. 
In particular a definitive theorem (Theorem 2 above) about algebras of 
functions on Riemann surfaces is obtained. H. Royden has also extended 
Wermer's work, by methods differenit from those used here. 

2. Functions rational over Wf. The motivations for the following definition 
are clear. 

DEFINITION 4. Let W be a uniform algebra with spectrum Y, and let X 
be the Silov boundary of 9W. Let h be a function in C(X), and let pi, , pn 
be points in Y, not necessarily distinct. Let G denote the set of all products of 
the form 

g = glg2 ... 
gny 

with giC2[ and gi(pi) = 0. Then h will be called a rational function over W 
with poles pi, * , Pn if 

(i) ghC2f for all g in G. 
(ii) There exists g in G with (gh) (pi) 0, 1 ? i ? n. 

LEMMA 1. Let h be a rational function over the Banach algebra 2t with poles 
pi, , 

- * X p,. Let ql, * , qm be another set of poles for h. Then m = n and the 
sequence ql, , 

X qm is a rearrangement of the sequence pi, *, pn. 

Proof. Assume that there is a point p which occurs j times in the sequence 
pi, , * * p, and k <j times in the sequence qi, , qm. To prove the lemma, 
it will be enough to contradict this assumption. We may take it that Pl=P2 
= . . . =Pj=P, qi=q2= =qk=p. Choose g=gi . . . 

gn with giGW, 
gi(p )=0, ghC t, (gh)(p)0. For k<i_ m, choose fi in W with fi(qi)=0, 
fi(p) = 1. Thus the function 

f = 
gl 

.. . 
gkfk 

. ... 
fm 
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is in 21, andfhS21 because ql, * * *, qm is a set of poles for h. Thus the function 
at=fhgk+l . . . gn, is in 2W. We have a(p) =0, since gk+l(P) =gk+l(Pk+l) =0. But 

a = ghfk+l * fm. 

and the quantities (gh) (p), fk+1(p), * * *, fm(P) do not vanish. This contra- 
diction shows that our assumption was false, thereby proving the lemma. 

We are now justified in speaking of the poles pi, * - *, pn of a function h 
rational over 21. If p is in the spectrum of 21 and k is a non-negative integer 
such that p occurs k times in the sequence pi, , pn we say that p is a 
pole of multiplicity k of h. 

LEMMA 2. Let h be a rational function over the uniform algebra 21 and let the 
point p with multiplicity n > 0 be the only pole of h. Then there exists g in 21 such 
that gh is rational over 21 and the point p with multiplicity n - 1 is the only pole 
of gh. 

Proof. Choose gi, , gn in 21 with a==g . . . gnhG 2t, gi(p) =0, a (p) 0. 
Let g=gi. It is clear that g satisfies the required conditions. 

LEMMA 3. Let h, be a rational function over the untiform algebra 21 such that 
the point p with multiplicity nO is the only pole of h,. Let the function h2 in 
C(X), where X is the Silov boundary of 21, have the property that gh2 C for 
each g in G, where G is the set of all g=gi . * gn with giC2t and g,(p) =0. Then 
there exist elements f, and f2 in 21 with h2=f1h1 +f2. 

Proof. We proceed by induction on n. The theorem is clearly true if n = 0, 
for then both h1 and h2 are in 2t. Assume now that the lemma is true for all 
integers up to and including n - 1. By hypothesis, there exists g in G with 
ghi=caC-2 and a(p) O, say a(p) = 1. If we let O=1--a, then f3e2, 3(p) =0, 
and 1 =gh1+3. Multiplying this equality by h2, we have 

h2 = ghlh2 + 3lh2 = (g1z2)hl + /3h2 = bhl + /h2, 

where 6C2. By the previous lemma, there exists y in 21 with y(p) =0 such 
that yh1 is rational over 21 and has the point p with multiplicity n-1 as its 
only pole. By the hypothesis of the induction, we therefore have 

k1 2- oY(Yhl) + 'Yi, 

where yo and 'yi are in 21. Therefore 

h2 = bhl + Oh2 = (b + 'YoY)hi + -Yi. 

If we write fi-=+,yoy and f2=,y this proves the lemma. 

LEMMA 4. Let h be a rationalfunction over the uniform algebra 21, with poles 
at the distinct points pi, , P, of multiplicities ki, * * . , kn respectively. Then 
there exist functions a,, , a, in 21 with ai,+ * +aX.= 1 such that for each 
i the function aih = hi is rational over W with a single pole of multiplicity ki at pi. 
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Proof. For 1 ?i ?n let Gi consist of all products g9g2 
. . . 

gki with gj C % 
for 1 j?ki and gj(pi) =0. For 1 i<n let Fi consist of all products of the 
form fi * fi-ifi+i . . . f, with fjLGj. Let Fi be the ideal which Fi generates 
in W. Since the ideals Ai are simultaneously contained in no maximal ideal 
of 2f, F1+ * * +Fn is an ideal of 2f which is contained in no maximal ideal. 
There therefore exist elements ai in Pi with a, + * +c,= 1. Let hi= aih. 
Clearly hifiC21 for each fi in Gi. To complete the proof that hi has a pole of 
order ki at pi and no other pole it is sufficient to show that there exists fi in 
Gi with (hifi) (pi) #0. By hypothesis and Definition 4 there exist elements fi 
in Gi with (fh)(pi) 0 for all i, where f=f' . . . f,,. We shall show that 
(hifi) (pi) $40, thereby completing the proof. Since clearly aj(pi) = 0 for j Hi, 
we have ai(pi) = 1. Therefore 

(fhi)(pi) = (fh)(pi)ai(pi) # 0. 

Since 

(fhi)(pi) = fM(pN) . . fi_i(Pi)fi+i(Pi) ... * (pi) (f.hi)(pi) 

it follows that (fihi) (pi) # 0. Thus hi has a pole of order ki at pi, as was to be 
proved. 

LEMMA 5. Let h be a rational function over the uniform algebra 2X with poles 
at pi, , pn. There exists a unique continuousfunction fh on Y-{ pi, * * *, p. } 9 
where Y is the spectrum of Xt, such that if f is any element of 2f for which fh 
then 

(*) (fh)(p) = f(p)fA(p) for all p in Y -{ Pb, . , pn} 

The function h becomes infinite at the points pi. Thus if we define h to be infinity 
at the points pi then h is a continuous function from Y to the Riemann sphere. 

Proof. Consider a point p in Y- { pi, *, pn. Choose g =gi . * gn with 
giCG{, gi(pi)=O, gi(p)XO. Define h(q)=(gh)(q)[g(q)]-1 for all q in Y for 
which g(q) #0. Now if f is any function in 2{ such that fhG-f, and if q is a 
point in Y with g(q) #0 , then f (q) (gh) (q) (fgh) (q) = (fh) (q)g(q), so that 
(*) (fh) (q) = f ()h(q) 

as was required. This equation can be written h(q) = (fh) (q) [f(q) ]-1, which 
shows that h is independent of the choice of g. Since h is clearly continuous, 
it remains only to prove the last statement of the lemma. To this end, choose 
g as above with (gh) (pi) #0, 1 it n. Since g(q) h(q) = (gh) (q), we have 
g(q) #0 for all q sufficiently near pi. The equations h(q) = (gh) (q) [g(q) ]-I and 
g(pi) = 0 then show that I h(q) cc s as q- pi, as was to be proved. 

To simplify notation we shall write simply h(p) for h(p) in the situation 
of Lemma 5. By a rational function h over a uniform algebra 2f with a simple 
pole at p we shall mean a rational function h over 21 which has {p } as its 
complete set of poles. 
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DEFINITION 5. Let h be a rational function over the uniform algebra W 
with a simple pole at the point p. We define the transformation Th from 21 
to 2! by 

Thf= h(f-f (p)). 

It is clear that II Thl| < 211 h||, where || h|| will now be defined. 
DEFINITION 6. Let h be a rational function over the uniform algebra 9W. 

We define 

||h|| = supl | h(x) |: x C X}, 

where X is the Silov boundary of Xf, and [h] = (2||h| )-'. 
DEFINITION 7. If h is a rational function over a uniform algebra W with 

a simple pole at a point p, Dh will denote the set I z: I z I < [h ] } in the complex 
plane. If fGE{ the expansion of f in powers of h-1 will denote the power series 
ao+a1z?+ * *, where an =fn(p) with fn = (Th)nf. 

LEMMA 6. Under the hypothesis of Definition 7, the expansion of f in powers 
of h-1 converges for all z in Dh. 

Proof. We have 

I a, I_I? |ThInlJfll ?- (2IWhI|)n|IfI, 

and so the series converges for I zI < [h]. 
DEFINITION 8. Under the hypothesis of Definition 7, the value of the sum 

of the power series at the point z in Dh will be denoted by P(f, h, z). 
DEFINITION 9. If h is a rational function over a uniform algebra 2f with 

a simple pole p, if z is any point in Dh, and if x is any point in the Milov 
boundary X of f, then we define the quantity u(h, z) in C(X) by the equation 

u(h, z, x) = h(x)(1 -zh(x))-, 

where u(h, z, x) denotes the value of u(h, z) at x. (It should be noted that 
1-zh(x) 50 for all z in Dh since I zI < [h].) 

LEMMA 7. Let h be a rational function over the uniform algebra W which has 
a simple pole p. Let f be an element of W. Then a(z) = [f-P(f, h, z) ]u(h, z) defines 
an analytic mapping a from Dh into Wf. 

Proof. We have seen that P(f, h, *) is an analytic complex-valued function 

00 

P(f, h, z) = EanZn 
n=O 

where an =fn (p) and fn = (Th)nf. It is easily seen by induction that 

n-1 

fn = hn(f- ao) - E hkaf-k 
k=1 
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for n > 1. We also have I zI < [h] = (211 h )-1, which implies that IIzh|I < 1 for 
all z in Dh. Thus the mapping z-2u(h, z) is an analytic mapping from Da into 
C(X) and has the power series expansion 

00 

u(h, z) = Z nhn+1. 
n=O 

It follows that a is an analytic mapping from Dh into C(X) with the power 
series expansion 

ar(z) = - ao - E anzn)( E Zhn+l 
n=1 n=O 

= h(f - ao) + Zfn+?zn = Efn+?zn, 
n=l n=O 

withf. as above. Since fnS21 for all values of n, we see that a(z)G2f, as was 
to be proved. 

LEMMA 8. Under the hypothesis of Definitions 7 and 8 the mapping 

Xh(Z): f -* P(f, h, z) 

is a homomorphism of 21 into the complex numbers, for each z in Dh, and there- 
fore is a point in the spectrum of 21. The mapping Xh: Z--Xh(Z) is a continuous 
mapping of Da into the spectrum of 9W. 

Proof. It is only necessary to prove that this map is multiplicative, the 
other properties of a homomorphism being obvious. Fix z in Dh and write 
u=u(h, z). Since Ilz <(2jjh||)-1, we have ||zhfl <1/2, so that 

||ull = |lh(l - zh)-1Jj < |h|l(l - 1/2)-' = 2||h||. 

Thus I Izu| <1. It follows that 1 +zu has an inverse in C(X). Therefore 
h=u(l+zu)-'. Now if u were in 21 we should have (1+zu)-1G2, since 
IIzu|I <1, and therefore hEz2. Since h has a pole, it is not in 21, and therefore 
u is not in 21. 

Consider functions f and g in 21. By Lemma 7, we see that the functions 
g(f - P(f, h, z))u and P(f, h, z)(g - P(g, h, z))u 

are in 21. It follows that their sum 

[fg - P(f, h, z)P(g, h, z)]u 

is in 21. Since also (fg-P(fg, h, z))u is in 21, we see that 

[P(fg, h, z) - P(f, h, z)P(g, h, z)]u 

is in 21. Since u itself is not in 21, this implies P(fg, h, z) -P(f, h, z)P(g, h, z) 
= 0. Thus Xh(Z) is a homomorphism of 21 into the complex numbers and there- 
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fore is a point in the spectrum of a (see [5, p. 68]). The fact that Xh iS con- 
tinuous follows from the fact that for each f in 21 the composite map f O Xh 

-P(f, h, *) is continuous. 
DEFINITION 10. Let h be a rational function with a simple pole p over a 

uniform algebra 91. For each z in Dh the quantity Xh(Z) is the point in the 
spectrum Y of 21 defined by 

f(Xh(z)) = P(f, h ,z) 

for all f in 21. Eh will denote the subset of Y of all Xh(Z) for z in Dh. The map- 
ping Z-*Xh(Z) of Dh onto Eh will be denoted by Xh. 

LEMMA 9. Let h be a rational function with a simple pole p over the uniform 
algebra 21. Then for each z in Dh, u(h, z) is a rational function over 2 with a 
simple pole at Xh(Z). For all z and t in Dh with t#O and t#z respectively we have 

h(Xh(t)) = t-1, u(h, z, Xh(t)) = (t - ) 

For any q in the spectrum Y of 21 with q#Xh(z) and q# p we have 

u(h, z, q)[1 - zh(q)] = h(q). 

Proof. Let f be any element in 2 such that f(p) #0 and f'(p) #0, where 
f1=h(f-f(p)). Then P(f, h, z) has the expansion ao+a1z+ . . . with a1=f1(p) 
#0. Thus the set S of points z in Dh with P(f, h, z) =aO is isolated. Since 
P(f, h, Z) =f(Xh(z)) and ao=f(p), it follows that Xh(Z) #p for all z in Dh-S. 
Now the function a defined by o(z) = [f-P(f, h, z) ]u(h, z) has been seen in 
Lemma 7 to be an analytic map from Dh to 2, and therefore it has an expan- 
sion 

uJ (Z) =E a,z 

n=O 

converging on Dh, with a.C 2t. For each x in the spectrum Y of 2, let 
00 

o(z, x) = (of(Z)) (x) = E a(x) zn. 
n=O 

Thus if we define w(z) =o(z, Xh(Z)) it follows that 
co 

W(z) = E an(Xh(Z))Zn. 
n=O 

Since anz 21, we see that an 0 Xh=P(an, h, -) is analytic on Dh and has ab- 
solute values there which do not exceed 11anil It follows that w is an analytic 
function on Dh. Since oa(0) = (f-f(p))h =fi, we have 

w(0) = u(0, p) = fi(p) # 0, 

so that the set T of all z in Dh with w(z) = 0 is isolated. 
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Consider now any point z in Dh - S - T. From the defining equations for 
a and u(h, z) we obtain 

[f-f(Xh(z))]h = o-(z) (1 - zh). 

By Lemma 5, since Xh(z) $p, we may evaluate both sides of this equality at 
the point Xh(z) in Y, obtaining 

0 = w(z)(I - zh(Xh(Z))). 

Since z is not in T, this gives h(XA(z)) =z-. Since h is continuous on Y, by 
Lemma 5, it follows that h(Xh(t)) =t- for all t$O in Dh. 

Since by Lemma 7 we see that u(h, z) (f-f(Xh(z))) C f for all f in X, to 
show that u(h, z) is rational over 2f with a simple pole at Xh(Z), it is sufficient 
to show that there exists f in 2f such that u(h, z) (f-f(Xh(z))) does not vanish 
at Xh(Z). To this end, we consider an element f in W with the property that 
uf I, where u=u(h, z). By the definition of u, we have 

(1 - zh)uf =h. 

so that 

uf = h(f+ zuf). 

For t in Dh and tO, this implies by Lemma 5 that 

(Uf)(Xh(t)) = h(Xh(t))[f(Xh(t)) + Z(Uf)(Xh(t))]. 

Since h(Xh(t)) =t-' this gives 

(*) (hUf) (Xh(t)) = (t Z) -f h(t) 

if t$O and t$z. By continuity, (*) is valid whenever t and z are in Dh and 
t $ Z. 

Now let f be any element in 2f with f(Xh(Z)) = 0, f(p) =f(Xh(O)) 0. Let 
f-=unf. Assume that f,CfE for all n and that fn(Xh(z)) =0 for all n. It follows 
by induction from the formula (*) that fn(Xh(t))=(t-Z)-nf(Xh(t)), for all 
t$z. Thus f(Xh(')) =f o Xh is an analytic function on Dh which is not identi- 
cally zero such that the function ( -z)-nf(Xh(')) is analytic for each n. This 
contradiction shows that our assumption was false. Thus there exists a posi- 
tive integer n such that fn_12f and fn-(Xh(z)) = 0 and either fn EEW or f.C-?I 
and fn(Xh(z)) $O. We must havefnE(z, sincef_1-C and fnl(Xh(Z)) =0. Thus 
fn(Xh (z)) = (uf.-l) (Xh(z)) $0. This is just what was needed to show that u is 
rational over W with a simple pole at Xh(Z). By the formula (*), we have 
u(h, Z, Xh(t)) = (t-Z)-l. 

Now if p is any point in Y with q7$XAh(z) and q$p, choose f in 2f with 
f(q) = 1, f(Xh(z)) =0. By the above, we have uf = h(f+zuf). Evaluating at q, 
we have 
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u(q) = u(q)f(q) (uf)(q) -h(q)(l + z(uf)(q)) 

=h(q)(l + zu(q)), 

so that 

u(q)(l - zh(q)) = h(q), 

as was to be proved. 

LEMMA 10. Let h be a rational function over the uniform algebra 2f with a 
simple pole p. The mapping XA is a homeomorphism of Di onto Eh and Eh is an 
open set in the spectrum Y of W. 

Proof. The mapping Xh is one-to-one because we have seen that h(Xh(z)) 

-z-1 for all z in Dh. We shall show that Xh(U) is open in Y for all open sub- 
sets U of Dh. Since Xh iS continuous and one-one, it will follow that Xh is a 
homeomorphism. By taking U=Dh, it will follow that Eh is open. 

Assume then that Xh(U) is not open, and let z in U be chosen so that 
Xh(Z) is not in the interior of Xh(U). Since h is continuous on Y and since 
[h(Xh(z)) ]-'= z is in Dh, it follows that t = [h(q) ]-I will be in Dh whenever the 
point q in Y-Xh(U) is near enough to Xh(Z). Choose such a point q. Since 
qEXh(U) we have qlp and q$6Xh(t). By Lemma 9 it follows that 

= h(q) = u(h, t, q)[I- th(q)] 

= u(h, t, q) [ - tt-1]=0, 

a contradiction. Thus XA(U) is open, as was to be proved. 
DEFINITION 11 AND LEMMA 11. Let W be a uniform algebra and ~Wo the 

set of functions rational over 2I, so that W C?Wo. We define A =A(21), called 
the analytic part of Y, to be the set of all points p in the spectrum Y of 2I 
such that there exists h in Wo with a simple pole at p. Thus the poles of any 
function in ?0 lie in A. The set A is open in Y and can be given uniquely the 
structure of a Riemann surface in such a way that all functions h in 2lo are 
analytic on A except for a finite number of poles which with their multiplicities 
coincide with the poles and multiplicities of h when considered as a function 
rational over W. A point p in A is said to be a zero of order k of a function h 
in WIo if the analytic function h on A has a zero of order k at p. For each p in A 
there exists g in W with a zero of order 1 at p. If h is in So, if the points 
pig . * , pn in A with multiplicities k1, - * * , kn respectively are the poles of 5, 
and if h1, * * * , hn are elements of Wo having simple poles at pi, . , pn respec- 
tively then h can be written in the form 

n ki 

(*M E aij(ht) i + f, 
iwi jfi 

where the aij are constants and f is in Wf. The set t[o is a subalgebra of C(X), 
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where X is the Silov boundary of Wf. If h1 and h2 are in 2fo and if the point p 
in Y is a pole of neither then 

(hlhl)(p) = hl(p)h2(p) 
and 

(a1hz + a2h2) (p) = aikh(p) + a2h2(p) 

for all scalars a, and a2. 
Proof of Lemma 11. Lemma 10 establishes a local coordinate system at 

each point of A. Since the functions in W separate points on A and are analytic 
in each such local coordinate system, we see that overlapping coordinate 
systems are analytically related. Thus A can uniquely be given the structure 
of a Riemann surface on which the functions in 2t are analytic. If h1C-o and 
pCA is not a pole of h, then there exists g in 2{ with g(p) = 1 and ghl=f C2. 
Thus g(q)h(q) =f(q) for all q near p, so that h is analytic at p. If on the other 
hand p is a pole of h of order n, let h1 have a simple pole p. Such an hi exists 
by Lemmas 2 and 4. Thus pC-A. There exists g in 2 with g(p) = 0 andfi(p) 0, 
where fi = ghl. Since by Lemma 10 the function hi-as a meromorphic func- 
tion on A-has a simple pole at p, we see that g has a simple zero at p. Since 
the element gnh of 2fo is analytic at p, we see that as a meromorphic function 
on A, h has a pole at p of order at most n. On the other hand, there exists 
g1, - * * , gn in 21 with gi(p) =0 and gi . . . gnh=f 21o, f(p) #0. This shows 
that as a meromorphic function on A, h has a pole at p of order at least n. Thus, 
as a meromorphic function on A, the order of the pole of h at p is exactly n. 
It follows that the poles of h and their orders are the same whether h is con- 
sidered to be a meromorphic function on A or as a function rational over 2. We 
have incidentally constructed a function, g above, with a zero of order 1 at 
any point p in A. The fact that A is open in Y follows from Lemma 10. 

We now prove the representation (*) for an arbitrary h in 21o. To this 
end, notice that it is sufficient to consider the case in which h has only one 
pole, since by Lemma 4 an arbitrary h can be written as a linear combination 
of such h. We assume therefore that h has the single pole p of multiplicity k, 
and that hi is any function in 21 with a simple pole at p. The representation 
(*) which we wish to obtain now reduces to 

k 

**) h = E ~~~~~aj(hi)i + f, 

with f C2. Since h and h1 are meromorphic on A with poles of orders k and 1 
respectively at p, we can find constants ai, , aj such that the function 

k 

h - S aj(hl)' 
j=i 

is regular at p, where h and hi are considered as meromorphic functions on A. 
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If we let g be the function Et-I aj(hl)i in C(X), it follows from Lemma 3 that 
there exist fi and f2 in A with g =flh +f2. For all j it is clear that (h1) is in 2fo 
with a pole of order j at p, and that (hi)i(q) = (hi(q))i for all q in Y- {p}. If 
d in f has a simple zero at p and a = Ok we see that ahj E2f for j _ k, (ah{) (p) = 0 
forj <k, (ahi)k(p) $0. Since ak0, it follows that agE W and (ag)(p) $0. For 
all q near p we have (ah) (q) = a(q)h(q) and 

(alh')(q) = a(q)((hl`)(q) = a(q)(hi(q))/. 

Thus 

(ah)(q) -(ag)(q) a(q) [h(q) - Z aj(hlJ(q))i]- 

Since the function 
k 

h- ajh', 
j=l 

where h and h1 are considered as meromorphic functions on A, is regular at p, 
it follows that ah - ag has a zero of order at least k at p. Since 

ag =flah + f2a 

it follows that 

(ag) (1 -ffi) ag -flag 

-ag -flah + fi(ah - ag) = f2a + fi(ah - ag) 

has a zero of order at least k at p. But (ag) (p) $0 so that 1-fr therefore has 
a zero of order at least k at p. Therefore (1 -f1)h1 is in 2{ and has a zero of 
order at least k - 1 at p. Therefore (1 -fi)h' is in 21 and has a zero of order at 
least k -2 at W. Continuing this argument we see finally that (1 -f1)h' is in 
W. Since by Lemma 3 h has the form 

= Yl(hi + 72 

with Py' and 72 in 2{, it follows that (1 -fi)hE 21. Therefore 

g =flh+f2 = h - (1 -ffl)h +f2 = h-f, 

where fe21. But this is just (**). 
It remains to show that 21 is an algebra. Let f and g be in 21o. Let the 

points P,, * , Pn in A include the poles of f and g, and let hi, 1 _i <n, be in 
Wo and have a simple pole at pi. Thus both f and g have representations of the 
form (*). It follows thatf+g has a representation of the form (*). It therefore 
suffices to prove that the element h of C(X) defined by (*) is in 21o, for arbi- 
trary constants aij and an arbitrary f in 21. We may assume that aiki 0 for 
each i. For each i, choose a1 in 21 with a simple zero at pi and with ai(pj) $0 
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for i$j. Set ,Bi = (ai)*i and fl = 3, , * * n. Thus Oi(hi)iCE2 for j _ks. Now 
(#(hi)i) (pi) is 0 if j < ki and not zero if j=ki. Also (f(hm) J) (Pi) = 0 if j _ km and 
m$i. It follows that f3h is in 2f and (j3h)(pi) 0 for all i. Thus h is rational 
over 2f with poles pi, - *, pn having respective multiplicities ki, , k,,. It 
follows that 2[o is closed under addition. 

To see that 2fo is closed under multiplication, it is sufficient to consider 
elements f and g in 2fo each of which has at most one pole, since by Lemma 4 
any element in 2f is a linear combination of such elements, and since we have 
already seen 2Lo to be closed under addition. First let f have a pole of multi- 
plicity n at the point p, and let g have a pole of multiplicity m at the same 
point p, where m>0, n>0. We show that in this case fg has a pole of multi- 
plicity n +m at p. It is clear that h = g1 * * gn+mfgEi(o whenever gi(p) = 0 for 
1 < i < n+m, since we can write 

h = g * - * gnf gn+l . gn+mg. 

It is also clear that we can choose the gi to give h(p) $0, since we can choose 
them to give 

(g 1 gnf) (p) $ 0, (gn+i . . gn+mg)(p) $ 0. 

This shows that fgC 1. We now consider the case for fCS!L, g has a pole of 
multiplicity m>0 at the point q. By the decomposition (**), it is sufficient 
to consider functions g of the form (h)i, where h has a simple pole at q. If r 
is the order of the zero of f at q, it is clear from successive multiplications by 
h that hif is in 2 for i_r and has a zero of order r-i at q. If j_r, this shows 
that fgE2I. If j>r, we see that a =hrf is in 2f and does not vanish at q, and 
that fg = ahi-r. From this it is clear that fg is in 2l[o with a pole of order j - r 
at q. 

There remains the case in which f has a pole of order n > 0 at p and g has 
a pole of order m> 0 at q, with p $ q. Let hi with h1(q) $0 have a simple pole 
at p and h2 with h2(p) $0 have a simple pole at q. By the representation (**), 
it is sufficient to assume that either f= (hi)i for j>0 or fS2{, and g= (h22)k 
for k>0 or gEzf. Since we have already settled the cases fG2t or g f, we 
assume f = (hi) i and g = (h2)k. 

It is then clear that 

a =fl *.. fj gl ... gkfg 

whenever fiE?, fi(p) = 0, giCGf, gi(q) = 0. Also, if we choose each fi to have 
a simple zero at p and not to vanish at q, and each gi to have a simple zero at 
q and not to vanish at p, we see that a(p) $0, a(q) $0. Thusfg is in Wo. This 
completes the proof that 2[0 is an algebra. 

Now consider h1 and h2 in 210 and p in Y which is a pole of neither hi nor 
h2. If g in !I vanishes to sufficiently large order at the poles of hi and h2 then 
ghf1eGf, gh2E2G1, and ghfh2GW. Choose such a g with g(p)$0. We then have 
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g(p)(hlh2)(p) = (ghl)(p) = (hl)(p)h2(p) = g(p)h1(p)h2(p), 

so that (h1h2) (P)=h1(p)h2(p). The proof that (hi +h2) (P) = hi(p) +h2(p) is sim- 
ilar. 

LEMMA 12. Let 21 be a uniform algebra with spectrum Y whose analytic part 
is A. Let U be an open subset of A. Let q be a bounded linear functional on 
C(Y- U) which vanishes on W. Then there exists a unique analytic differential 
dwO on U such that 

[*] +(h) = (2wi)-l hd0, 

if h is any rational function over 21 whose poles all lie in U, if C is the union of 
a finite set of disjoint simple, closed rectifiable curves lying in U, and if C bounds 
a relatively compact open set VC U which contains the poles of h. 

Proof. Let p be any point in U and choose h in 21o with a simple pole at p. 
Thus h-' is analytic at p, so that d(h-1), considered at p, is in the space of 
differentials at p (see Chevalley [2] for this notion). We define the form dwo, 
to have the value q5(h)d(h-1) at p. To see that this does not depend on the 
choice of h, consider a second function g in 21o with a simple pole at p. By 
Lemma 11, there exists a constant X such that g-XhC21. Therefore O(g) 
=X?>(h). Viewing g and h as meromorphic functions on A we see that g-Xh 
is regular at p. Since g-1 and h-' are regular at p and vanish there we see that 

g 1hl(g - Xh) = h-' - Xg-1 

has a zero of order at least 2 at p. Therefore we have d(h-1) =Xd(g-1) at p. 
We therefore have 

0(g)d(g-1) = 4(h)d(h-') 

at p, so that dcoo is uniquely defined. 
To see that dwO is an analytic differential, notice that the function u(h, z) 

of Definition 9 has a simple pole at Xh(z) for each z in Dh. If we consider h, 
which is defined on Y- { p }, to be an element of C( Y- U) then the mapping 

z -> u(h, z) = h( -zh)-1 

is an analytic mapping from Do to C(Y- U), where 

h {z: I zl <4r 

with r chosen so small that I zh(p) I < 1 for all z in Do and all p in Y- U. Thus 

z (au(h, z)) 

is an analytic function on Do, so that 

q 
r, -+ [( , 'Y () 
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is an analytic function on Eh, where E?=Xh(D') and Yh denotes the mapping 
of Eh onto Dh which is inverse to Xh. If h and u(h, z) are considered as mero- 
morphic functions on A, it follows from Lemma 10 that 

u(h, z)(1- zh) = h. 

Therefore 

[u(h, z)]-' h-- z 

so that 

d[u(h, z)]-l = dh-1. 

Thus we see that the differential dco, is given on E? by 

[dw,O]q = 4)[(u(h, Th(q))] [d[u(h, 'Yh(q))]-']q 

= 4[u(h, 'Yh(q))]dh-'(q), 

and is therefore an analytic differential. 
To prove the formula [*], we avail ourselves of the representation (*) of 

Lemma 11. Thus in proving [*] it suffices to consider functions hn, where h 
has a simple pole in V, and functionsf in 91. Now iffEz 2, both sides of [*] van- 
ish, the left side by the hypothesis on 4 and the right side because fdwo. is 
analytic on VUC. 

Thus we consider h with a simple pole at a point p in V. Since hnd&,,, is 
analytic on VUC except at p, we may replace the contour C by any simple 
contour about p. Thus in proving [*] we may choose C to be a simple closed 
rectifiable curve lying in E? and surrounding the point p. Using the represen- 
tation obtained above for dw,c in E?, we now compute, letting B be the curve 
in D? corresponding to the curve C in E?, 

fhndwo = f hn(q)O(u[h, Yh(q)])dh-'(q) 

fBz-n4(u(h, z))dz = [B Z-nU(h, z)dz] 

= 4! r I Z-nh(l - zh)'ldz] = [ Zknhk+dz 

= 0[2rihn] = 2ri4)(hn). 

This proves [*] and thereby completes the proof of Lemma 12, since the 
fact that dw,0 is unique clearly follows from [*]. 

LEMMA 13. Let 2 be a uniform algebra with spectrum Y whose analytic part 
is A and whose Silov boundary is X. Let U be an open set in A, and let B be the 
boundary of U. Let El consist of all rationalfunctions over 21 whose poles lie in 
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U, and let e be the closure in C( Y- U) of Qi. Then Y- U is the spectrum of e3 
and the gilov boundary of e3 is a subset of XUB. 

Proof. Consider any element X in the spectrum of Z. The restriction of X 
to f is some point p in Y, so that 

X(f) = f(P) 

for all f in 21. Assume that pE U. Choose h in Wo with a simple pole at p and 
f in 2f with f(p)-O, (fh) (p) 0. Then 

0 # (fh)(p) = X (fh) = X (f)X(h) = O*X(h) = 0. 

This contradiction proves that pC Y- U. For any h in !1 choose g in 2 with 
g(p) FrO and gh E 2f. Then 

g(p)X(h) = X(g)X(h) = X(gh) = (gh)(p) = g(p)h(p), 

so that X(h) =h(p). Since this is true for all h in Z, it is true for all h in S3. 
Thus Y- U is the spectrum of Z. 

We now show that the Silov boundary of Q3 is a subset of XUB. Consider 
a point p in Y- U- (XUB). Since X is the Silov boundary of 2 there exists 
a bounded linear functional 4o on C(X) such that 

4o(f) = f(P) 

for all f in 2W. Define the bounded linear functional 4o on C(XU { p }) by 

+(f) = o(f) - f(P). 

Thus +(f) = 0 for all f in 21. Let V be any relatively compact subset of U 
whose boundary C consists of a finite number of disjoint rectifiable simple 
closed curves. Let 3v consist of all functions in Z, whose poles lie in V. From 
[*] of Lemma 12 it follows that 

+(h) = (2iri)-fhdco;, 

for all h in Zv. If we define the bounded linear functional 01 on C(C) by 

1(f) -(2iri)- ffdwo, 

it follows that 02=40o-01 is a bounded linear functional on C(XUC) and 
that /2(h) = h(p) for all h in Ov. Thus, for each positive integer n, 

| h(p) In = I p2(hn) I < 11I211 [sup {I h(q) I : q E X U C} ]n 
for all h in 5v. By taking roots and letting n-* oo it follows that 

I h(p) I < sup{ I h(q) |: q E X U C}. 
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Now an arbitrary element h of Q, will be in ?8v if V is a large enough subset 
of U, and the inequality just derived will obtain. Letting V converge to U 
it follows that 

I h(p)I sup |h(q)| :q XUJB} 

for all h in 2%. This inequality therefore holds for all h in 3, so that XUB con- 
tains the Silov boundary of Q3. 

LEMMA 14. Let 2I be a uniform algebra with spectrum Y whose analytic part 
is A. Let X be the Silov boundary of 2f. Let g be a rational function over 2f such 
that g vanishes at only a finite set pi, * *, pn, of points in Y, all of which lie in 
A. Then g-I is a rational function over W. 

Proof. Let k1, . * * , kn be the orders to which g vanishes at pi, P , 

respectively. Let U be an open set in A containing the poles and zeros of g 
such that the boundary C of U consists of a finite set of disjoint rectifiable 
Jordan arcs lying in A. Let 31 consist of all rational functions over W whose 
poles lie in U. Let e3 be the closure of 31 in C(Y- U). By Lemma 13, Y- U 
is the spectrum of 93. 

Now since gEQ, and g does not vanish on Y- U, it follows that g-'C3. 
Let q be any bounded linear functional on C(X) which vanishes on Wf. 

By Lemma 12, we have 

+(h) = (21ri)-l hdwo 

for all h in Ei, and therefore for all h in 23. Now let f be any function in W 
which vanishes at pi, * , pnP to orders at least ki, - * * , kn. We shall show 
that fg-1C?. This will help prove that g-' is rational over W with poles at 
pit . . . , pn of multiplicities k1, * * *, kn. To see that fg-'E21, notice that 
fg-'CZ, so that 

4O(fg-) = (2ri)-1 fg- dwo = 0 

since fg-1 is regular on A. Since 4 is an arbitrary bounded linear function on 
C(X) which annihilates 21, it follows that fg-I C 2. To complete the proof 
that g-1 is rational over W, choose giCz 2, 1 i<n, such that gi has a simple 
zero at pi and gi(pj) O0 for i j. Write f (g1)ki * . . (gn)kn. By the above we 
have fg-1C 2. Since (fg-')g=f and g have zeros of the same order at 
Pl ... p,n, it follows that (fg-1)(pi)XO for 1<i<n. This completes the 
proof that g-' is rational over 21. 

3. Conditions for analyticity of the spectrum. In this section we derive 
conditions which imply that certain points in the spectrum of a uniform 
algebra belong to the analytic part of the spectrum. Somewhat more exact 
conditions could be given, by refining the techniques employed here, but the 
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added generality which would be obtained does not seem to justify the at- 
tendant complication of the proofs. 

LEMMA 15. Let ?t be a uniform algebra with gilov boundary X and spectrum 
Y with analytic part A. Let g be a function in W which vanishes at a finite set 
Pi, ' ' * , pn of points in Y, all of which lie in A and are simple zeros of g. Let 
A = inf {f g(x) f: xCX }. Let f in 2t have the properties f(pi) = 1 and f(pi) = 0 for 
2? i _ n. Then there exists a neighborhood F1 of pi in A which g maps homeo- 
morphically onto { z: I z f < A (32||f|| 3)-1 } . 

Proof. By Lemmas l1 and 14, we see that h =f'g-1 is rational over 2t with 
a simple pole at pi. Let D be the set 

{z: I zf I (4jIfff)-i[h]J. 
Since |ff11 _ |f(pi) f I, we see that 

DCD = {z: Izf I- [h]}, 

so that E =XA(D) is a subset of Eh. By Lemma 9, h-i Q Xh iS the identity map 
on DCDh. Since jig-'II <A-', we have Ifhff ?A-Iffff 12 so that [h]=(2fhff)-1 
> A (2ffff 2)1. Now f(-q) - if < 21ffff for q in Eh, and f(pi) -1 = 0. Since h-l 

maps Eh homeomorphically onto Dh, it follows by Schwarz's lemma that 

f f(q) - I I 21 fff I h-'(q) I [h]-i 

for all q in Eh. In particular, for q in E this gives 

I f(q) - I < 2|flf |(4|fff|)-l[h] [h]- = 1/2, 

so that If(q) I 2 1/2. Thus for q in the boundary of E we have 

I g(q) I = I f(q) 121 h(q) f-' > 1/4 (4fffjf)-[h] 
_ 1/4(4jjfff)-iA(2f ffff2)-1 = A (3211fIf 3)-1. 

Assume for the moment that pi is the only point in E at which g vanishes. 
Then this last inequality when combined with Rouche's theorem tells us 
that each value of z with I zf <A (32fff I3)-' is assumed by g exactly once on 
the set E. If we set 

F,= {q: q E E, f g(q) f < A(321fflI) }, 

the set F1 has the required properties. 
It only remains to see that pi is the only point in E at which g vanishes, 

i.e., that none of the points pi, 2 i<n, is in E. If such a pi were in E, we 
would have h(p) =f(pi) (fg-) (pi)= 0, contradicting the fact that h does not 
vanish on Eh. This completes the proof of Lemma 15. 

DEFINITION 12. Let 2f be a uniform algebra with Silov boundary X and 
with spectrum Y whose analytic part is A. Let g be a function in 2t. A point 
z in -g(X) will be called g-regular of multiplicity n if g-(Iz}) consists of n 
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points pi, , pn of Y, all of which lie in A and at each of which g-z has a 
simple zero. A component U of -g(X) will be called g-regular of multiplicity 
n if all points in U with the exception of an isolated set in U are g-regular of 
multiplicity n. 

DEFINITION 13. A point p in the spectrum Y of a uniform algebra 21 will 
be called one-dimensional of multiplicity n if there exists a connected neighbor- 
hood U of p such that 

(i) U- { p } consists of n components Ui, , Un each of which is a 
subset of A. 

(ii) For 1? i _ n there exists a homeomorphism at of UikJ { p } onto 
{z: IzI <1} which is analytic on Ui. 

LEMMA 16. Let V be a bounded open set in the complex plane with boundary 
B. Let N be a relatively open subset of B and A an analytic function in V such 
that 

lim A(z) = 0 
z-t 

for each t in N. Then N is an isolated set (the relative topology of N is discrete) 

Proof. Let to be any point in N and let L be some neighborhood 

L= {z: Iz-tol <4} 

of to with the property that LOB CN. Define the function A0 on L by Ao(z) 
=A(z) if zC V and AO(z) =0 otherwise. Thus A0 is continuous on L and ana- 
lytic at those points where it does not vanish. By a theorem of Rado (see 
[3]), A0 is analytic on L. Since A0 vanishes on LnN, the point to is isolated 
in LC'N and therefore isolated in N. This completes the proof. 

LEMMA 17. If 2 is a uniform algebra waith spectrum Y and Silov boundary 
X and if g is a function in 21, then any component U of - g(X) which contains 
a g-regular point zo of multiplicity n is g-regular of multiplicity n. If z is any 
point in U then there are at most n points p in Y with g(p) = z, each of which is 
one-dimensional. If there are exactly n such p then they all lie in A and are simple 
zeros of g-z. 

Proof. Letf be any function in a with IIf| I 1/2 which has distinct values 
at the points p in A with g(p) = zo. Let Uo consist of all points in U which are 
g-regular of multiplicity n. For each z in Uo let p', * * , p' be the points in 
A where g takes the value z, and define the function A on Uo by 

'A (Z) = JI (f(pZ) - (pz)) 
1 i<j-n 

Let V be the set of all z in Uo with A(z) #0, so that zoC V. For each z in UO 
define the functions fz' in 2, 1 <i_ n, by 
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42(p) = 11(1(p) - f(Pz)) 
isi 

Since IfI I 1/2 we have I A(z) I ?1, I flfI |_1. Also, 
n 

IA(z)I =1 IAi(z)I, 
i=1 

where 

Ai(Z) = fz(pz). 

We therefore see that IAi(z)I >-IA(z)I for 1?i_n and z in UO. For z in 
V we define 

gz= (Ai(Z))-fSZ. 

It follows that gze'f, that Ig'II|<j Ai(z)I-1<_A(z)J-1, that gz(pP))=1, and 
that g'(p') = 0 for jXi. It follows from Lemma 15 that there exists a neighbor- 
hood of pi in A which g - z maps homeomorphically onto 

{t: I tI < Az(32flgl3 )1}, 

where Az is the distance of z to g(X). Thus g maps some neighborhood Fz of 
pt homeomorphically onto 

Ds = { t: I -zj < K.} 

where 

Kz= 1/32AI 'A(z) 3. 

For i j there thus exists a unique analytic homeomorphisin a of Fz onto F4, 
which identifies points at which g has equal values. Now if Fi and Fz had a 
common point q, it would follow that a(q) = q. Thus - = FznCFz would be non- 
void and a is the identity map on U. Clearly Q is open in Fz because both 
Fz and Fzj are open. Since Q is the fixed set of a on Fz it is also clear that Q is 
closed in Fz. Since Ft is connected it follows that F.'= 02 if Q is nonvoid. From 
this it would follow that v(p) =p for all p in Fz, so that p:=o-(p') = p, a con- 
tradiction. Therefore the sets Fz, , Fz' are disjoint for each z in V. 

If zC V and tDz , it follows that g -t has exactly one simple zero in each 
of the sets Fi, which we denote by p', , p'. If we can show that g-t 
vanishes at no other point of Y, it will follow that tE Uo. To see this, let H 
be the set of all t in Dz such that g(p)=t for some p in Y-Fz- F. 

Clearly H is a closed subset of Dz and z EEH. To see that H is open in Dz or 
that Dz -H is closed in DA, let t in Dz be in the closure of Dz - H, so that there 
exists u in DA-H arbitrarily near to t. By Lemma 14, (g-u)-' is in Wo, so 
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that (h-h(pI4)) (h-h(p*))(g-u)-' is in 21, for each h in 21. Letting u 
converge to t, we see that 

(h - h (pt)) (h - h(p)) (g-t) = ho 
is in 21. Thus for any p in Y with g(p) =t we have 

(h(p) - h(pt )) . . . (h(p) - h(p")) = (g(p) -t)ho(p) = 0. 

Since h was any element in 21, it follows that p is one of the points p4. Thus 
tGD. -H. Since H is both open and closed, and since z gH, we see that H is 
void. Therefore DZ C Uo. Since A(z) $0 and the p1 depend continuously on 
t for t in Dz, we see that A(t) $0 for all t sufficiently near z. Thus V is an open 
subset of U. 

Now A is an analytic function on V, because for 1? i ? n the mapping 
t--p+ is an analytic function from D. to A. We see by the above formula for 
K, that every boundary point of V is either a point of g(X) or a point at 
which A converges to 0. Let B be the boundary of V. It follows from Lemma 
16 that N=B -g(X) is an isolated set. Therefore U- V is an isolated subset 
of U. Therefore U is a g-regular component of -g(X) of multiplicity n. If 
pC Y and g(p) C V, then pEA so that p is a one-dimensional point of Y of 
multiplicity 1. If, on the other hand, g(p) C U- V, let W be a neighborhood 
of z = g(p) such that W-I z } C V. Thus g-(W-{ z }) (where g- is the relation 
inverse to g) is an n-sheeted Riemann surface S over W- { z } and the func- 
tions in 2 are all analytic and bounded on S. Thus S can be completed to a 
Riemann surface S0 over W, with possible branch points at z, on which the 
functions in 21 can be extended to be analytic. Thus So has a natural mapping 
into Y, and it is clear that every point in the image 7To of So -S in Y is one- 
dimensional. It is also clear that there are at most n such points. It remains 
to prove that pC To. To see this, we use the same type of proof that was used 
above to show that g - t vanishes only at p1, , P'. Thus we consider 
arbitrary functions ht, h * , in 21, so that 

(hf - hf(pu)) (... (hn- kn(pu))(g -) 

is in 21 for each u in W- {z} . Letting u converge to z we see that 

(hf - hf(pl)) * (hn - hn(pn))(g - Z)-1 = ho 

is in 2, where pl, * * *, pn are certain points (not necessarily distinct) in To 
with g(pi) =z. We therefore have 

(fl(p) - hI(p)) ... (hn(p) - hn(pn)) = (g(p) - z)ho(p) = 0. 

Since hi is any element of 2, p is one of the points pi, as was to be proved. 
It remains to show that (g-z)-1 is rational over 21 with poles pl, . . *, pn 

whenever pl, * , pn are distinct points in Y with g(pi) =zC U, 1< in. 
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Since we have just seen that the function ho is in !t for all choices of the h, 
this will follow from the following lemma. 

LEMMA 18. Let g be a function in a uniform algebra 2 and let pi, p, 
be points in the spectrum Y of 2[ such that ho = g-1h, * * * h. is in 2f whenever 
the functions h, are in 2t and hi(p,) = g(pi) = 0 for 1 vi ? n. Then g-1 is rational 
over 21 with poles pi, * * pn. 

Proof. Let 
h= tg + fh, 

wherefi,E2,f (p,) =0,fi(pj) = 1 for j=i and where t will be chosen. It is clear 
that ho(pi) is a polynomial Fi of degree En in t and that the coefficient of t 
in F, is 1. Thus t may be chosen so that F,(t) $0 for all i, and thus ho(p,) $0 
for all i. It follows from Definition 4 that g-1 is rational over 21 with poles 
Pl, * * * , pn. 

We next investigate the nature of points p in Y-X with g(p)Eg(X). 

LEMMA 19. Let 2t be a uniform algebra with gilov boundary X and spectrum 
Y. Let g be a function in 2 and U be a g-regular component of - g(X) of multi- 
plicity n. Let the point zo in g(X) be the vertex of a nondegenerate triangle whose 
interior lies in U. Let there exist only a finite number of points q in X with 
g(q) =zo. Then there exist at most n points Po in Y-X with g(po) =zo, and each 
of these points is a one-dimensional point of Y-X. 

Proof. It is no loss of generality to assume that zo = 0 and that the segment 
(0, 1] of the real axis lies interior to the triangle in question. There therefore 
exists a constant K> 0 such that 

dist(x, g(X)) > Kx 

for O<x<1. 
Let po be any point in Y- X such that g(po) = zo = 0. The idea of the proof 

will be to perturb g to a function go such that go(po) will lie in a go-regular 
component of -go(X), thereby showing that po is one-dimensional. The per- 
turbing function h will be any function in 2S such that h(po) =1 and h(q) = 0 
whenever qEX and g(q) = 0. Such a function h exists because the number 
of such points q is finite. 

Since h vanishes on the set g-(O) CX, there exists x in (0, 11 such that 
Ih(P)I <K whenever pEX and {g(p)j <(l+K/2)x. Write go=g+Mh, 
where M=minIx/2, (211 h1)-'Kx}. Let p be any point in Y with go(p)=X. 
Then 

Ig(p) - X I < MI h(x) j ; MIIhII < - Kx < dist(x, g(X)). 
2 

It follows that g(p) E U, so that p is a one-dimensional point, and some 
neighborhood of p with p deleted lies in A. It also follows that there are only 
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a finite number of such p, since an accumulation point of (go)-(x) would be 
a point in (go)-(x) which could not be one-dimensional. Thus (go)-(x) is 
finite and consists of points each of which has a deleted neighborhood lying 
in A. It follows that y is a go-regular point of -go(X) for all y sufficiently near 
to x. Choose such a y with M<y <x, and let V be the component of -go(X) 
which contains y. By Lemma 17, V is go-regular. We shall show that the 
interval [M, x] belongs to V. It will follow that po is one-dimensional, since 
go(po) g(po) + Mh(po) = 0 + M = ME V and V is go-regular. 

To see that [M, x] C V, it is clearly enough to show z Ego(X) for z in 
[M, x]. Therefore consider z with M_z<x, and let p be any point in X. To 
show that go(p)5 z, there are two cases to consider. First consider the case 
|g(p) I > (1 +K/2)x. Then 

[ g(t { |g(t [-Ml ll > (1 +-K) x --Kx-=x > z 

so that go(p) Hz. Next consider the case I g(p) I < (1 +K/2)x, so that I h(p) I 
<K. Then 

dist(go(p), g(X)) ? go(p) - g(p) | = MI h(p) I < MK ? zK 
< dist (z, g(X)), 

so that go(p) $z in this case also. 
Thus we have shown that every po in Y-X with g(po) =0 is a one- 

dimensional point of Y which has a deleted neighborhood consisting of points 
in A. Thus for each neighborhood N of po we see that g(N) is a neighborhood 
of 0. It follows that there are at most n such points Po, since otherwise all 
points t in the complex plane which are sufficiently near to 0 would be the 
images under g of more than n points in Y, and we know that this is not the 
case for t in U. This completes the proof of Lemma 19. 

It remains to give conditions which make a component of -g(X) g- 
regular. In doing this we essentially follow Wermer [1], although the details 
are different. The idea is to start from the unbounded component of -g(X), 
which is obviously g-regular, and to proceed step by step, showing that a 
component of -g(X) which is close enough to a g-regular component is it- 
self g-regular. The crucial lemma is the following, which is derived following 
Wermer. 

LEMMA 20. Let 2l be a uniform algebra with Silov boundary X and spectrum 
Y. Let g be a function in 2 and U and V components of -g(X), such that there 
exists z in V with (g-z)-IC E for some z in V (so that V is g-regular of multi- 
plicity 0). Let there exist an open Jordan arc J1 which is an open subset of g(X) 
such that J=g-(Jo)CX is mapped homeomorphically by g onto J1 and such 
that U and V are the components of -g(X) which border on J1. Then U is g- 
regular of multiplicity 0 or 1. 
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Proof. By replacing the function g in 21 by the function (g-z)-' in 2 we 
reduce to the case in which V is the unbounded component of -g(X). After 
replacing the arc Ji by a slightly smaller arc-if necessary-we can find a 
simple closed curve r in the complex plane with interior 1 such that g(J) 
= J1 cr and g(X) Crv4. Let 4 be a conformal map of 1 onto { w: I wI < 1 }, 
so that 45 can be extended to a homeomorphism of rUP1 onto 

D = {w: I wl < 11. 

By a theorem of Mergelyan [6] we see that 4 is a uniform limit on ruYb of 
polynomials, so that go = o g is in W. 

Let zo be any point in U. Write wo =(zo) and Uo= (U). Let Vt be the 
inverse mapping to 4, so that g=,6 o go. Now if go-wo vanishes at a unique 
point po in Y then clearly g-zo vanishes at the unique point po in Y. If po 
lies in A and go-wo vanishes to multiplicity 1 at po then, since g=i/' o go, the 
function g-zo also vanishes to multiplicity 1 at Po. It follows that to show zo 
is g-regular of multiplicity 1 it is sufficient to show that wo is go-regular of 
multiplicity 1. The same statement holds of multiplicity 0. Thus to show that 
zO is g-regular of multiplicity 0 or 1 (and thereby prove the lemma) it is suffi- 
cient to show that wo is go-regular of multiplicity 0 or 1. There are two cases 
to consider, depending on whether (go-wo)-1 is in 2W. If it is then wo is go- 
regular of multiplicity 0. Thus we have left the case (go-wo)-'O1. Under 
this assumption there exists a finite, complex-valued Baire measure , on X 
with 

f (go - wo)-Yd,t $ 0 

and 

fd = 0 

for all f in 91. Now 

0 5 f (go - wo)-'dy-C (w -wo)ldp(w) 

where v=go(A). If we let Jo be the arc go(J) =P(J1) of the boundary of D, and 
Xo=go(X), we see that Jo is open in XO and that go maps J=g- (Jo) homeo- 
morphically onto Jo. Also Uo and the unbounded component of -Xo are 
the components of -Xo which adjoin Jo. Clearly v is a measure on Xo. 

For each f in 2 the measure f4 on X defined by 

(f,-)(S) = f afdy 
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for all Baire sets S will be orthogonal to 2f. In particular fl is orthogonal to 
all polynomials in go so that the measure 

Vf go(fg) 

on Xo is orthogonal to all polynomials. Clearly P, = v. For each f in ?t define 
the analytic function f on Uo by 

f(w) (t-w)-ldvf(t) = f (go - w)-'fdg. 

We have 

i(wo) (w - wo)-ldv(w) z 0, 

so that i does not vanish identically on Uo. Thus the set T of zeros of i is 
an isolated subset of Uo. Since vf is orthogonal to all polynomials, 

(t - w)-ldvf(t) = 0 

for all w in -D. Since Jo separates -D from Uo, it follows (see for example 
Wermer [7, p. 49]) that f has nontangential boundary values f(to) at almost 
all points to in Jo, given by 

f(to) = 27ri dvf(t) L dt i t=tol 

where dvf(t)/dt is the Radon-Nikodym derivative of the measure vf on Jo with 
respect to the measure dt on Jo. If we let h be the map of Jo onto J which is 
inverse to go then the restriction of Vf to Jo has the representation 

Vf= go(fi4) = (fo h)go(,u) = (fo h) v 

for all f in W. It follows that 

f(tA) = (fo h) *10) 

for almost all to in Jo. It follows that for arbitrary fi and f2 in 2t the function 
a =f2 - Ifif2] f on Uo has nontangential boundary values which vanish 
almost everywhere on Jo. Therefore a vanishes identically on Uo. If T denotes 
the isolated subset of Uo on which 1 vanishes, for each f in W define the func- 
tion f on Uo-T by 

} = f/I. 

Thus 7 is analytic in Uo - T and 71f2= fif2]- for all fi and f2 in 2f. For each 
w in Uo - T it follows that the map f->J(w) is a homomorphism of 5f into the 
complex numbers and therefore defines a point in the spectrum Y of W2. Thus 
we see that I }(w) I I lfl for all w in Uo - T. It follows that I can be extended 
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to all of Uo and has nontangential boundary values f o h at almost all points 
of Jo. 

To show that wo is go-regular of multiplicity 1, let p be the point in Y 
defined by 

f(P) = f(wo) 

for all f in 9S. It is enough to show that (go - wo)-' is rational over W with a 
simple pole at p. To do this, considerf in 2I with f(p) =7(wo) = 0. Then 

f f(go - wo)-1dI = f (gO -wo)-ld(fA) 

= f (w - wo)-ldvf(w) = f(wo) f(wo). f(wo) 

= f(p)l(wo) = 0. 

Now , can be any measure on X which is orthogonal to 2t and which is not 
orthogonal to (g - z)-. Since such a A exists, every measure a on X which is 
orthogonal to 2f can be written as the difference of two such ,. Thus 

I f(go - wo)-ldo- = 0 

for all f in aI with f(p) =0 and all such o. The function f, =f(go - wo)'1 is 
therefore in 21. If f= (go - wo) then fi(p) = 1 - 0. Thus (go - wo)-1 is rational 
over 2X with a simple pole at p. It follows that go -wo vanishes on Y at the 
unique point p in A which is a simple zero of go-wo. Thus wo is go-regular of 
multiplicity 1, as was to be proved. 

LEMMA 21. Let W be a uniform algebra with spectrum Y and gilov boundary 
X. Let A be the analytic part of Y. Let g be a function in 2f and U and V be 
components of -g(X). Let Jo be a smooth simple open Jordan arc which is an 
open subset of g(X) such that the set J=g-(Jo)CX is mapped homeomorphically 
by g onto JO. Let U and V be the components of -g(X) which adjoin JO. Let V 
be g-regular of multiplicity n. Then U is g-regular of multiplicity n, n+1, or 
n-1. 

Proof. By the smoothness of JO, all points in Jo are vertices of nondegen- 
erate triangles whose interiors lie in V. Consider f in 2 and form the function 
Av on V defined at any g-regular point z of V by 

.1 2 A (z) = HI (fp:) 12fp" 
1g i<jhi n 

where p', * * , p' are the points in g-({ z }). The definition of A is completed 
by defining it to be 0 at other points of V, so that A is an analytic function on 
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V. If f is chosen to have distinct values at the points pl, , pn for some 
particular z then A will not vanish identically on V. Let f be so chosen. Then 
the set F of points z0 in Jo such that A(z) does not converge to 0 as z->z0 is 
dense in Jo. For each z0 in F there exist at least n distinct points q in Y with 
g(q) = zo. Now for any z0 in Jo there exists exactly one q in X with g(q) = 0 and 
by Lemma 19 there are at most n such q in Y-X. Thus there are at most 
n+1 distinct points q in Y with g(q) =zo, for all z0 in Jo. Let z0 be chosen to 
be a point in J0 for which the number k of such points q is a maximum. Thus 
k ? n + 1. On the other hand, k > n because for zo in F there exist n such points 
q. The rest of the proof of Lemma 21 divides into the consideration of two 
cases. Case 1 will be the case k = n + 1 and Case 2 the case k = n. 

We consider first Case 1. Since there is exactly 1 point q in X with g(q) 
=z0, there are exactly n points qi, * * *, qn in Y-X with g(qi) =z0. By Lemma 
19, each qi is a one-dimensional point of Y and therefore has a deleted neigh- 
borhood which lies in A. Thus if we replace z0 by a sufficiently near point of 
Jo we may asume that qiCA, 1 i<n, and that g-zo has a simple zero at 
each of the points qi. Thus there exist disjoint neighborhoods W1, * * - , W, in 
A of ql, *, qn respectively whose closures lie in A each of which g maps 
homeomorphically onto a neighborhood T of z0. We may choose T so that 
UN T and Vr, T are connected. Write 

W = W1U . . . U W" 

and B = bdry W. Let 0, be all rational functions over A( whose poles lie in 
W. Let e3 be the closure of 0, in the space C( Y- W). We see by Lemma 13 
that the Silov boundary Xo of e is a subset of XUB. Thus g(Xo) C(bdry T) 
Ug(X). It follows that there are unique components Uo and V0 of -g(Xo) 
with U0D TCN U and VoD TN- V. Since V is g-regular for 21 of multiplicity n, 
and since TCg(Wi) for each i, we see that g-(TOV)CWi, so that TG \VC 
-g(T- W). Since T- W is the spectrum of e it follows that Vo is g-regular 
of multiplicity 0 for the algebra 3. If Uo and Vo are the same component of 
-g(Xo) then U0 is g-regular for the algebra e of multiplicity 0. Otherwise 
(by Lemma 20) Uo is g-regular for the algebra e of multiplicity either 0 or 1. 
Thus in either case U0 is g-regular for the algebra Q3 of multiplicity 0 or 1. 
In case Uo is g-regular for Q of multiplicity 0 then for each z in Uo g-z does 
not vanish on Y- W so that z is g-regular for W of multiplicity n. Thus in 
this case U is g-regular of multiplicity n. In case Uo is g-regular of multiplicity 
1 for e3 let z be any point in Tn U and let po be the point in Y- W with 
g(po) =z. Thus g-z vanishes on Y at exactly the points Po, Pi, * , Pn, where 
Pi for 1 ? i < n is that point in Wi with g(pi) = z. To show that U is a g-regular 
component of multiplicity n + 1 for the algebra 21 it suffices to show that 
(g -z)-1 is rational over 2 with poles po, pi, - - *, pn. To this end consider f 
in 2 vanishing at po, * - *, p,. Since z is a g-regular point for e of multiplicity 
1 and f(po) = 0 we see that f(g -z)-1CO. Thus if 4 is a bounded linear func- 
tional on C(X) which vanishes on 21 we have 
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44f(g - 0 = ff(g - z)-ldcoo = 0 

since f(g - z)-1 is analytic in W and on the boundary B of W. Since this is 
true for all q5 we have f(g-z)-1'C . By Lemma 18 it follows that (g-z)-1 is 
rational over W with poles Po, * , pnP and therefore that U is g-regular for 
2f of multiplicity n+1. Thus we see that in Case 1, U is g-regular of multi- 
plicity n or n+1. 

It remains to consider Case 2, so that there are n - 1 points, say ql, * , qn1 
in Y-X with g(qi) =zo. Since by Lemma 19 each qi has a deleted neighbor- 
hood which lies in A, we may assume-by replacing zo by a nearby point of 
Jo if necessary-that each qi belongs to A and is a simple zero of g - zo. Choose 
disjoint neighborhoods W1, * * *, Wn,1 in A of ql, * * *, qn-, respectively 
which g maps homeomorphically onto a neighborhood T of zo such that the 
Wi are disjoint subsets of A and such that Tn U and TO V are connected. 
If T is chosen small enough then T = (TN U)U(Tfl V)'UJ(Tn Jo). Write 

Q = Wl U ... U Wn-1 U g-(T n V). 

We first show that Q CA. To do this it is sufficient to show that 

H = g-(Tfl V) - W1- * - - Wn-1 C A. 

Consider po in H, so that z=g(po) is in V. Thus there exist pi in W,, 
pn-1 in Wn-, with g(pi) =z. Thus Po, * - *, Pn-l are distinct points in g-({z }). 
Since z C V and V is g-regular of multiplicity n these points are all of g-( { z 
It follows from Lemma 17 that po CA. Therefore QCA. 

Now let Q01 be the set of all functions rational over W whose poles lie in 
Q and let e3 be the closure of Qh in the space C( Y-Q). Thus the Silov bound- 
ary X0 of 23 is a subset of XUbdry U. Since Un T and VO T are connected 
these sets are therefore contained respectively in components Uo and Vo of 
-g(Xo). The component Vo of -g(Xo) is g-regular of multiplicity 0 relative 
to the algebra e since g-z does not vanish on Y-Q whenever zC VIl)T. By 
Lemma 20, Uo is g-regular of multiplicity 0 or 1 for the algebra Q0. Now if 
Uo is g-regular for e3 of multiplicity 0 then g -z does not vanish on Y-Q for 
z in UOlTC Uo, so that for such z the zeros of g-z are in W1U .. U Wn_1. 
Therefore z is a g-regular point of -g(X) of multiplicity n - 1. Thus we need 
only consider the case in which Uo is g-regular for e3 of multiplicity 1. In this 
case for each z in TO UUC Uo there is exactly one point X(z) in Y- Q with 
g(X(z)) = z, and the map z-)X(z) is a homeomorphism of Tn U onto an open 
subset of A(e), where A (Q3) C Y- Q is the analytic set for the algebra 3. We 
now extend the function X from TN U to the entire set T= (TN U)UJ(Tn V) 
UJ(TnJo). For each z in TnJo let X(z) be the point in X with g(X(z)) =z, so 
that X is a homeomorphism of TnJo onto a subset of J. For each z in TO V 
let X(z) be that point in H with g(X(z)) =z. There exists one such point X(z) 
because otherwise g - z would vanish on Y only at the points pi, * * -, pn-l 
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in A, at which points g-z has simple zeros, contradicting the fact that V is 
g-regular of multiplicity n. On the other hand there is at most one such point 
X(z) in H, again because V is g-regular of multiplicity n. Thus X(z) is uniquely 
defined on Tn V. From Lemma 17 it follows that X(z) CA for all z in Tn V. 
Clearly X is an analytic homeomorphism of TN V onto an open subset of A. 
Thus we have defined a map X from T to Y. Since X is continuous on each 
of the sets TN U, TrN V and TnJo, to show that X is continuous on T it is 
only necessary to show that X is continuous at points of TCJo. If this were 
not so there would exist z in TO Jo and a sequence { zi } in T converging to z 
with X(zi) converging to a point q$4X(z) in Y. Since X(zj)CY- 1J- * 
-Wn1 we have qCY-W -- -Wn,1. Let ui, 1 i<n-1, be the point 
in Wi for which g(ui) =z. TIhus ul, * *, u,,-, q, X(z) are distinct points in Y 
mapping by g onto z. Since zCJo this contradicts the fact that k = n in Case 2. 
This contradiction shows that X is a continuous map of T into Y. Now for 
each f in I the function f o X is continuous on T and analytic on T -Jo. Since 
Jo is smooth, f o X is analytic on T. Thus f o X has no strong maximum inte- 
rior to Tso thatf has no strong maximum on the set X(T). Thus X(J0) CJis an 
open subset of X such that every f in 2f assumes its maximum on X-X(J0). 
This contradicts the fact that X is the Milov boundary of W. This contradic- 
tion shows that Uo can not be a g-regular component of -g(Xo) of multiplic- 
ity 1 for the algebra t3. This was the last remaining case so that the proof of 
Lemma 21 is complete. 

4. Proofs of Theorems 1 and 2. 
Proof of Theorem 1. Let U be any component of -g(X) and let w2 be any 

point of U. Let w1 be any point of the unbounded component of -g(X). Let 
,y be a Jordan arc which joins wl to w2 and fulfills conditions (d) of the state- 
ment of Theorem 1. If -g(X) has a finite numberj of components then clearly 
y can be chosen to intersect g(X) in at most j-1 points. Thus 'Y-g(X) con- 
sists of a finite number of components yl, - * *, 'yk which we order according 
to the direction along y from wl to w2. If -g(X) has a finite number j of 
components then k ?j. Now each yi belongs to some component Ui of -g(X). 
Clearly w1C U1 and w2C Uk, so that U1 is the unbounded component of 
-g(X) and Uk = U. We thereby see by applying Lemma 21 k-I times that 
U= Uk is a g-regular component of -g(X) of multiplicity at most k-1. By 
Lemma 19, each p in Y-X for which g(p) is the vertex of some nondegenerate 
triangle whose interior lies in U is a one-dimensional point of Y-X, and at 
most k-1 such points lie over a given point in g( Y). Thus Y-X is the union 
of A and the set T of one-dimensional points of Y-X which are not in A. 
Clearly T has no cluster point in Y-X and so is an isolated set. To each p 
in T choose a deleted neighborhood U of p in A such that U is a finitely- 
sheeted covering space by the map g of g(U) = {z: 0< I z-g(p)l <r}. Thus U 
is a finite Riemann surface over g(U). Therefore U can be completed to a 
finite Riemann surface V over g( U) U { g(p) }. Let pi, * - , pm be those points 
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in V which cover g(p). Consider the set S consisting of A and the points 
pi, * * * , pm for all p in T. This set can be given as follows the structure of a 
Riemann surface. At each p in A, S has the structure of A, and at each of the 
points pi, S has the structure of V. Clearly S is a Riemann surface which 
satisfies the conditions of Theorem 1. 

Proof of Theorem 2. Since S is separable it has only a countable number of 
components. Since the functions in 2f are constant on no component of S, by 
a standard construction there exists g in W which is constant on no component 
of S. Let 

K, C K2 C *** CKnC** 

be an increasing sequence of compact subsets of S whose union is S. By induc- 
tion we choose open sets Ui CS with the following properties: 

(1) i.1kJKi C Ui and _7i is compact. 
(2) The boundary -yi of Ui is the union of a finite number of disjoint 

smooth closed Jordan curves. 
(3) dg vanishes nowhere on i. 
(4) g(pl) =g(p2) for at most a finite set of pairs (pl, P2) of distinct points 

of zi. 
(5) g(,yi)Cg(yi-,) is a finite set. 
(6) g(Y)n9(Yi-1)n9(Yi-2) is void. 

Assume that U1, * * *, Ui-1 have been chosen. Since 7Uih_UK, is compact, 
there exist Ui and yi satisfying (1) and (2). Since g is nonconstant on each 
component of S, the curves yi can be moved slightly, if necessary, so that 
(3), (4), and (5) are satisfied. Since by the induction hypothesis g(i-,) 
r-g('Yi-2) is finite, we may choose y, so that (6) is also satisfied. 

Having chosen the sets Ui and yi for all i, we let W, be the closure of 2f 
in C(Ui) = C( UiUyi). Let Yi be the spectrum and Xi the Silov boundary of 
2(i. Let iri be the natural map of 7Ui into Yi. Since every function in 21i assumes 
its maximunm for the set Ui on yi, it is clear that 

Xi C 7ri(Y). 

Because of this and the properties (3) and (4) above we see that the algebra 
21i and the function g in Wi satisfy all conditions of Theorem 1. Let Ai be 
the analytic part of Yi and let Ti= Yi-Xi-Ai, so that T, is a countable 
isolated set. Let Si be the Riemann surface corresponding to the algebra 21i 
constructed in the proof of Theorem 1. Let Xi be the map of Si onto Yi-Xi. 

Since UiCUi for i<j, there is a natural homeomorphism 5ji of Yi into 
Yj such that 

f(Aji(p)) = f(p) 

for all p in Yi and all f in 21, where f on the left of this equation is considered 
as a function in 21j and f on the right is considered as a function in 9fi. Clearly 
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Okj0 ?bji = kki 

for i<j<k. 
If si Si and sj,Sj write si-sj in case there exists a neighborhood Vi of 

si in Si, a neighborhood Vj of sj in Sj, and a homeomorphism ,B of Vi onto Vj 
such that 

() foXi =foX5o j on Vi 

for all f in Wf. Since f o Xi and f o Xj are analytic on Si and Sj respectively, it 
follows that A is necessarily an analytic homeomorphism of Vi onto Vj. It 
is clear that si sj implies that :(s) s for all s in Vs. If i=j and si sj, so 
that Si=Sj, it follows that s=$(s) for some s in Si with A(s) in Si, s5z (s), 
Xi(s) E Ti, Xi(3(s)) i Ti. This contradicts the equation (*) because there exists 
f in f assuming distinct values at the distinct points Xi(s) and Xi(f(s)) of Yi. 
Therefore no two distinct points in Si are equivalent. It is clear that is an 
equivalence relation on the set Ui Si, where the Si are taken to be disjoint. 
Let S' be the set of all equivalence classes of Ui Si. We thus have a natural 
one-one map ai of Si onto a subset S' of S', where S! consists of those equiva- 
lence classes which contain elements of Si. It is clear that for each f in X 
there exists a unique function f' on S' with 

f'ai(si)) = (Axi(si)) 

for all si in Si, 1 <i < xo. Define 

21' = {f':f C W0 

so that 21' is an algebra of functions on S'. Let r be the mapping f-*f' from 
a onto 2'. 

We topologize S' by defining WCS' to be open if c-(W) is open in Si 
for all i. Clearly this gives a topology on S' and the functions in 2' are all 
continuous in this topology. The maps ai are also clearly continuous. Con- 
sider an open set WiCSi. We shall show that W=oi(Wi) is open in S'. To 
this end we must show that a--(W) = Wj is open for all j. Now if sj.C Wj then 
sj Si, where s, = as(oj(sj)) is in Wi. Thus there exists a neighborhood Vi C Wi 

of si, a neighborhood Vi of sj, and a homeomorphism f of Vi onto Vj such 
that /3(s) -s for all s in Vs. Therefore oj(o(s)) =ai(s) so that /3(s) C Wj. Thus 
Vj C Wj. It follows that Wj is open for each j so that W is open in S'. Thus 
oi is a homeomorphism of Si onto the open subset S' of S'. It follows that 
IS } is a covering of S' by open sets, each of which is homeomorphic to a 
Riemann surface Si by a given map oi. Thus to give S' the structure of a 
Riemann surface it is sufficient to show that the map oy o oi of 07(8! nS) 
onto or(S~' nSj) is analytic for all i and j. Let pi be any point in oT(S! C'nSJ), 
so that 

pj = cr,(O(pi)) GC (S! CS) 
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and pi=pj. There therefore exist neighborhoods Vi and Vi of pi and pj respec- 
tively and an analytic homeomorphism i of Vi onto V; satisfying (*). As 
above, o-i(s) =oaj(3(s)) for all s in Vi. Thus on Vi, 1=uT- ? oi, so that ao o oi 
is analytic at the point pi. Thus oy . o-i is analytic on au:-(S' nSj). It follows 
that S' can uniquely be given the structure of a Riemann surface in such a 
way that the maps oi are all analytic. As a consequence the functions f' in 
2' are all analytic on S'. 

Now let 4 be a continuous homomorphism of 21 onto the complex numbers. 
Thus there exists a compact subset K of S with 

I ?(f) _ sup IIf(p)I:pE K} 
for all f in 21. Since the Ui cover S there exists n with K C U.. Since g(Qy) 
ng(7?n+l) Cg(yn+2) is void we may choose m with ?(g) EEg('y7), where m =n, 
n+1, or n+2. Thus KCUm. Therefore 

?(f) I < supt I f(p) I: P z u7} 
for all f in 2. There therefore exists qo in YJm with 4(f) =f(qo) for all f in 21. 
Since g(qo) =+(g) Eg(Xm) it follows that qoE Ym-Xm. Let pm be any point in 
Sm with X.m(Pm) = qo. Write p = om(pm). It follows that p C S' and 

f'(p) = f'(m(pm)) = f(m(Pm)) = f(qo) = ?0(f) 

for all f in 21. This proves (2) of Theorem 2. 
Now let p be any point in S. As above there exists i with pE Ui, g(p) 

EEg(Xi). Thus rw(p) EX so that ri(p) E Yi-Xi. Let V be a neighborhood 
of p in Ui with -ri(V)CYi-Xi and g(q) g(p) for all q in V-{p}. Thus 
wr(q) 5i7ri(p) for all such q. Since the points of Ti= Yi-XX-Ai are isolated 
in Yi -Xi, we may choose V so small that iri(V-{ p }) CAi. Now fi o -ri=f 
for all f in 21, where we have subscripted f on the left to show that it is con- 
sidered as a function on Yi. Since fi is analytic on Ai and f is analytic on V 
and since f can be chosen to have a simple zero at any point in Ai, the map 7ri 
of V- {p } into Ai is analytic. Therefore the map X o 7ri of V- {p } into Si 
is analytic. Since XF(iri(q)) must converge as q->p to one of the points t in Si 
for which Xi(t) =ri(p), it follows that XF o iri has a unique extension to an 
analytic map ao from V into Si. Write a= oi o ao. It is clear that a is an 
analytic map from V into S' such that 

( **) f oa =faXkiao =fo7ri =f on V 

for all f in 21. 
Thus each p in S has a neighborhood V which admits an analytic map 

a into S' satisfying (**). Assume that some open set V in S admits two ana- 
lytic maps a, and a2 into S' both satisfying (**). We show that al = a2. As- 
sume otherwise. There therefore exists p in V with a1(p) $ea2(p) and dal(p) 

0, da2(p)0. Thus there exists a neighborhood Vo of p which a, and a2 
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respectively map homeomorphically onto disjoint open sets V1 and V2 in 
S'. Since {S- } is an open cover of S' we may assume V1CSf, V2CSI' for 
certain i and j. Thus 10 = a2 0 ar maps V1 homeomorphically onto V2. Thus 
,-= or o o o-i maps an open set in Si homeomorphically onto an open set in 
Sj. For each f in 2f we have 

foXjo3 =f'o0jo#-=f'oflBoour 

f o aic o7i = f' o ai = f o Xi. 

Therefore ,8(s) -s for all s in c7 (V1). It follows that 10(s') =s' for all s' in V1. 

This contradicts the fact that V1 and V2 are disjoint, proving that al=a2. 
Thus we may define a map o- of S into S' by defining o(p) =a(p) for each p 
in S, where a is an analytic map of some neighborhood V of p into S' which 
satisfies (**). Since a is unique the map a. is well-defined. Clearly u- is an 
analytic map from S into S' such that f' o - =f for all f in 21, or 

(r(f)) (c(p)) = f(p) 

for all p in S and f in W. This is just (*) of Definition 2. Thus to show that 
(W', S') and the mappings a, r define an extension of (E, S) it only remains 
to prove that W' is holomorphically complete. Clearly ' is an algebra. Since 
g is not constant on any component of Ai, 1 _i < oo, g oX, is not constant 
on any component of S'. 

Thus it remains to show that W' is closed in the topology of uniform con- 
vergence on compact subsets of S'. Consider therefore a sequence {f' } of 
elements in 21' converging uniformly on compact subsets of S' to a function 
F on S'. The sequence {ff } then converges uniformly on compact subsets of 
S to F o a. Thus f= F o a 1. It follows that F-f' vanishes on a(S). Once 
condition (1) of Theorem 2 is verified it will follow from this that F-f', 
which is a uniform limit on compact subsets of S' of elements in 2', vanishes 
on all of S'. Thus F=f' will be in 21', as was to be proved. 

It only remains to verify conditions (1), (3), and (4) of Theorem 2. To 
verify (1) consider a compact subset K of S'. Since { S } is an open cover of 
S' there exist Si, , * , S,,which cover K. Let k=1 +sup {il, . . . ,in)}. Since 
0k(Yk) is a compact subset of S', it is enough to show that S CJ(Yk) for all 
i<k. (Here 6(Qyk)=, where G=c-(yk).) Since 

0k(-yi) C i(U7) C 6(Yk) 

for i <k, it is sufficient to show that 

S' C J('Y) 

for all i. Consider po in S,' and write p = X.(07(po)) so that p E YI and f(p) 
=f'(po) for all f in 2. Thus 
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If'(po) = I f(p) I sup { jf(q) q CE Xi} 
< SUp{ I f(q) I q C <y} 

= sup I f'(q) q C (-yi)} 

so that PoCf(,y). This proves (1) of Theorem 2. 
We turn to the proof of (3). Assume that (3) is false so that T intersects 

some compact subset of S' X S' in an infinite set. Then there exists a sequence 
(p ', q') } of distinct elements of T converging to an element (p', q') in 

S'XS'. We may assume that the p. are distinct. Choose S' and S3' with 
p'CSf, q'CS. We may assume that p' CS! and q 'CES for all n. Let 
pn =s n(p='), qn =o(qt), s p- ,(p'), q=o--(q'), so that {Pn } converges to P 
in Si and {q,.} converges to q in Sj. Choose k with k>i, k>j, and g'(p') 

0:g(Xk). Now Xi is a homeomorphism of some neighborhood V in Si of p 
into Yi. Thus 4ki o Xi gives a homeomorphism of V into Yk. Since Xj is a 
homeomorphism of some neighborhood W of q into Yi, 5kj o X, is a homeo- 
morphism of W into Yk. We may assume that Pn V and qnCW for all n. 
For each f in W we have 

f ?fOki ? Xi= ?f Xi = f'O ai on V. 

Similarly, 

Jo kj oXj =fO Xj =f O cj on W. 

In particular, 

f(ksi[X^i(p)])= f'(Gi (pn)) =f'(pn ) 

=f'(q ') = f'(aJj(qn)) =f(Okj[Xj(qn)]) 

for all f in W. Thus kki(X1(Pn)) and 4kj(Xj(q.)) are the same point yn in Yk. 

Now g(4ki N[(P) ]) =g(i(P)) =g '(P') g(Xk) so that cki(Xi(p)) C Yk -Xk for 
all n sufficiently large. Since Tk is isolated in Yk - Xk it follows that Yn C Yk 
- Xk - Tk =Ak for all n sufficiently large. Fix such a value of n. There exists 
a neighborhood Vn of p. in Si which 45ii o Xi maps homeomorphically into 
Ak. Since Si and Ak are Riemann surfaces it follows from invariance of domain 
(see [4, p. 95]) that qki a Xi maps Vn homeomorphically onto an open set in 
Ak containing Yn. Similarly kkj Oa Xj maps some neighborhood W, of qn homeo- 
morphically onto an open set in Ak containing Yn. We may assume that 
4 ki(Xi(Vr)) =4kj(Xj(Wn)). Thus 

0 = (Okj ? Xj) o (4Oki ? Xi) 

is a homeomorphism of Vn onto Wn. Now 

f o XJ o =f,kj ? Oki Xi -=f ? Oki OXi =f ? Xi 

on Vn for all f in !I. It follows that 
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pn -l(p,) = (4)ckj o =j)-y = qn. 

Thus ai(p,n) = o-i(qn), or p= qn'. This contradicts the fact that (p ', q 'I) E T 
and thereby establishes the truth of (3) of Theorem 2. 

It remains to prove (4) of Theorem 2. We first show that the closure of 
S' is a compact subset of S' for each i. Since the set 

R= ai(Ri) where Ri = XX7(Ali) 

is dense in S, it is enough to show that the closure of R' is compact. Let 
{ p,t } be a sequence of points of R'. Let pn=XA(o^(p ')) so that p We 
may assume, by passing to a subsequence if necessary, that { pn} converges 
to a point p in Yi. Choose m>i with g(p) Eg(ym). Then 45rni(p) EXm. We 
have the following diagram 

Xi Omin Xm 
Si > YM Ym Sm, 

and Pn--*p in Yi as n-* oo. Since q5mi is continuous, 4"mi(Pn)->cmi(P) as n-> c* , so 
that 45mi(pn) CAm for all n sufficiently large, say for all n. Thus for each n there 
exists a unique point ti, in Sm with Xm(tn) =4mi(pn). Let ql, * * *, qk be those 
points in Sm with Xm(qj) = kmn(p), 1 <j ? k. Thus to each open set V in Sm con- 
taining the points ql, * *, qk corresponds a neighborhood Vo of Pin(p) in 
Ym with Am ( Vo) C V. Thus tn C V for all n sufficiently large. We may therefore 
assume, by passing to a subsequence if necessary, that tn converges to one 
of the points ql, * * *, qk, call it t. Let W be a neighborhood of t in Sm mapped 
homeomorphically by Xm into Ym. Take W so small that Xm(W-{ t }) CAm, SO 
that Xm is a homeomorphism of W- t } onto an open set in Yi. We may as- 
sume that tn E W for all n so that q5mi(pP) =Xm(tn) GXm(W). Now pn CAi and 
kmi(pPn) CAm. Since kmi maps a neighborhood of p,, homeomorphically into 
Am, we may assume by invariance of domain that 0mj maps a neighborhood 
V. in Ai of pn homeomorphically onto a neighborhood of cfmi(Pn) in A,,. We 
may assume that 4'mi(V,) CXm(W-{ p }). Thus X; o 4mi maps Vn homeomor- 
phically onto a neighborhood Wn of tn in Sn and Xj maps Vn homeomorphi- 
cally onto a neighborhood Wn of XTX(Pn) in Si. Therefore the map 

X = ,FO fmiOXi on Wn 

maps Wn homeomorphically onto Wn. If f is any function in 2 then 

f 0 -f 0Oini Xi -Xn 0 on Wn. 

Therefore 

X-TZ(pn) = 3(X?T(pn)) = tn, 

so that 

Pn = i(Xi (pn)) = am(tn). 
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Therefore {p,' } converges to the point aTm(t) in S'. Thus there is a convergent 
subsequence of I pn' }. Therefore the closure of S' is compact. 

Consider any compact subset K of S'. We have seen above that K CQ(,y) 
for some i. Therefore KC6(yi). The set 

H= S' J v(7) 

is a subset of (6yi) because it was shown above that S' C6(cyi). Since S' is 
compact H is compact. The set 

L= Kn H 

is also compact. Clearly K contains all points p such that (p, q) C T for some 
q in L. We shall complete the proof by showing that conversely if p CRK- L 
then (p, q) C T for some q in L. Consider p in k-L. Thus 

P EC 6yi) - H. 
It follows that 

I f'(P) I _ sup{ If(q) q :qE i} 

for all f in W. There therefore exists qo in Yi with f'(p) =f(qo) for all f in W. 
Thus either qoCXi or qo=Xi(ql) for some q, in Si. In the first case let qi be a 
point in yi with 7ri(qi) = qo, so that in the first case q =a (ql) CH and 

f'(q) = f(qi) = f(qo) = f'(P) 

for allf in W. Thus (p, q) C T. In the second case let q=oi(ql). Thus qES' CH 
and f'(q) =f(Xi(ql)) =f(qo) =f'(p) for allf in W. Thus (p, q) ET. Thus in either 
case there exists q in H such that (p, q) E T. Also qC K because f'(q) =f'(p) 
for allf in 21. Therefore qC RKnH = L. This completes the proof of Theorem 2. 

We end with a result which completely describes the uniform closure of 
an algebra of analytic functions on a compact subset of a Riemann surface. 

THEOREM 3. Let K be a compact subset of a Riemann surface S. Let 21 be a 
holomorphically complete algebra of analytic functions on S. Let 52 be the uniform 
closure of 2 on K. Let Y be the spectrum of 52. Let (S', 2') be the extension of 
(S, W) described in Theorem 2, and a and r the maps there described. Let M be 
the union of L = a (K) and all of those components of S' -L which are relatively 
compact subsets of S'. Then 

(a) e3 is isomorphic to the uniform closure of 2' on M, via the maps a. and r. 
(b) For each 4 in Y there exists p in M with + (f) =f (p) for all f in 52, where 

e3 is considered as a subalgebra of C(M). 
(c) The linear space e3 is of finite codimension in the space t0 of all con- 

tinuous functions on M which are analytic at interior points of AM. 

Proof. From Theorem 2 it is clear that for each f in 2 the uniform norm 
of f on K and the uniform norm of r(f) on L are equal. From this (a) follows 
readily. 
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Now by Theorem 2 there exists a compact set D CM such that for each 
c in Y there exists p in D with +(f) -f(p) for all f in '. By (iv) of Theorem 2 
and the principal theorem of [I] it follows that .93' is of finite codimension d 
in _3i, where Q' is the uniform closure of 2' on D and where 23, is the set of 
all continuous functions on D which are analytic at interior points of D. 
Assume that D - M is not a finite set. Thus there exist distinct points 
Pli, * * , Pd+1 in D - M. Since D CM, for each i there exists a finite measure 
,Ai on M such that Si-,I2t', where bi is the point mass at pi. Now considered 
as linear functionals on Q3 these measures bi-,ui are all linearly independent 
because by Runge's theorem there exists fi in 61 which has the value 1 at pi 
and 0 at the other p's and is arbitrarily small on M. But since these d + 1 meas- 
ures annihilate 5B' we have a contradiction. Thus D -M is finite. Thus if d5 
in Y does not have property (b) above then 4 corresponds to a point p in 
D - M. Since p is isolated in D an easy argument shows that 4 is isolated in 
Y. By a theorem of Silov it follows that q is in the Silov boundary of SB. 
This contradiction shows that (b) is valid for all 4 in Y. Finally (c) follows 
from Theorem 2 and the principal theorem of [1]. 
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