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ANALYTICITY IN CERTAIN BANACH ALGEBRAS

BY
ERRETT BISHOP(})

1. Introduction. Consider a Riemann surface S. (All Riemann surfaces
are surfaces without boundary and are assumed to be separable but not
necessarily connected.) Consider also a set % of analytic (that is, holomorphic)
functions on S which are not simultaneously constant on any component of .S.
From the functions in ¥ it is possible to construct a wider class of functions
analytic on S by the operations of addition, multiplication, and scalar multi-
plication. Further functions analytic on S are obtained by taking those func-
tions which are uniform limits on each compact subset of S of functions
already obtained. Thus from % we pass to the set d—the kolomorphic comple-
tion of 9.

In the sequel we only study holomorphically complete sets A of analytic
functions on a Riemann surface S. This means by definition that 1€, that
the functions in A are not all constant on any component of S, that % is an
algebra over the complex field with the natural algebraic operations, and that
each function on S which can be uniformly approximated on each compact
subset of S by functions in ¥ is in A. The set A will be topologized by the
topology of uniform convergence on compact subsets of S.

For such a holomorphically complete 9 there are certain natural ques-
tions: Given a sequence of points in S having no cluster point, does there
exist a function in ¥ having prescribed values at the given points? Or: When
is it possible to approximate a function given on a compact subset of .S uni-
formly by functions in %A? and so forth. It is well known (see for example
[1]) that the space X should be holomorphically convex (or at least weakly
holomorphically convex) relative to the given algebra ¥ of analytic functions
if such questions are to have satisfactory answers.

DEeriniTiON 1. A Riemann surface S is holomorphically convex (respec-
tively weakly holomorphically convex) relative to a holomorphically complete
set A of analytic functions on S if for each compact subset K of S the set
(respectively each component of the set)

K={pinS: [f(p)| < sup{|f(g)]:q&E K} forall fin A}

is compact.

One of the purposes of this paper is to show that if ¥ is a holomorphically
complete algebra of analytic functions on a Riemann surface S then S can
be canonically extended to a Riemann surface S’ and the functions in ¥ can
be extended to S’ to give an algebra A’ of analytic functions on S’ with re-
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spect to which S’ is weakly holomorphically convex. Thus the condition of
weak holomorphic convexity is always realized on a suitable extension of the
given surface S’. It might be thought that an analogous theorem would hold
for a holomorphically complete algebra ¥ of analytic functions on a higher-
dimensional complex analytic manifold S, but an example of Wermer [9]
can easily be adapted to show that this is not the case. The following defini-
tion gives a precise meaning to the term extension just employed.

DEFINITION 2. Let the pair (S, %) consist of a Riemann surface S and a
holomorphically complete algebra of analytic functions on S. An extension of
(S, %) consists of a second such pair (S’, A’), of an analytic map ¢ from S
to S’, and of a one-one map 7 of ¥ onto A’ such that

™ (M(a(p)) = f(p)

for all fin A and p in S.

Clearly ¢ need not be one-one since it is possible for ¢ to identify points
of S which are identified by all functions in ¥.

One of our main results is then the following.

THEOREM 2. Let the pair (S, N) consist of a Riemann surface S and a
holomorphically complete algebra U of analytic functions on S. Then (S, UA)
admits an extension (S’, N') such that

(i) For each compact subset K of S’ there exists a compact subset K of S with

KCIL,
where L=0(K,), and L is formed relative to %’.

(i) To each continuous homomorphism ¢ of A onto the complex numbers
there exists p in S’ with

(M) = ¢(/)

for all f in U.
(iii) The set

T={(p9:pES,qES, pq,fp) = fg) for all f in A}

is a countable subset of S’ XS’ which has no cluster point in S'X.S’.
(iv) For each compact subset K of S’ the set K is the union of a compact set
L and all points p in S’ for which there exists ¢ in L with (p, ) ET.

Added in proof. From the argument used in proving Theorem 3 below it
follows that the set L of (iv) can in fact be taken to be the union of K and
all those components of .S’ — K which are relatively compact subsets of .5, so
that in particular bdry L CK.

It follows from (iv) and the countability of T that S’ is weakly holo-
morphically convex relative to ('

Property (ii) of Theorem 2 contains the key to the construction of the
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extension (S’, A’). The surface S’ is constructed abstractly by considering
the set of continuous homomorphisms of ¥ into the complex numbers and
imposing the structure of a Riemann surface on this set. If a certain countable
set of homomorphisms are counted more than once this can be done and gives
the Riemann surface S’. The mapping ¢ from S to S’ is then easily found,
as is the mapping 7 from ¥ onto a certain set ¥’ of analytic functions on S’.
The pair (S’, A’) and the maps ¢ and 7 are then shown to be an extension of
(S, A) having the properties of Theorem 2. Since a continuous homomorphism
¢ of ¥ into the complex numbers has the property that there exists a compact
subset K of .S with

|o(f)| < sup {|f(p)| : p € K}

for all f in ¥, to get all continuous homomorphisms ¢ it is sufficient to con-
sider compact subsets K of S’ and homomorphisms ¢ satisfying the inequal-
1ty.

Thus we come to a well-known problem in Banach algebras—the investi-
gation of the set of continuous homomorphisms (called the spectrum) of an
algebra of continuous complex-valued functions defined on a compact Haus-
dorff space K. Here continuous means continuous in the uniform norm for
functions on K. The bulk of this paper is concerned with aspects of this prob-
lem, and the results obtained in this investigation are applied in the proof
of Theorem 2. The particular type of Banach algebra which arises will be
called a uniform algebra.

DEeriNiTION 3. A uniform algebra is a Banach algebra with unit whose
norm and spectral norm coincide.

If 9 is a uniform algebra with spectrum ¥ and Silov boundary X, it is
clear that ¥ can be considered as a closed subalgebra of either C(X) or C(Y),
where C(T'), for a compact Hausdorff space I', is the uniformly-normed
algebra of all continuous complex-valued functions on I'. Conversely it is
clear that if " is a compact Hausdorff space then every closed subalgebra of
C(T') which contains the function 1 is a uniform algebra.

Most of this paper is a systematic investigation of conditions which
imply that certain open subsets of the spectrum of a uniform algebra can be
given the structure of a Riemann surface on which the functions of the algebra
all are analytic functions. The following is the principal result of this investi-
gation.

THEOREM 1. Let U be a uniform algebra with Silov boundary X and spectrum
Y. Let U contain a function g which has the following properties:

(@) The interior of g(X) is void.

(b) Each point of g(X) is the vertex of some nondegenerate triangle whose
interior lies in —g(X).

(c) For each z in g(X) there are only a finite number of points p in X with
g(p) ==
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(d) If wy and we are points in —g(X) there exists a Jordan arc vy joining
w; and w; and intersecting g(X) in a finite number of points z, - - -, 2. Each
point z; has the property that there exists a smooth open Jordan arc JoCg(X)
which contains z;, which is an open subset of g(X), and which is the homeomorphic
image under the mapping g of the subset {p: p€ X, g(p)EJo} of X.

Then there is a Riemann surface S and a continuous map N\ of Sonto V—X
such that f o Nis analytic on S for all fin N, such that each point in ¥ —X except
for those in a countable set is the image of exactly one point in S, and such that
when —g(X) has a finite number of components j each point in Y—X is the
image of at most j—1 points in S.

In condition (d) a “smooth” arc is one with a continuously turning
tangent. To introduce another piece of notation, g~ will denote the function
(or relation) inverse to a function g, the designation g—! being reserved for
the function 1/g.

The investigations of this paper have their origin in ideas of Wermer [7;
8]. In particular special cases of Theorems 1 and 2 follow from Wermer's
work. The present paper carries the theory further in certain directions than
did Wermer’s work and develops some of the material more systematically.
In particular a definitive theorem (Theorem 2 above) about algebras of
functions on Riemann surfaces is obtained. H. Royden has also extended
Wermer’s work, by methods different from those used here.

2. Functions rational over . The motivations for the following definition
are clear,

DerINITION 4. Let U be a uniform algebra with spectrum Y, and let X
be the Silov boundary of ¥. Let & be a function in C(X), and let ¢4, - - -, Dn
be points in Y, not necessarily distinct. Let G denote the set of all products of
the form

8§ = 8182 " " &y
with g;&E¥ and g;(p:) =0. Then k will be called a rational function over oA
with poles p1, - - -, paif

(i) gh€¥ for all g in G.

(ii) There exists g in G with (gh) (p;) #0, 1 £1<n.

LEMMA 1. Let h be a rational function over the Banach algebra N with poles
p1, - -+, Pn. Let g1, © - -, qum be another set of poles for h. Then m=mn and the
sequence qi, - - -, @m 1S @ rearrangement of the sequence p1, - - - , pn.

Proof. Assume that there is a point p which occurs j times in the sequence

p1, -+ -, pnand k<j times in the sequence ¢i, - -+ -, ¢w. To prove the lemma,
it will be enough to contradict this assumption. We may take it that p;=p,
= =p;=p, i=q= -+ =q=p. Choose g=g - g, with g,

gi(p) =0, gh€¥q, (gh)(p)#0. For k<i=<m, choose f; in U with fi(g;) =0,
fi(p)=1. Thus the function

f=g1"°gkfk+1"'fm
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isin ¥, and fAE Y because g1, - - -, gn is a set of poles for k. Thus the function
a=fhgiy1 -+ - - ga is in Y. We have a(p) =0, since gr11(p) = grt1(Pr41) =0. But

a = ghfk+1 t 'fm)

and the quantities (gh)(p), frr1(p), + + +, fu(p) do not vanish. This contra-
diction shows that our assumption was false, thereby proving the lemma.

We are now justified in speaking of the poles p1, - - -, p. of a function &
rational over Y. If p is in the spectrum of A and % is a non-negative integer
such that p occurs % times in the sequence pi, « + -, p. we say that pis a
pole of multiplicity & of &.

LemMMA 2. Let k be a rational function over the uniform algebra U and let the
point p with multiplicity n>0 be the only pole of h. Then there exists g in U such
that gh is rational over A and the point p with multiplicity n—1 is the only pole

of gh.

Proof. Choose g1, « -+, gnin A with a=g; - - - g.hC ¥, gi(p) =0, a(p) #0.
Let g=gi. It is clear that g satisfies the required conditions.

LEMMA 3. Let b be a rational function over the uniform algebra U such that
the point p with multiplicity n=0 is the only pole of hi. Let the function hy in
C(X), where X is the Silov boundary of U, have the property that ghs 9 for
each g in G, where G is the set of all g=g1 - - - g, with g;&W and g:(p)=0. Then
there exist elements fi and fs in A with ho=fih+fo.

Proof. We proceed by induction on #. The theorem is clearly true if =0,
for then both k; and k, are in A. Assume now that the lemma is true for all
integers up to and including #—1. By hypothesis, there exists g in G with
ghi=aE 9 and a(p) #0, say a(p) =1. If we let B=1—q, then BEY, B(p) =0,
and 1=gh,+B. Multiplying this equality by %., we have

he = ghihs + Bhs = (gho)hy + Bhe = 8hy + Bhs,

where 6&E 9. By the previous lemma, there exists vy in % with y(p) =0 such
that vyh, is rational over ¥ and has the point p with multiplicity #—1 as its
only pole. By the hypothesis of the induction, we therefore have

Bhs = yo(yhi) + 71,
where v, and v, are in 9. Therefore
hy = k1 + Bhy = (6 + yoV) 1 + 7.
If we write fi=68-+y¢y and fy=", this proves the lemma.

LEMMA 4. Let h be a rational function over the uniform algebra U, with poles
at the distinct points p1, - + -, pa of multiplicities kv, + + -, ky respectively. Then
there exist functions ou, - - -, o tn A with cu+ -+ - - Fa=1 such that for each
i the function ah="h;is rational over N with a single pole of multiplicity k; at p,.
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Proof. For 1<4=<# let G consist of all products gigs - - - gr, with g;EU
for 1=j=<k; and g;(p;)=0. For 1=<1=n let F; consist of all products of the
form fi - - + fisifiyr - - - fa with f;EG;. Let F; be the ideal which F; generates
in 9. Since the ideals F; are simultaneously contained in no maximal ideal
of A, Fi+ - - - +F, is an ideal of A which is contained in no maximal ideal.
There therefore exist elements «; in F; with au+ - - - +a.=1. Let h;=a;h.
Clearly h.f;E¥ for each f; in G;. To complete the proof that k; has a pole of
order k; at p; and no other pole it is sufficient to show that there exists f; in
G; with (hif:) (ps) #0. By hypothesis and Definition 4 there exist elements f;
in G; with (f&)(p:)#0 for all 7, where f=f1 - - - f.. We shall show that
(hif) (p:) #0, thereby completing the proof. Since clearly a;(p;) =0 for j=1,
we have a;(p;) =1. Therefore

(fhi)(p:) = (f)(pi)ei(ps) # 0.
Since

(R (pa) = f1(pa) - - - fima(Pfirr(p) - - - fulp) (fihd) (po),

it follows that (fih;)(p:) #0. Thus k; has a pole of order k; at p;, as was to be
proved.

LEMMA 5. Let k be a rational function over the uniform algebra N with poles
atpi, -+ -, pn. There exists a unique continuous function hon ¥ — { P, e, pn},
where Y is the spectrum of 3, such that if f is any element of N for which fREA
then

*) (fh)(p) = f(p)(p) Jorallpin ¥V — {py, - - -, pa}.

The function h becomes infinite at the points pi. Thus if we define h to be infinity
at the points p; then h is a continuous function from Y to the Riemann sphere.

Proof. Consider a point p in Y—jpl, «++, pn}.Choose g=g; - - - g, with
g€, gi(p) =0, g:(p)#0. Define k(g)=(gh)(g)[g(¢)]™* for all ¢ in ¥ for
which g(¢g) #0. Now if f is any function in ¥ such that fA€¥, and if g is a
point in ¥ with g(g) #0, then f(q) (¢h) () = (fgh) (q) = (fh)(9)g(g), so that

*) (/) (9) = f()h(g)

as was reqmred This equation can be written %(q) = (fk)(q) [f(q) 7, which
shows that / is independent of the choice of g. Since f is clearly continuous,
it remains only to prove the last statement of the lemma. To this end, choose
g as above with (gh)(p:)#0, 1=<:=<#n. Since g(q) h(q) = (gh)(q), we have
g(q)#0 for all ¢ sufﬁuently near p;. The equations %(q) = (gh)(q) [g(¢) ]~* and
g(p:) =0 then show that | k(q) | — o as g—p;, as was to be proved.

To simplify notation we shall write simply A(p) for A(p) in the situation
of Lemma 5. By a rational function % over a uniform algebra ¥ with a simple
pole at p we shall mean a rational function % over U which has {p} as its
complete set of poles.
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DEFINITION 5. Let % be a rational function over the uniform algebra A
with a simple pole at the point p. We define the transformation 7% from ¥
to A by

Tuf = k(f — f(p)).

It is clear that || 73| £2||k||, where ||2|| will now be defined.
DEFINITION 6. Let % be a rational function over the uniform algebra .
We define

Hh]] = sup{ I h(x)l 1x € X},

where X is the Silov boundary of ¥, and [A] = (2|A||)~.

DEFINITION 7. If % is a rational function over a uniform algebra ¥ with
a simple pole at a point p, D, will denote the set {z: | zl <[%]} in the complex
plane. If fEU the expansion of f in powers of A~! will denote the power series
ao+taiz+ - - -, where a,=f,(p) with f.=(TW)"f.

LEMMA 6. Under the hypothesis of Definition 7, the expansion of f in powers
of h=* converges for all z in D,

Proof. We have
lan| = | Tll7ll = CflalhIiAdl,

and so the series converges for |z| < [k].
DerFINITION 8. Under the hypothesis of Definition 7, the value of the sum
of the power series at the point z in D, will be denoted by P(f, k, 2).
DEFINITION 9. If % is a rational function over a uniform algebra I with
a simple pole p, if z is any point in Dy, and if x is any point in the Silov
boundary X of ¥, then we define the quantity «(k, z) in C(X) by the equation

u(h’ 2, x) = h(x)(l - Zh(x))_l’

where u(k, z, x) denotes the value of u(k, 2) at x. (It should be noted that
1 —2h(x) 50 for all z in D since || < [k].)

LeMMA 7. Let b be a rational function over the uniform algebra U which has
a simple pole p. Let f be an element of A. Thena(z) = [f— P(f, h, 2) |u(h, 2) defines
an analytic mapping o from Dy into .

Proof. We have seen that P(f, &, -) is an analytic complex-valued function

P(f, hy2) = Z @nz"

n=0

where a,=f,(p) and f,= (T»)"f. It is easily seen by induction that

om0 = a) — X Wy
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for n=1. We also have |z| <[h]=(2||h||)~!, which implies that ||zh|| <1 for
all zin D;. Thus the mapping z—u(k, 2) is an analytic mapping from Dj; into
C(X) and has the power series expansion

0

u(h, z) = D, gk,

n=0

It follows that o is an analytic mapping from Dj into C(X) with the power
series expansion

a(z) = (f — ao — g anz”)( i z"h"“)

n=0
= h(f — ao) + an-nz” = Zf,,+1z",
n=1 n=0

with f, as above. Since f, € for all values of 7, we see that o(z) €%, as was
to be proved.

LemMA 8. Under the hypothesis of Definitions T and 8 the mapping
Ah(z):f—') P(f’ h} Z)

is @ homomorphism of U into the complex numbers, for each z in Dy, and there-
fore is a point in the spectrum of N. The mapping An: 2—Ni(2) is a continuous
mapping of Dy, into the spectrum of ¥.

Proof. It is only necessary to prove that this map is multiplicative, the
other properties of a homomorphism being obvious. Fix z in D; and write
u=u(h, z). Since |z| <(2||k||)~1, we have ||zh|| <1/2, so that

[l = [zt = == <[l (@ = 1/2)= = 2]}u].

Thus ||zu|| <1. It follows that 1+zx has an inverse in C(X). Therefore
h=u(14+2zu)~'. Now if # were in A we should have (1-+2zu)—!€, since
||zu|| <1, and therefore A€ Y. Since k has a pole, it is not in %, and therefore

% is not in U,
Consider functions f and g in Y. By Lemma 7, we see that the functions

gf = P(f, b, 2))u and  P(f, h, 2)(g — P(g, h, 2))u
are in I, It follows that their sum
[fe = P(f, b, ) P(g, b, 2)]u
is in Y. Since also (fg— P(fg, k, z))u is in ¥, we see that
[P(f8, ky 2) — P(f, by, D) P(g, b, 2)]u

is in Y. Since u itself is not in %, this implies P(fg, &, 2) — P(f, h, 2)P(g, k, 3)
=0. Thus M (2) is a homomorphism of 9 into the complex numbers and there-
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fore is a point in the spectrum of ¥ (see [5, p. 68]). The fact that A is con-
tinuous follows from the fact that for each f in ¥ the composite map fo N,
= P(f, k, +) is continuous.

DerINITION 10. Let & be a rational function with a simple pole p over a
uniform algebra . For each z in D; the quantity M(z) is the point in the
spectrum Y of ¥ defined by

f()‘h(z)) = P(f) h ,Z)
for all fin Y. E; will denote the subset of ¥ of all Au(2) for 2z in D,. The map-
ping 2—M\i(2) of D; onto E, will be denoted by As.

LEMMA 9. Let & be a rational function with a simple pole p over the uniform
algebra N. Then for each z in Dy, u(h, 2) is a rational function over U with a
stmple pole at \u(2). For all 3 and t in D), with t7%0 and t#z respectively we have

ho‘h(t)) = t—ly M(h, 2, )\h(t)) = (t - Z)_l-
For any q in the spectrum Y of A with ¢=hi(2) and ¢=p we have
u(hy 3, 9)[1 — zh(9)] = (g).

Proof. Let f be any element in U such that f(p)#0 and fi(p) #0, where
fi=h(f—f(p)). Then P(f, k, 2) has the expansion ao+a:z+ - - - with a1 =fi(p)
#0. Thus the set S of points z in D, with P(f, k, 2) =a, is isolated. Since
P(f, k, 2) =f(\u(2)) and ao=f(p), it follows that A (2) =p for all zin Ds—S.
Now the function ¢ defined by (z) = [f—P(f, &, 2) Ju(k, 2) has been seen in
Lemma 7 to be an analytic map from Dj to ¥, and therefore it has an expan-
sion

o(z) = ‘Z a,z"

n=0

converging on Dy, with «,E. For each x in the spectrum Y of ¥, let

]

o(z, %) = (0(2)(2) = 2 an(2)z".

n=0

Thus if we define w(z) =a(z, Ai(2)) it follows that

0

w(z) = E a,(An(2))2m.

n=>0

Since a, €, we see that a, 0 \y=P(an, k, +) is analytic on D; and has ab-
solute values there which do not exceed ||aa||. It follows that w is an analytic
function on D;. Since ¢(0) = (f —f(p)) k=1, we have

w(0) = o(0, p) = fu(p) # 0,
so that the set T of all zin Dy, with w(z) =0 is isolated.
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Consider now any point 2z in Dy—S—T. From the defining equations for
o and u(h, z) we obtain

[f = f0u@) ]k = o(2)(1 — 2h).

By Lemma 5, since Mi(2) #p, we may evaluate both sides of this equality at
the point N\;4(z) in YV, obtaining

0 = w(z)(1 — zh(M(2))).

Since z is not in T, this gives A(A4(2)) =2~ Since & is continuous on Y, by
Lemma 35, it follows that A(Ax(¢)) =¢"! for all {40 in Dj.

Since by Lemma 7 we see that u(k, 2)(f—f(\u(2))) €YU for all f in ¥, to
show that u(k, 2) is rational over ¥ with a simple pole at A\x(z), it is sufficient
to show that there exists f in ¥ such that «(k, z) (f —f(A\x(2))) does not vanish
at Mi(2). To this end, we consider an element f in 9 with the property that
ufEA, where u=u(h, z). By the definition of u, we have

(A = zh)uf = i
so that

uf = h(f + zuf).
For ¢t in D; and ¢#0, this implies by Lemma 5 that

) (@) = EOW@)[FOMD) + 2 M)
Since E(A\(t)) =¢~! this gives
™ () An(®)) = (¢ — 27 ((@)

if t0 and t>£3. By continuity, (¥) is valid whenever ¢ and 2 are in D; and
t##z. i

Now let f be any element in ¥ with f(A4(2)) =0, f(p) =f(\:(0)) 0. Let
fa=u"f. Assume that f,& ¥ for all » and that f.(A\1(2)) =0 for all #. It follows
by induction from the formula (*) that fo(\()) =(E—2)""f(\u(t)), for all
t#2z. Thus f(Au(+)) =f o A4 is an analytic function on Dy which is not identi-
cally zero such that the function (- —2)~"f(Ax(+)) is analytic for each #. This
contradiction shows that our assumption was false. Thus there exists a posi-
tive integer 7 such that f,_;E¥ and f,_1(M(2)) =0 and either f, &¥ or fuEA
and f,(\x(2)) #0. We must have f,E¥, since fu1EU and fu1(Ai(z)) =0. Thus
fn(n(2)) = (ufu1) Ai(2)) #0. This is just what was needed to show that u is
rational over ¥ with a simple pole at N\y(z). By the formula (*), we have
u(k, 2, \i(t)) = (t—2)~L

Now if p is any point in ¥ with ¢#\,(2) and ¢=p, choose f in ¥ with
f(@ =1, f(\(2)) =0. By the above, we have uf="h(f+zuf). Evaluating at g,
we have
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u(g) = u()f(g) = (uf)(g) = h(g)(1 + 2(uf)(9))
= h(g)(1 + su(g)),
so that
u(g)(1 — zh(q)) = h(g),

as was to be proved.

LeEMMA 10. Let & be a rational function over the uniform algebra N with a
simple pole p. The mapping A is a homeomorphism of Dy onto E; and E; is an
open set in the spectrum Y of .

Proof. The mapping M is one-to-one because we have seen that A(\u(2))
=z"1for all zin Ds. We shall show that N\,(U) is open in Y for all open sub-
sets U of D,. Since A, is continuous and one-one, it will follow that \; is a
homeomorphism. By taking U= D;, it will follow that Ej is open.

Assume then that A,(U) is not open, and let z in U be chosen so that
M(2) is not in the interior of My(U). Since & is continuous on Y and since
[E(\u(2)) |1 =2z is in Ds, it follows that ¢= [k(g) ]! will be in D; whenever the
point ¢ in ¥ —N\,(U) is near enough to Ai(z). Choose such a point ¢. Since
g&EM(U) we have ¢#p and g#=\,(f). By Lemma 9 it follows that

1= h(g) = ulk,t, 9)[1 — th(g)]
= u(h,t, [t —u] =0,

a contradiction. Thus M\, (U) is open, as was to be proved.

DEerINITION 11 AND LEMMA 11, Let U be a uniform algebra and ¥, the
set of functions rational over ¥, so that A CNo. We define A=A(¥), called
the analytic part of Y, to be the set of all points p in the spectrum ¥ of U
such that there exists % in %, with a simple pole at p. Thus the poles of any
function in ¥, lie in A. The set A is open in ¥ and can be given uniquely the
structure of a Riemann surface in such a way that all functions % in ¥, are
analytic on A except for a finite number of poles which with their multiplicities
coincide with the poles and multiplicities of # when considered as a function
rational over Y. A point p in A is said to be a zero of order k of a function k
in Y, if the analytic function & on A has a zero of order k at p. For each p in A
there exists g in %A with a zero of order 1 at p. If & is in %y, if the points

p1, * ¢+, pnin A with multiplicities ki, - - -, k, respectively are the poles of 3,
andif by, - - -, ha are elements of ¥, having simple polesat g4, - - -, p, respec-
tively then k can be written in the form

n ki
® b= 202 ayh) + J,

=1 jm1

where the a;; are constants and f is in Y. The set ¥ is a subalgebra of C(X),
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where X is the Silov boundary of 9. If #; and h, are in %, and if the point p
in Y is a pole of neither then

(hah2) (p) = ha(p)h2(p)
and

(a1h1 + ashs)(p) = alhl(i’) + a2h2(i’)

for all scalars a, and a..

Proof of Lemma 11. Lemma 10 establishes a local coordinate system at
each point of A, Since the functions in Y separate points on A and are analytic
in each such local coordinate system, we see that overlapping coordinate
systems are analytically related. Thus A can uniquely be given the structure
of a Riemann surface on which the functions in ¥ are analytic. If zZE¥, and
pEA is not a pole of &, then there exists g in A with g(p) =1 and gh=Fc .
Thus g(g)k(g) =f(q) for all ¢ near p, so that & is analytic at p. If on the other
hand p is a pole of & of order #, let k; have a simple pole p. Such an k; exists
by Lemmas 2 and 4. Thus pEA. There exists g in A with g(p) =0 and fi(p) #0,
where fi=ghi. Since by Lemma 10 the function A;—as a meromorphic func-
tion on A—has a simple pole at p, we see that g has a simple zero at p. Since
the element gk of 9, is analytic at p, we see that as a meromorphic function
on A, i has a pole at p of order at most #. On the other hand, there exists
g1, -+, g in A with gi(p)=0 and g, - - - g.h=fEN,, f(p)#0. This shows
that as a meromorphic function on A, % has a pole at p of order at least #. Thus,
as a meromorphic function on A, the order of the pole of % at p is exactly #.
It follows that the poles of % and their orders are the same whether % is con-
sidered to be a meromorphic function on A or as a function rational over A. We
have incidentally constructed a function, g above, with a zero of order 1 at
any point p in A. The fact that A is open in Y follows from Lemma 10.

We now prove the representation (*) for an arbitrary % in %, To this
end, notice that it is sufficient to consider the case in which % has only one
pole, since by Lemma 4 an arbitrary % can be written as a linear combination
of such #. We assume therefore that % has the single pole p of multiplicity &,
and that £, is any function in %, with a simple pole at p. The representation
(*) which we wish to obtain now reduces to

k

**) b= 22 aj()i + f,
=1
with fE. Since & and k; are meromorphic on A with poles of orders £ and 1
respectively at p, we can find constants ay, - - -, a; such that the function
k
b= 22 aj(h)
j=1

is regular at p, where k and £, are considered as meromorphic functions on A.
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If we let g be the function Y_%.; a;(h)7in C(X), it follows from Lemma 3 that
there exist fi and f, in A with g=fih+f.. For all j it is clear that (k)7 is in ¥,
with a pole of order j at p, and that (h1)i(g) = (hi(g))’ for all g in Y —{p}. If
Bin 9 has a simple zero at p and o= ¢ we see that ah} ¥ for j <k, (ahl) (p) =0
for j <k, (ahy)*(p) #0. Since a; 70, it follows that ag €A and (ag)(p) 0. For
all g near p we have (ah)(q) =a(q)h(g) and

(@) (g) = a(@) () (g) = o) ()Y .
Thus

(ah) (@) — (ag)(@) = ala) [h<q) -y a,~<h1<q>>f].

=1

Since the function
& .
h— Z ajh’l,
j=1
where & and h, are considered as meromorphic functions on A, is regular at p,
it follows that ek —ag has a zero of order at least k at . Since

ag = fiah + fi
it follows that

(eg)(1 = f1) = ag — fiog
= ag — fiak + filah — ag) = foa + fi(ah — ag)

has a zero of order at least k at p. But (ag)(p) #0 so that 1 —f; therefore has
a zero of order at least k& at p. Therefore (1 —f1)k; is in ¥ and has a zero of
order at least £—1 at p. Therefore (1—f1)43 is in % and has a zero of order at
least £—2 at . Continuing this argument we see finally that (1 —fi)4} is in
9. Since by Lemma 3 & has the form

h = ’71(}11)” + 72
with v, and v, in ¥, it follows that (1 —f)hE¥. Therefore
g=fik+fa=h—A—-foh+fi=h—f

where f& . But this is just (*¥).

It remains to show that ¥, is an algebra. Let f and g be in %,. Let the
points py, - - -, pn in A include the poles of f and g, and let k;, 1 £:<#n, be in
o and have a simple pole at p;. Thus both fand g have representations of the
form (*). It follows that f-+g has a representation of the form (¥). It therefore
suffices to prove that the element % of C(X) defined by (*) is in U, for arbi-
trary constants a;; and an arbitrary f in A. We may assume that a4,;#0 for
each 7. For each ¢, choose a; in ¥ with a simple zero at p; and with a(p;) #0
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for 1#j. Set Bi=(a;)% and B=P1 - -+ Bs. Thus Bi(h:)'ENU for j<ki. Now
B(h:)?) (ps) is 0 if j<k; and not zero if j=k;. Also (B(kn)?)(p:) =0if j<k. and
m#i. It follows that Bk is in ¥ and (BA)(p:) %0 for all 7. Thus £ is rational
over A with poles py, - - -, p, having respective multiplicities ky, - + -, kn. It
follows that %, is closed under addition.

To see that ¥, is closed under multiplication, it is sufficient to consider
elements f and g in A, each of which has at most one pole, since by Lemma 4
any element in ¥, is a linear combination of such elements, and since we have
already seen %, to be closed under addition. First let f have a pole of multi-
plicity # at the point p, and let g have a pole of multiplicity m at the same
point p, where m >0, n>0. We show that in this case fg has a pole of multi-
plicity n+m at p. It is clear that h=g; - - - goymfgE Ao whenever g;(p) =0 for
1 <7< n+m, since we can write

h=gl. . 'gnfgn+l' © Gnimf.

It is also clear that we can choose the g; to give h(p) #0, since we can choose
them to give

(g -+ g"f)(p) # 0, (g,.+1 s gn+mg)(P) # 0.

This shows that fg&A. We now consider the case for fE, g has a pole of
multiplicity m >0 at the point q. By the decomposition (**), it is sufficient
to consider functions g of the form ()7, where & has a simple pole at ¢q. If
is the order of the zero of f at g, it is clear from successive multiplications by
h that kif is in A for 2=<r and has a zero of order r —7 at ¢. If j <r, this shows
that fgEU. If j>r, we see that a=Wfis in A and does not vanish at ¢, and
that fg=ah. From this it is clear that fg is in %, with a pole of order j—r
at q.

There remains the case in which f has a pole of order >0 at p and g has
a pole of order m>0 at ¢, with p>#q. Let by with ki(g) #0 have a simple pole
at p and h, with ky(p) #0 have a simple pole at gq. By the representation (**),
it is sufficient to assume that either f= (k)7 for §>0 or fEU, and g= (hy)*
for k>0 or g&€U. Since we have already settled the cases fEY or ¢S, we
assume f=(h;)? and g=(h,)*.

It is then clear that

a=fi---fign---aufg €U

whenever f;€¥, fi(p) =0, g;EN, g:(g) =0. Also, if we choose each f; to have
a simple zero at p and not to vanish at ¢, and each g; to have a simple zero at
g and not to vanish at p, we see that a(p) =0, a(g) #0. Thus fg is in %,. This
completes the proof that %, is an algebra.

Now consider k; and h; in %, and p in ¥ which is a pole of neither %; nor
ho. If g in A vanishes to sufficiently large order at the poles of k; and %, then
gmEN, gh,€HY, and ghh, EN. Choose such a g with g(p) 0. We then have
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g(D)(ha) (p) = (ghiha)(p) = (gh1)(p)ha(p) = g(p)hs(p)ho(9),

so that (ki) (p) = hi(p) ha(p). The proof that (hy+ k) (p) = hi(p) +he(p) is sim-
ilar.

LeEMMA 12, Let U be a uniform algebra with spectrum Y whose analytic part
is A. Let U be an open subset of A. Let ¢ be a bounded linear functional on
C(Y —U) which vanishes on A. Then there exists a unique analytic differential
dwg on U such that

] o(h) = (2 fc hde,

if h is any rational function over A whose poles all lie in U, if C is the union of
a finite set of disjoint simple, closed rectifiable curves lying in U, and if C bounds
a relatively compact open set V. C U which contains the poles of h.

Proof. Let p be any point in U and choose % in %, with a simple pole at p.
Thus k™! is analytic at p, so that d(A~'), considered at p, is in the space of
differentials at p (see Chevalley [2] for this notion). We define the form dws
to have the value ¢(h)d(h™) at p. To see that this does not depend on the
choice of k, consider a second function g in %, with a simple pole at p. By
Lemma 11, there exists a constant A such that g—AsEU. Therefore ¢(g)
=A¢(k). Viewing g and k as meromorphic functions on A we see that g—\h
is regular at p. Since g~! and k! are regular at p and vanish there we see that

FIg = M) = = A

has a zero of order at least 2 at p. Therefore we have d(h~1) =N\d(g™?) at p.
We therefore have

o(g)d(g™) = ¢(Wd(h™)

at p, so that dwy is uniquely defined.

To see that dwy is an analytic differential, notice that the function (%, 2)
of Definition 9 has a simple pole at Ai(z) for each z in D,. If we consider &,
which is defined on ¥ — {p}, to be an element of C(¥ — U) then the mapping

z— u(h, 2) = h(1 — zh)™1

is an analytic mapping from D§ to C(Y — U), where

D:= {z: ]zl <r}
with 7 chosen so small that ]zh(p)l <1forallzin DJand all pin ¥—U. Thus
z— &(u(h, 2))
is an analytic function on D}, so that

q — o[u(h, v1(9))]
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is an analytic function on Ej, where Ej=\,(D}) and 7; denotes the mapping
of E;, onto D; which is inverse to A\ If & and u(k, 2) are considered as mero-
morphic functions on A, it follows from Lemma 10 that

u(h, 2)(1 — zh) = h.
Therefore

[uh, )"t = i1 —2
so that

dlu(h, 5)]t = di.
Thus we see that the differential dw, is given on EJ by

[dos]e = Sl (uh, val@)][a[uh, va(9))] -,
= ¢[u(h, 7h(q))]dh_l(Q))

and is therefore an analytic differential.

To prove the formula [*], we avail ourselves of the representation (*) of
Lemma 11. Thus in proving [*] it suffices to consider functions k", where %
has a simple pole in V, and functions fin . Now if fE9, both sides of [*] van-
ish, the left side by the hypothesis on ¢ and the right side because fdw, is
analytic on V\UC.

Thus we consider & with a simple pole at a point p in V. Since h"dw, is
analytic on V\JC except at p, we may replace the contour C by any simple
contour about p. Thus in proving [*] we may choose C to be a simple closed
rectifiable curve lying in Ej and surrounding the point p. Using the represen-
tation obtained above for dws in Ej, we now compute, letting B be the curve
in D corresponding to the curve C in E},

fc Wrdusy = f (@) s(ulh, va(@)])dh-(g)

= j;z—nqs(u(h, 2))dz = ¢I:fBz‘"u(h, z)dz:|

o[ [ - el = o £ [ o]

k=0Y B

= ¢[2xikn] = 2wi¢(h").

This proves [*] and thereby completes the proof of Lemma 12, since the
fact that dw, is unique clearly follows from [*].

LeMMA 13. Let U be a uniform algebra with spectrum Y whose analytic part
is A and whose Silov boundary is X. Let U be an open set in A, and let B be the
boundary of U. Let B consist of all rational functions over % whose poles lie in
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U, and let B be the closure in C(Y — U) of B1. Then Y —U is the spectrum of B
and the Silov boundary of B is a subset of X\UB.

Proof. Consider any element X in the spectrum of 8. The restriction of A
to U is some point p in Y, so that

M) = f(#)

for all f in Y. Assume that p& U. Choose & in ¥, with a simple pole at p and
fin A with f(p) =0, (fh)(p) #0. Then

0 5 (fB)(p) = Mfh) = MfHIN(R) = 0-A(h) = O.

This contradiction proves that p& Y — U. For any % in 8B: choose g in U with
g(p) #0 and gh€¥. Then

gON(B) = MA(R) = N(gh) = (gh)(p) = g(p)h(p),

so that A(%) =h(p). Since this is true for all & in B, it is true for all & in B.
Thus Y — U is the spectrum of 8.

We now show that the Silov boundary of B is a subset of X\UB. Consider
a point p in ¥— U—(X'\UB). Since X is the Silov boundary of % there exists
a bounded linear functional ¢y on C(X) such that

oo(f) = f(p)
for all fin ¥, Define the bounded linear functional ¢ on C(X U{p}) by
o(f) = ¢u(f) — f(p).

Thus ¢(f) =0 for all fin ¥. Let V be any relatively compact subset of U
whose boundary C consists of a finite number of disjoint rectifiable simple
closed curves. Let By consist of all functions in B; whose poles lie in V. From
[*] of Lemma 12 it follows that

o(h) = (2mi)~! f hdw,
C
for all # in By. If we define the bounded linear functional ¢; on C(C) by
a:(1) = Qi [ i,
c

it follows that ¢y=¢o—¢1 is a bounded linear functional on C(X\JC) and
that ¢o(h) =h(p) for all k in By. Thus, for each positive integer »,

| 5@) | = [ :0) | = ||@l|[sup{ | ko) | : g € XV C}]"
for all & in By. By taking roots and letting n— « it follows that

| h(p)| < sup{| ()] : g€ XUCH.
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Now an arbitrary element % of B, will be in By if V is a large enough subset
of U, and the inequality just derived will obtain. Letting V converge to U
it follows that

| k(p)| < sup{|h(g)]:¢q€E X\ B}

for all  in ¥B,. This inequality therefore holds for all & in 3B, so that X\UB con-
tains the Silov boundary of %.

LeEMMA 14. Let U be a uniform algebra with spectrum Y whose analytic part
is A. Let X be the Silov boundary of U. Let g be a rational function over ¥ such
that g vanishes at only a finite set py, - - -, pn of points in Y, all of which lie in
A. Then g=* is a rational function over Y.

Proof. Let %y, - - -, ks be the orders to which g vanishes at py, - - -, pa
respectively. Let U be an open set in A containing the poles and zeros of g
such that the boundary C of U consists of a finite set of disjoint rectifiable
Jordan arcs lying in A. Let 9B, consist of all rational functions over 9 whose
poles lie in U. Let ¥ be the closure of B;in C(Y—U). By Lemma 13, Y—-U
is the spectrum of B.

Now since g&%B and g does not vanish on ¥ — U, it follows that g7!E3.

Let ¢ be any bounded linear functional on C(X) which vanishes on .
By Lemma 12, we have

o(k) = (2wi)! j; hdwg

for all & in By, and therefore for all & in B. Now let f be any function in ¥
which vanishes at py, - - -, pa to orders at least ki, - + -, k.. We shall show
that fg~'& . This will help prove that g~! is rational over ¥ with poles at
b1, + -+, pa of multiplicities &, - - -, k.. To see that fg~'€9, notice that
fg1ED, so that

(15 = iy [ firidos = 0

since fg~! is regular on A. Since ¢ is an arbitrary bounded linear function on
C(X) which annihilates ¥, it follows that fg~!&€U. To complete the proof
that g~! is rational over ¥, choose g;E%, 1 £i<#, such that g; has a simple
zero at p; and gi(p;) #0 for 15£j. Write f=(g)* - - - (g.)* By the above we
have fg'&€U. Since (fgY)g=f and g have zeros of the same order at
$1, * * *, Pa, it follows that (fg=!)(p:)#0 for 1=<i=<n. This completes the
proof that g—! is rational over .

3. Conditions for analyticity of the spectrum. In this section we derive
conditions which imply that certain points in the spectrum of a uniform
algebra belong to the analytic part of the spectrum. Somewhat more exact
conditions could be given, by refining the techniques employed here, but the
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added generality which would be obtained does not seem to justify the at-
tendant complication of the proofs.

LEMMA 15. Let 9 be a uniform algebra with Silov boundary X and spectrum
Y with analytic part A. Let g be a function in A whick vanishes at a finite set
P, -+ +, Pn of points in Y, all of which lie in A and are simple zeros of g. Let
A =inf{ |g(x)| :xCX}. Let f in U have the properties f(p1) =1 and f(p;) =0 for
2=i=n. Then there exists a neighborhood F; of p1 in A which g maps homeo-
morphically onto {z: lzl <A(32]|f||3)‘1}.

Proof. By Lemmas 11 and 14, we see that A =f2g~!is rational over % with
a simple pole at p;. Let D be the set

{o: | 5| = @lfh=[a]}.
Since ||f|| 2 | f(p1)| =1, we see that
DC Dy = |z | 2] =[]},
so that E=\,(D) is a subset of E;. By Lemma 9, k=1 o \; is the identity map
on D CD;. Since ||g~Y| 41, we have ||4]| £4-!||f]|? so that [k]=(2|/4|)~?

=A4||fl|»—. Now |f(g)—1| =2||f|| for ¢ in Es, and f(p1) —1=0. Since k!
maps E, homeomorphically onto D, it follows by Schwarz’s lemma that

| @ — 1] = 2fll| B9 | [4]

for all ¢ in E,. In particular, for ¢ in E this gives

|7t — 1] = 2|l (s [x] = 172,
so that ] f(q)l =1/2. Thus for ¢ in the boundary of E we have

le@| = [ @2 k@) | = /4 @A) [A]
2 1/4(|Ah14@flH = a@2f|A|H

Assume for the moment that p, is the only point in E at which g vanishes.
Then this last inequality when combined with Rouche’s theorem tells us
that each value of z with lzl <A(32]|f[|3)‘l is assumed by g exactly once on
the set E. If we set

F,= {q: g€ E, Ig(q)l < A(32Hf”3)—1},

the set F; has the required properties.

It only remains to see that p; is the only point in E at which g vanishes,
i.e., that none of the points p;, 2<7=#, is in E. If such a p; were in E, we
would have k(p,) =f(p:) (fg~!)(p:) =0, contradicting the fact that & does not
vanish on E;. This completes the proof of Lemma 15.

DEeFINITION 12. Let ¥ be a uniform algebra with Silov boundary X and
with spectrum Y whose analytic part is A. Let g be a function in . A point
z in —g(X) will be called g-regular of multiplicity n if g=({z}) consists of
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points py, - - -, p, of Y, all of which lie in A and at each of which g—z hasa
simple zero. A component U of —g(X) will be called g-regular of multiplicity
n if all points in U with the exception of an isolated set in U are g-regular of
multiplicity #.

DEerINITION 13. A point p in the spectrum Y of a uniform algebra A will
be called one-dimensional of multiplicity n if there exists a connected neighbor-
hood U of p such that

@ U- {p} consists of # components Uy, - - -, U, each of which is a
subset of A.

(ii) For 15¢<n there exists a homeomorphism ¢; of U,\J|{ p} onto
{z:]2| <1} which is analytic on UL..

LEMMA 16. Let V be a bounded open set in the complex plane with boundary
B. Let N be a relatively open subset of B and A an analytic function in V such
that
lim A(z) = 0

z—t
for each t in N. Then N is an isolated set (the relative topology of N is discrete),
Proof. Let #, be any point in N and let L be some neighborhood
L={z Iz—tol < ¢

of ¢y with the property that LNB CN. Define the function Ay on L by Ay(2)
=A(z) if 2&V and Ay(2) =0 otherwise. Thus A, is continuous on L and ana-
lytic at those points where it does not vanish. By a theorem of Radé (see
[3]), Aq is analytic on L. Since A, vanishes on LNN, the point £, is isolated
in LMN and therefore isolated in N. This completes the proof.

LEMMA 17. If U is a uniform algebra with spectrum ¥ and Silov boundary
X and if g is a function in U, then any component U of —g(X) which contains
a g-regular point 3o of multiplicity n is g-regular of multiplicity n. If z is any
point in U then there are at most n points p in Y with g(p) =z, each of which is
one-dimensional. If there are exactly n such p then they all lie in A and are simple
zeros of g—a.

Proof. Let f be any function in % with H f|] =1/2 which has distinct values
at the points p in A with g(p) =2.. Let U, consist of all points in U which are
g-regular of multiplicity #. For each z in U, let p}, - - -, p* be the points in
A where g takes the value 2, and define the function A on U, by

a@ = 1I (F(p) — fB2)".

Let V be the set of all zin U, with A(z) %0, so that 20& V. For each z in U,
define the functions f; in %, 1<i<#, by
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o) = IT (F(p) — 1),

ini
Since ||f|| £1/2 we have |A(z)| <1, ||| £1. Also,

n

la@ | =11 [aa ],

i=1

where
Adz) = Y.

We therefore see that IA,—(z)I = |A(z)
V we define

for 1=£7<# and z in U,. For z in

g = (M) Y.
It follows that gi€¥, that ||g]| <|A«z)| 1< |A()| Y, that gi(ph) =1, and
that gi(p?) =0 for j#i. It follows from Lemma 15 that there exists a neighbor-
hood of p}in A which g—z maps homeomorphically onto

(e 1] < 4.62e]7},

where A4, is the distance of z to g(X). Thus g maps some neighborhood F} of
p: homeomorphically onto

D,

{t:|t—z| < K.}

where

K. = 1/324,| A(z) |2.

For 77 there thus exists a unique analytic homeomorphism ¢ of F:onto F}
which identifies points at which g has equal values. Now if F} and F} had a
common point ¢, it would follow that o(g) =¢. Thus Q= F:\F} would be non-
void and ¢ is the identity map on Q. Clearly Q is open in F: because both
F:and F! are open. Since @ is the fixed set of ¢ on F! it is also clear that Q is
closed in F}. Since F:is connected it follows that Fi=Q if Q is nonvoid. From
this it would follow that o(p) =p for all p in F, so that pl=0a(p!) =i, a con-
tradiction. Therefore the sets F;, - - -, F? are disjoint for each zin V.

If 2&V and tED,, it follows that g—¢ has exactly one simple zero in each
of the sets F}, which we denote by pf, - - -, pP If we can show that g—t
vanishes at no other point of Y, it will follow that ¢& U,. To see this, let H
be the set of all ¢ in D, such that g(p) =¢ for some p in Y—F!— ... —F"
Clearly H is a closed subset of D, and z& H. To see that H is open in D, or
that D,—H is closed in D,, let ¢t in D, be in the closure of D,— H, so that there
exists # in D,— H arbitrarily near to ¢&. By Lemma 14, (g—u)~! is in %o, so
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that (k—h(pY) - - - (h—h(p%))(g—u)~" is in ¥, for each & in Y. Letting u
converge to {, we see that

(k= h(p)) - -+ (b = B = O = o
is in %. Thus for any p in ¥ with g(p) =t we have

(h(p) — h(p:)) - - - (h(p) — h(pD)) = (2(p) — Dholp) = O.

Since & was any element in ¥, it follows that p is one of the points p;. Thus
tED,— H. Since H is both open and closed, and since 2 H, we see that H is
void. Therefore D, C U,. Since A(z) %0 and the p} depend continuously on
t for t in D,, we see that A(f) #0 for all ¢ sufficiently near z. Thus V is an open
subset of U.

Now A is an analytic function on V, because for 1 <¢=<#» the mapping
t—pi is an analytic function from D, to A. We see by the above formula for
K, that every boundary point of V is either a point of g(X) or a point at
which A converges to 0. Let B be the boundary of V. It follows from Lemma
16 that N=B —g(X) is an isolated set. Therefore U— V is an isolated subset
of U. Therefore U is a g-regular component of —g(X) of multiplicity ». If
pEY and g(p) EV, then pEA so that p is a one-dimensional point of ¥ of
multiplicity 1. If, on the other hand, g(p)EU—V, let W be a neighborhood
of z=g(p) such that W— {2} CV. Thus g~(W— {z}) (where g— is the relation
inverse to g) is an n-sheeted Riemann surface S over W— {z} and the func-
tions in ¥ are all analytic and bounded on S. Thus S can be completed to a
Riemann surface Sy over W, with possible branch points at 2z, on which the
functions in A can be extended to be analytic. Thus S, has a natural mapping
into Y, and it is clear that every point in the image 7% of So—S in Y is one-
dimensional. It is also clear that there are at most # such points. It remains
to prove that p& T'. To see this, we use the same type of proof that was used
above to show that g—¢ vanishes only at pj, - - -, pl. Thuswe consider
arbitrary functions ky, - - -, ks in U, so that

(i = a(p) - - (bn = ha(pD) (g — )
is in % for each u in W— {z}. Letting u converge to z we see that
(B = Ra(9Y) -+ - (bn — ka(p™))(g — 2)7' = o

is in ¥, where p!, - - -, p™ are certain points (not necessarily distinct) in T}
with g(p%) =2. We therefore have

(Bi(p) — Ba(pY) - - - (Ba(p) — Ba(p™) = (8(p) — 2)ho(p) = 0.

Since k; is any element of ¥, p is one of the points p?, as was to be proved.
It remains to show that (g—2)!is rational over U with poles p!, - - -, pn
whenever p!, - - -, p" are distinct points in Y with g(p¥)=z€ U, 1 Z:1<n.
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Since we have just seen that the function A, is in ¥ for all choices of the &;,
this will follow from the following lemma.

LeMMma 18, Let g be a function in a uniform algebra N and let p1, - + +, pa
be points in the spectrum Y of N such that ho=g 'hy + - - kn s in A whenever
the functions h; are in W and hi(p;) =g(p:) =0 for 1 S1=n. Then g~ is rational
over A with poles p1, + + +, Pa.

Proof. Let
hi =tg + fi

where f;E¥, fi(p:) =0, fi(p;) =1 for j=1 and where ¢ will be chosen. It is clear
that ho(p;) is a polynomial F; of degree S# in ¢ and that the coefficient of ¢
in F;is 1. Thus ¢ may be chosen so that F;(t)#0 for all Z, and thus ko(p:) #0
for all 4. It follows from Definition 4 that g~! is rational over % with poles
Pl) Tty P"'

We next investigate the nature of points p in ¥—X with g(p) €g(X).

LEMMA 19. Let U be @ uniform algebra with Silov boundary X and spectrum
Y. Let g be a function in A and U be a g-regular component of —g(X) of mulii-
plicity n. Let the point 2y in g(X) be the vertex of a nondegenerate triangle whose
interior lies in U. Let there exist only a finite number of points q in X with
2(q) =z2o. Then there exist at most n points poin ¥ —X with g(po) =20, and each
of these points is a one-dimensional point of ¥ —X.

Proof. It is no loss of generality to assume that 2o=0 and that the segment
(0, 1] of the real axis lies interior to the triangle in question. There therefore
exists a constant K >0 such that

dist(», g(X)) = K=

for 0<x=1.

Let po be any point in ¥ — X such that g(pe) =20=0. The idea of the proof
will be to perturb g to a function go such that go(po) will lie in a go-regular
component of —gy(X), thereby showing that p, is one-dimensional. The per-
turbing function % will be any function in % such that h(po) =1 and k(q) =0
whenever ¢& X and g(g) =0. Such a function k exists because the number
of such points ¢ is finite.

Since % vanishes on the set g=(0)N\X, there exists x in (0, 1] such that
lh(p)I <K whenever pEX and |g(p)| S(1+K/2)x. Write go=g+ Mh,
where M =min{x/2, (2|[h“)‘1Kx}. Let p be any point in ¥ with go(p) =x.
Then

lg(p) — x| < M| n)| < Ml[n|| < -—;—-Kx < dist(z, g(X)).

It follows that g(p)E U, so that p is a one-dimensional point, and some
neighborhood of p with p deleted lies in A. It also follows that there are only
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a finite number of such p, since an accumulation point of (go)~(x) would be
a point in (go)~(x) which could not be one-dimensional. Thus (go)~(x) is
finite and consists of points each of which has a deleted neighborhood lying
in A. It follows that y is a go-regular point of —go(X) for all y sufficiently near
to x. Choose such a y with M <y=x, and let V be the component of —g,(X)
which contains y. By Lemma 17, V is go-regular. We shall show that the
interval [M, x] belongs to V. It will follow that p, is one-dimensional, since
g2o(po) =g(po) + Mh(po) =0+M=MEV and V is go-regular.

To see that [M, x]CV, it is clearly enough to show z&go(X) for z in
[M, x]. Therefore consider z with M <z<x, and let p be any point in X. To
show that go(p) #z, there are two cases to consider. First consider the case
lg(p)| >(1+K/2)x. Then

[g(p)| 2 | 2] —M“h”><1+%K>x——;—Kx=x>z

so that go(p) #z. Next consider the case [ g(p)l =(14+K/2)x, so that |h(p)|
<K. Then

dist(go(p), £(X)) < | go(p) — g(»)| = M| h(p)| < MK < 2K

<
< dist (g, g(X)),

so that go(p) #z in this case also.

Thus we have shown that every p, in V—X with g(po) =0 is a one-
dimensional point of ¥ which has a deleted neighborhood consisting of points
in A. Thus for each neighborhood N of p, we see that g(V) is a neighborhood
of 0. It follows that there are at most # such points p,, since otherwise all
points ¢ in the complex plane which are sufficiently near to 0 would be the
images under g of more than # points in ¥, and we know that this is not the
case for ¢t in U. This completes the proof of Lemma 19.

It remains to give conditions which make a component of —g(X) g-
regular. In doing this we essentially follow Wermer [1], although the details
are different. The idea is to start from the unbounded component of —g(X),
which is obviously g-regular, and to proceed step by step, showing that a
component of —g(X) which is close enough to a g-regular component is it-
self g-regular. The crucial lemma is the following, which is derived following
Wermer.

LeEMMA 20. Let U be a uniform algebra with Silov boundary X and spectrum
Y. Let g be a function in % and U and V components of —g(X), such that there
exists z in V with (g—2)" €U for some z in V (so that V is g-regular of multi-
plicity 0). Let there exist an open Jordan arc Jy which is an open subset of g(X)
such that J=g=(J1)NX 1is mapped homeomorphically by g onto Jy and such
that U and V are the components of —g(X) which border on Jy. Then U is g-
regular of multiplicity 0 or 1.
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Proof. By replacing the function g in % by the function (g—z)~!in U we
reduce to the case in which V is the unbounded component of —g(X). After
replacing the arc J; by a slightly smaller arc—if necessary—we can find a
simple closed curve I' in the complex plane with interior ® such that g(J)
=J1CT and g(X) CT'U®. Let ¢ be a conformal map of ® onto {w: I‘wl <1},
so that ¢ can be extended to a homeomorphism of I'U® onto

D={'w:|w| < 1},

By a theorem of Mergelyan [6] we see that ¢ is a uniform limit on T'\U® of
polynomials, so that go=¢ o g is in U.

Let 2o be any point in U. Write wo=¢(2) and Uy=¢(U). Let ¢ be the
inverse mapping to ¢, so that g=y o go. Now if go—w, vanishes at a unique
point po in Y then clearly g—z, vanishes at the unique point po in V. If p,
lies in A and go—w, vanishes to multiplicity 1 at p, then, since g=¢ o g, the
function g— 3z, also vanishes to multiplicity 1 at p,. It follows that to show 2z,
is g-regular of multiplicity 1 it is sufficient to show that wy is go-regular of
multiplicity 1. The same statement holds of multiplicity 0. Thus to show that
2o is g-regular of multiplicity 0 or 1 (and thereby prove the lemma) it is suffi-
cient to show that w, is go-regular of multiplicity 0 or 1. There are two cases
to consider, depending on whether (go—wo)~! is in ¥. If it is then w, is go-
regular of multiplicity 0. Thus we have left the case (go—wo)~1& . Under
this assumption there exists a finite, complex-valued Baire measure up on X
with

f (g0 — wo)~'du 0

ffdp=0

and

for all fin A. Now
0% [ (g0 = w i = [ (0 ~ w-iinta,

where v =go(u). If we let J, be the arc go(J) =¢(J1) of the boundary of D, and
Xo=go(X), we see that J, is open in X, and that go maps J =gy (J,) homeo-
morphically onto Jo. Also U, and the unbounded component of —X, are
the components of —X, which adjoin J,. Clearly » is a measure on X,.

For each f in ¥ the measure fu on X defined by

() (S) = fs fiu
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for all Baire sets S will be orthogonal to . In particular fu is orthogonal to
all polynomials in g, so that the measure

v = go(fu)

on X, is orthogonal to all polynomials. Clearly »,=». For each f in ¥ define
the analytic function f on U, by

Jw) = [ = wrtan® = [ (50— win.
We have
1(wo) = f (w — wo)~ldv(w) # 0,

so that 1 does not vanish identically on U, Thus the set T of zeros of 1 is
an isolated subset of Ul. Since v, is orthogonal to all polynomials,

f(t — w) Wy () =0

for all w in —D. Since J, separates —D from U,, it follows (see for example
Wermer [7, p. 49]) that f has nontangential boundary values f(¢) at almost
all points ¢, in Jo, given by

- _ T dve(8)
J) = 2’"[ at ]t-,o’

where dv;(t)/dt is the Radon-Nikodym derivative of the measure »; on J, with
respect to the measure d¢ on Jo. 1f we let £ be the map of J, onto J which is
inverse to go then the restriction of »; to J, has the representation

vy = go(fu) = (foh)gw) = (foh)v
for all f in 9. It follows that

Jt) = (fok)-1(t0)

for almost all ¢y in Jo. It follows that for arbitrary f, and f, in U the function
a=fifs— [fif2] -1 on U, has nontangential boundary values which vanish
almost everywhere on Jy. Therefore a vanishes identically on U,. If T denotes
the isolated subset of U, on which 1 vanishes, for each fin ¥ define the func-
tion f on Uy—T by

=7
Thus f is analytic in Us— T and fifa= [fifz]” for all f; and f, in %. For each
win Uo—T it follows that the map f—f(w) is a homomorphism of % into the

complex num!)ers and therefore defines a point in the spectrum ¥ of . Thus
we see that | f(w)| =||f|| for all w in Uy~ T. It follows that J can be extended
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to all of U, and has nontangential boundary values f o k at almost all points
Of Jo.

To show that w, is ge-regular of multiplicity 1, let » be the point in ¥
defined by

f(#) = J(wo)

for all f in . It is enough to show that (go—w,)~! is rational over ¥ with a
simple pole at p. To do this, consider f in % with f(p) = f(wo) =0. Then

[ e = woias = [ (a0~ worratsm

= [ w0 = worn ) = o) = Ta) TCar)
= () 1wo) = 0.

Now u can be any measure on X which is orthogonal to % and which is not
orthogonal to (g—20)~!. Since such a p exists, every measure ¢ on X which is
orthogonal to I can be written as the difference of two such u. Thus

ff(go — wp)~ldo = 0

for all f in A with f(p)=0 and all such ¢. The function fi=f(go—wo)~"! is
therefore in A. If f=(go—wp) then fi(p) =17#0. Thus (go—wo)~! is rational
over ¥ with a simple pole at p. It follows that go—w, vanishes on Y at the
unique point p in A which is a simple zero of go—w,. Thus w, is go-regular of
multiplicity 1, as was to be proved.

LemMA 21, Let U be a uniform algebra with spectrum Y and Silov boundary
X. Let A be the analytic part of Y. Let g be a function in A and U and V be
components of —g(X). Let Jo be a smooth simple open Jordan arc which is an
open subset of g(X) such that the set J=g—(Jo)N\X is mapped homeomorphically
by g onto Jo. Let U and V be the components of —g(X) which adjoin J,. Let V
be g-regular of multiplicity n. Then U is g-regular of multiplicity n, n+1, or
n—1.

Proof. By the smoothness of Jo, all points in J, are vertices of nondegen-
erate triangles whose interiors lie in V. Consider f in % and form the function
A on V defined at any g-regular point z of V by

A@ = T (@D — 162,
15i<jsn

where p;, - - -, p? are the points in g~({2}). The definition of A is completed
by defining it to be 0 at other points of V, so that A is an analytic function on
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V. If f is chosen to have distinct values at the points p}, - - -, p; for some
particular z then A will not vanish identically on V. Let f be so chosen. Then
the set T’ of points 2, in Jy such that A(z) does not converge to 0 as 2—z, is
dense in Jy. For each zp in I' there exist at least # distinct points ¢ in ¥ with
2(q) =z0. Now for any 2, in J, there exists exactly one ¢ in X with g(g) =z, and
by Lemma 19 there are at most # such ¢ in ¥—X. Thus there are at most
n+1 distinct points ¢ in ¥ with g(q) =z, for all 2o in Jo. Let 2, be chosen to
be a point in J, for which the number % of such points ¢ is a maximum. Thus
k<n-+1. On the other hand, £=# because for 2o in I' there exist »# such points
g. The rest of the proof of Lemma 21 divides into the consideration of two
cases. Case 1 will be the case k=n-+1 and Case 2 the case k=n.

We consider first Case 1. Since there is exactly 1 point ¢ in X with g(q)
=z, there are exactly # points qu, - - - , ¢ in ¥ —X with g(g;) =2,. By Lemma
19, each g¢; is a one-dimensional point of ¥ and therefore has a deleted neigh-
borhood which lies in A. Thus if we replace z, by a sufficiently near point of
Jo we may asume that ¢;EA, 1 <7=n, and that g—z, has a simple zero at
each of the points g;. Thus there exist disjoint neighborhoods Wy, - - -, W, in
A of g1, - - -, g. respectively whose closures lie in A each of which g maps
homeomorphically onto a neighborhood T of z,. We may choose T so that
UNT and VNT are connected. Write

W=w,U...-UW,

and B=bdry W. Let 9B, be all rational functions over I whose poles lie in
W. Let B be the closure of B, in the space C(Y —W). We see by Lemma 13
that the Silov boundary X, of B is a subset of X\UB. Thus g(X,) C(bdry T)
Ug(X). It follows that there are unique components Uy and Vy of —g(X,)
with UyDTNU and Vo, DTNV, Since V is g-regular for ¥ of multiplicity #,
and since T Cg(W,) for each ¢, we see that g~ (TNV)CW,, so that TNV C
—g(T'—W). Since T— W is the spectrum of B it follows that V, is g-regular
of multiplicity 0 for the algebra 9. If U, and V, are the same component of
—g(X,) then U, is g-regular for the algebra B of multiplicity 0. Otherwise
(by Lemma 20) U, is g-regular for the algebra 8 of multiplicity either 0 or 1.
Thus in either case U, is g-regular for the algebra B of multiplicity 0 or 1.
In case U, is g-regular for B of multiplicity 0 then for each z in U, g—2 does
not vanish on ¥—W so that z is g-regular for ¥ of multiplicity #. Thus in
this case U is g-regular of multiplicity #. In case U, is g-regular of multiplicity
1 for B let z be any point in TMU and let po be the point in ¥—W with
g2(po) =2. Thus g—z vanishes on Y at exactly the points py, 1, - - -, p», Wwhere
pifor 1 £7=<nis that point in W, with g(p;) =2. To show that U is a g-regular
component of multiplicity #+41 for the algebra U it suffices to show that
(g—2)"! is rational over ¥ with poles po, p1, - - -, pa. To this end consider f
in ¥ vanishing at po, - - -, p.. Since z is a g-regular point for B of multiplicity
1 and f(po) =0 we see that f(g—2)"'EB. Thus if ¢ is a bounded linear func-
tional on C(X) which vanishes on U we have
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olfte =91 = [ flg = 7%dwn = 0

since f(g—z)~! is analytic in W and on the boundary B of W. Since this is
true for all ¢ we have f(g—z)"!€. By Lemma 18 it follows that (g—2)~'is
rational over I with poles po, - - -, p» and therefore that U is g-regular for
U of multiplicity #z+1. Thus we see that in Case 1, U is g-regular of multi-
plicity # or n41.

It remains to consider Case 2, so that there are » — 1 points, say gy, * * *,gn1
in ¥—X with g(g:) =2,. Since by Lemma 19 each ¢; has a deleted neighbor-
hood which lies in A, we may assume—by replacing z, by a nearby point of
Joif necessary—that each g; belongs to A and is a simple zero of g —zo. Choose
disjoint neighborhoods Wi, - - -, W,y in A of g, + -+, ga—1 respectively
which g maps homeomorphically onto a neighborhood T of 2, such that the
W, are disjoint subsets of A and such that 7N U and TNV are connected.
If T is chosen small enough then T=(TNU)\J(TNV)\JU(TNJy). Write

Q=Ww,J ... U W,._1Ug—(T('\ V).
We first show that Q CA. To do this it is sufficient to show that
H=g(TNV)—Wy— -+ —Wa1CA.

Consider po in H, so that z=g(pe) is in V. Thus there exist py in Wy, - - -,
pnrin W,_y with g(p;) =2. Thus po, + - -, pa_s are distinct points in g~({z}).
Since 2& V and V is g-regular of multiplicity » these points are all of g‘({z } ).
It follows from Lemma 17 that poEA. Therefore QCA.

Now let 8B, be the set of all functions rational over 2 whose poles lie in
Q and let B be the closure of B in the space C(¥ —Q). Thus the Silov bound-
ary X, of B is a subset of X\Ubdry Q. Since UNT and VNT are connected
these sets are therefore contained respectively in components U, and V), of
—g(Xy). The component V, of —g(X,) is g-regular of multiplicity O relative
to the algebra ¥ since g—z does not vanish on ¥ —{ whenever 2& VNT. By
Lemma 20, U, is g-regular of multiplicity 0 or 1 for the algebra 8. Now if
U, is g-regular for B of multiplicity 0 then g—z does not vanish on ¥ —Q for
zin UNT CU,, so that for such z the zeros of g—z are in W1\U - - - UW,_,.
Therefore z is a g-regular point of —g(X) of multiplicity # —1. Thus we need
only consider the case in which U, is g-regular for B of multiplicity 1. In this
case for each z in TMUC U, there is exactly one point A(z) in ¥—Q with
g(\(2)) =32, and the map z—A(z) is a homeomorphism of T\ U onto an open
subset of A(B), where A(B) CY —Q is the analytic set for the algebra B. We
now extend the function X from TN\ U to the entire set T'=(TNU)J(TNTV)
U(TNJy). For each z in TMJ, let A(2) be the point in X with g(A\(2)) =2, so
that A is a homeomorphism of 7/\J, onto a subset of J. For each zin TNV
let A(2) be that point in H with g(\(z)) =z. There exists one such point \(z)
because otherwise g—2z would vanish on Y only at the points p1, + - -, paa
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in A, at which points g—z has simple zeros, contradicting the fact that V is
g-regular of multiplicity #. On the other hand there is at most one such point
\(z) in H, again because V is g-regular of multiplicity #. Thus A(2) is uniquely
defined on TN\ V. From Lemma 17 it follows that A(z) €A for all zin TNV,
Clearly \ is an analytic homeomorphism of 7'\ V onto an open subset of A.
Thus we have defined a map N from T to V. Since A is continuous on each
of the sets TMU, TNV and TM\J,, to show that A is continuous on T it is
only necessary to show that A is continuous at points of TM\J,. If this were
not so there would exist z in 7/\J, and a sequence {z;} in T converging to z
with A(z;) converging to a point ¢#A(z) in Y. Since ANE)EYV —-W1— - - -
—Wa_1 we have g€ Y —W1— - - - —W,_1. Let u;, 1S7=<n—1, be the point
in W; for which g(u;) =2. Thus u, - - -, %41, ¢, A(2) are distinct points in ¥
mapping by g onto z. Since 2& J, this contradicts the fact that k= in Case 2.
This contradiction shows that N is a continuous map of T into Y. Now for
each fin ¥ the function f o X is continuous on T and analytic on T — J,. Since
Jo is smooth, f o N is analytic on 7. Thus f o X has no strong maximum inte-
rior to T so that f has no strong maximum on the set N(T). Thus N\(J,) CJis an
open subset of X such that every fin U assumes its maximum on X —\(Jy).
This contradicts the fact that X is the Silov boundary of . This contradic-
tion shows that U, can not be a g-regular component of —g(X,) of multiplic-
ity 1 for the algebra %B. This was the last remaining case so that the proof of
Lemma 21 is complete.

4. Proofs of Theorems 1 and 2.

Proof of Theorem 1. Let U be any component of —g(X) and let w; be any
point of U. Let w; be any point of the unbounded component of —g(X). Let
4 be a Jordan arc which joins w; to w, and fulfills conditions (d) of the state-
ment of Theorem 1. If —g(X) has a finite number j of components then clearly
v can be chosen to intersect g(X) in at most j—1 points. Thus ¥ —g(X) con-
sists of a finite number of components 1, - -, vk, which we order according
to the direction along v from w; to w.. If —g(X) has a finite number j of
components then £ <j. Now each v; belongs to some component U; of —g(X).
Clearly wy& U, and w,& Uy, so that U, is the unbounded component of
—g(X) and U,= U. We thereby see by applying Lemma 21 £—1 times that
U= U is a g-regular component of —g(X) of multiplicity at most k—1. By
Lemma 19, each p in ¥ —X for which g(p) is the vertex of some nondegenerate
triangle whose interior lies in U is a one-dimensional point of ¥—X, and at
most k—1 such points lie over a given point in g(Y). Thus ¥ —X is the union
of A and the set T of one-dimensional points of ¥—X which are not in A.
Clearly T has no cluster point in ¥—X and so is an isolated set. To each p
in T choose a deleted neighborhood U of p in A such that U is a finitely-
sheeted covering space by the map g of g(U) = {2: 0< l z——g(p)l <r}. Thus U
is a finite Riemann surface over g(U). Therefore U can be completed to a
finite Riemann surface V over g(U)\JU { g(p) } Let p1, - - -, pm be those points
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in V which cover g(p). Consider the set S consisting of A and the points
P1, * * +, pm for all p in T. This set can be given as follows the structure of a
Riemann surface. At each p in A, S has the structure of A, and at each of the
points p;, S has the structure of V. Clearly S is a Riemann surface which
satisfies the conditions of Theorem 1.

Proof of Theorem 2. Since S is separable it has only a countable number of
components. Since the functions in ¥ are constant on no component of S, by
a standard construction there exists g in % which is constant on no component
of S. Let

KiCK.:C---CK.C---

be an increasing sequence of compact subsets of S whose union is S. By induc-
tion we choose open sets U,;C.S with the following properties:

(1) 77,'-1UK.:C U; and ﬁ.' is compact.

(2) The boundary v; of U; is the union of a finite number of disjoint
smooth closed Jordan curves.

(3) dg vanishes nowhere on +;.

(4) g(p1) =g(p2) for at most a finite set of pairs (p1, p) of distinct points
of ;.

(5) glv:)Ng(yi) is a finite set.

(6) g(vdNg(yi-)MNg(yi-) is void. _

Assume that Ui, - - -, U;—; have been chosen. Since U;_\UK; is compact,
there exist U; and ; satisfying (1) and (2). Since g is nonconstant on each
component of S, the curves v; can be moved slightly, if necessary, so that
(3), (4), and (5) are satisfied. Since by the induction hypothesis g(y;_1)
Mg(yi-s) is finite, we may choose ; so that (6) is also satisfied,

Having chosen the sets U; and +; for all ¢, we let U; be the closure of U
in C(T;)=C(U\Jv,). Let Y, be the spectrum and X the Silov boundary of
;. Let 7, be the natural map of U;into Y. Since every function in ¥, assumes
its maximum for the set T; on #;, it is clear that

X; Cwilya).

Because of this and the properties (3) and (4) above we see that the algebra
A; and the function g in ¥; satisfy all conditions of Theorem 1. Let A; be
the analytic part of V; and let T;,=Y;—X;—A;, so that T; is a countable
isolated set. Let S; be the Riemann surface corresponding to the algebra %;
constructed in the proof of Theorem 1. Let \; be the map of S; onto V;—X,.

Since U, CT; for 1<j, there is a natural homeomorphism ¢;; of ¥; into
Y; such that

f(@5(2)) = f(p)

for all pin Y;and all fin U, where f on the left of this equation is considered
as a function in %; and f on the right is considered as a function in ;. Clearly
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b1 O Pjs = iy

for 1 <j<k.

If s;€S; and s;ES; write s;=s; in case there exists a neighborhood V; of
s;in S;, a neighborhood V; of s; in S;, and a homeomorphism g of V; onto V;
such that

™ foxi=foxro0B8 onV;

for all fin . Since f o A; and f o \; are analytic on S; and S; respectively, it
follows that B is necessarily an analytic homeomorphism of V; onto V;. It
is clear that s;=s; implies that 8(s)=s for all s in V,. If =7 and s;5%s;, so
that S;=3S;, it follows that s=(s) for some s in S; with B(s) in S;, s#8(s),
Ni(s) & T, Mi(B(s)) €& T;. This contradicts the equation (*) because there exists
fin U assuming distinct values at the distinct points N\i(s) and N;(8(s)) of V..
Therefore no two distinct points in .S; are equivalent. It is clear that = is an
equivalence relation on the set U; .S;, where the S; are taken to be disjoint.
Let S’ be the set of all equivalence classes of U; S;. We thus have a natural
one-one map o; of S; onto a subset S/ of .S’, where S/ consists of those equiva-
lence classes which contain elements of S;. It is clear that for each fin U
there exists a unique function f’ on .S’ with

f(oi(ss)) = f(\i(s))
for all s;in S;, 1 £4< . Define
o ={f:feu

so that A’ is an algebra of functions on S’. Let 7 be the mapping f—f’ from
A onto A’.

We topologize S’ by defining W .S’ to be open if ¢7(W) is open in S;
for all 7. Clearly this gives a topology on S’ and the functions in %’ are all
continuous in this topology. The maps o; are also clearly continuous. Con-
sider an open set W;CS;. We shall show that W=¢;(W,) is open in S’. To
this end we must show that o7 (W) =W, is open for all j. Now if 5;& W, then
si=si, where s;=07(0;(s;)) is in W;. Thus there exists a neighborhood V;C W;
of s;, a neighborhood V; of s;, and a homeomorphism 8 of V; onto V; such
that B(s)=s for all s in V;. Therefore ¢;(3(s)) =0:(s) so that B(s) EW;. Thus
V;CW,;. It follows that W; is open for each j so that W is open in S’. Thus
0; is a homeomorphism of S; onto the open subset S/ of S’. It follows that
{S{ } is a covering of S’ by open sets, each of which is homeomorphic to a
Riemann surface S; by a given map o;. Thus to give S’ the structure of a
Riemann surface it is sufficient to show that the map o5 o a; of a7 (S/ NS/)
onto o5 (S{ MS;) is analytic for all 7 and j. Let p; be any point in ¢7(S! NS}),
so that

pi = o5 (a:i(p) € o7 (S NS))
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and p;=p,. There therefore exist neighborhoods V;and V; of p; and p; respec-
tively and an analytic homeomorphism 8 of V; onto V; satisfying (*). As
above, ¢;(s) =0;(8(s)) for all s in V;. Thus on V;, B=0¢7 0 g;, so that g7 0 0;
is analytic at the point p;. Thus ¢5 0 ¢; is analytic on o7 (S!MN.S/). It follows
that .S’ can uniquely be given the structure of a Riemann surface in such a
way that the maps ¢; are all analytic. As a consequence the functions f’ in
A’ are all analytic on S'.

Now let ¢ be a continuous homomorphism of % onto the complex numbers.
Thus there exists a compact subset K of .S with

16(N| = sup{|f(p)| : p € K}

for all f in Y. Since the U; cover .S there exists n with K C U,. Since g(y,)
MNE(Yn41) Mg (Ynye) 1s void we may choose m with ¢(g) Eg(ym), where m=mn,
n+1, or n+2. Thus K C U,.. Therefore

lo(f)| < sup{|f®)]|:p € Tn}

for all fin . There therefore exists go in ¥,, with ¢(f) =f(qo) for all f in U.
Since g(go) =¢(g) &g(X,) it follows that ¢o& V,, — X . Let p,, be any point in
Sm with N (Pm) =qo. Write p =0, (pn). It follows that pES’ and

'(p) = f'(on(pm)) = fAn(pm)) = f(g0) = ¢(f)

for all f in 9. This proves (2) of Theorem 2.

Now let p be any point in S. As above there exists ¢ with pE U;, g(p)
&g(X,). Thus mi(p) X, so that mi(p)E ¥V;—X,. Let V be a neighborhood
of p in U; with 7(V) CY:—X, and g(g)#g(p) for all ¢ in V—{p}. Thus
wi(g) #Zmi(p) for all such ¢. Since the points of T;=Y;—X;—A; are isolated
in ¥;—X,, we may choose V so small that m,(V—{p}) CA;. Now f;0mi=f
for all f in A, where we have subscripted f on the left to show that it is con-
sidered as a function on Y. Since f; is analytic on A; and f is analytic on V
and since f can be chosen to have a simple zero at any point in A;, the map =;
of V—{p} into A, is analytic. Therefore the map A7 o ; of V— {p} into S;
is analytic. Since A7 (7i(¢)) must converge as g—p to one of the points ¢ in .S;
for which N\(f) =m(p), it follows that Ai o w; has a unique extension to an
analytic map ap from V into S;. Write a=0;0 ay. It is clear that « is an
analytic map from V into S’ such that

(**) ffoa=foMoa=fom=f onV

for all fin .

Thus each p in S has a neighborhood V which admits an analytic map
« into S’ satisfying (**). Assume that some open set V in S admits two ana-
lytic maps o and a, into S’ both satisfying (**). We show that oy =a.. As-
sume otherwise. There therefore exists p in V with ou(p) #az(p) and dai(p)
#0, doy(p) #0. Thus there exists a neighborhood V, of p which a; and a,
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respectively map homeomorphically onto disjoint open sets Vi and V; in
S’. Since {ST} is an open cover of S’ we may assume ViCS/!, V,CS/ for
certain ¢ and j. Thus Sy=a3 0 ai” maps V; homeomorphically onto V,. Thus
B=0;7 0 o 0 ¢; maps an open set in .S; homeomorphically onto an open set in
S;. For each fin % we have

fOAjOB=f,OO'jOB =f'0;3000','
=foaiog;=fo0;=f0\.

Therefore 8(s) =s for all s in o7 (V4). It follows that B¢(s") =s’ for all s’ in V1.
This contradicts the fact that V; and V, are disjoint, proving that ay=a.
Thus we may define a map o of S into S’ by defining ¢(p) =a(p) for each p
in S, where a is an analytic map of some neighborhood V of p into S’ which
satisfies (**). Since « is unique the map o is well-defined. Clearly ¢ is an
analytic map from S into .S’ such that f o o =ffor all fin ¥, or

(M (a(2) = f(p)

for all p in S and f in Y. This is just (*) of Definition 2. Thus to show that
(A’, S’) and the mappings ¢, 7 define an extension of (%, S) it only remains
to prove that A’ is holomorphically complete. Clearly %’ is an algebra. Since
g is not constant on any component of A;, 1<, go\; is not constant
on any component of S’.

Thus it remains to show that %’ is closed in the topology of uniform con-
vergence on compact subsets of S’. Consider therefore a sequence {f!} of
elements in A’ converging uniformly on compact subsets of S’ to a function
Fon S’. The sequence { f;} then converges uniformly on compact subsets of
Sto Foo. Thus f=FoaC. It follows that F—f’ vanishes on ¢(S). Once
condition (1) of Theorem 2 is verified it will follow from this that F—f’,
which is a uniform limit on compact subsets of .S’ of elements in A, vanishes
on all of §’. Thus F=f’ will be in U’, as was to be proved.

It only remains to verify conditions (1), (3), and (4) of Theorem 2. To
verify (1) consider a compact subset K of S’. Since {S,«’ } is an open cover of
S’ there exist S, - - -, S;, which cover K. Let k=1+sup{il, < ,i,,}. Since
o (vx) is a compact subset of S’, it is enough to show that S! Cé(y:) for all
1 <k. (Here 6(yi) =G, where G=0c(y:).) Since

o(vi) C &(Tx) C é(me)
for ¢ <k, it is sufficient to show that
S{ Ca(vy)

for all <. Consider po in S! and write p=N;(c7(po)) so that p& ¥; and f(p)
=f'(po) for all fin A, Thus
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| fGo)| = | )| = sup{|f@)]:q€E X}
sup{ | f(@) | : ¢ € 74}
sup{ | /"() | : ¢ € a(¥9)},

so that poE&(v:). This proves (1) of Theorem 2.

We turn to the proof of (3). Assume that (3) is false so that T intersects
some compact subset of S’ X.S’ in an infinite set. Then there exists a sequence
{(p], ¢!)} of distinct elements of T converging to an element (p’, ¢’) in
S’'%XS’. We may assume that the p, are distinct. Choose S! and S/ with
p'ES!, ¢ ES!. We may assume that p; ©S! and ¢, €S/ for all n. Let
Pa=07(pd), qu=07(gl), p=07(p"), g=05(¢’), so that {p,} converges to p
in S; and {ga} converges to g in S;. Choose & with >4, k>j, and g’(p’)
€ g(Xy). Now \; is a homeomorphism of some neighborhood V in S; of p
into Y;. Thus ¢; 0 A\; gives a homeomorphism of V into Yi. Since A; is a
homeomorphism of some neighborhood W of g into Yj, ¢; 0], is a homeo-
morphism of W into Y:. We may assume that p,&V and ¢.€W for all n.
For each fin % we have

fo¢k407\;=f07\;=f'0¢7; on V.

A

Similarly,
fodrioNj=for;=foa; on W.
In particular,

F@iN(p)]) = f'(@i(pa)) = 1'(pd)
= f'(gl) = f'(oi(g)) = f(dri[Ni(gn)])

for all f in A. Thus ¢ws(N:i(p»)) and ¢x;(N;(gn)) are the same point y, in Y.
Now g(@u:[Ni(p) ) =gMi(p)) =2’ (p") €2(Xx) so that ¢i(Mi(p)) € Yi— X, for
all » sufficiently large. Since T} is isolated in Y;— X, it follows that y,E Y
— X — Ty =A; for all n sufficiently large. Fix such a value of #n. There exists
a neighborhood V, of p, in S; which ¢;; 0 N\; maps homeomorphically into
A:. Since S; and Ay are Riemann surfaces it follows from invariance of domain
(see [4, p. 95]) that ¢%; 0 \; maps V, homeomorphically onto an open set in
A containing y,. Similarly ¢.; o N; maps some neighborhood W, of g, homeo-
morphically onto an open set in A; containing y,. We may assume that
&iAi(Va)) = dr;(Nj(Wa)). Thus

B = (¢xjo ;)" o (driON)
is a homeomorphism of V, onto W,. Now
foX;jopB =fo¢:,-o¢,,io)\,- =fodr;O0Ni =foN;

on V, for all f in A, It follows that
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pn = B(pn) = (B;ON)Yn = ¢n.

Thus ¢i(p.) =0;(¢s), or p =q. . This contradicts the fact that (p., ¢, )ET
and thereby establishes the truth of (3) of Theorem 2.

It remains to prove (4) of Theorem 2. We first show that the closure of
S! is a compact subset of .S’ for each 7. Since the set

R,’ = o;(R,-) where R; = )\;—(A,)

is dense in S/, it is enough to show that the closure of R/ is compact. Let
{p/ ] be a sequence of points of R!. Let p,=Ai(e7(p)), so that p.EA;. We
may assume, by passing to a subsequence if necessary, that {;b,.} converges
to a point p in Y, Choose m >4 with g(p) &g(ym). Then ¢ni(p) EXn We
have the following diagram

A; mi Am
S;’ Y;' ¢ 4 le Sm,

and p,—p in ¥; as n— . Since @n; is continuous, ¢mi(pr) —>Pn:(p) as n— =, so
that ¢.i(ps) EA, for all # sufficiently large, say for all #. Thus for each # there

exists a unique point £, in S, with An(t,) =mi(pn). Let q1, - - -, g be those
points in S, with A,(¢;) =dmi(p), 1 £j=k. Thus to each open set Vin S,, con-
taining the points ¢y, - - -, gx corresponds a neighborhood Vy of ¢n:(p) in

Y with A, (Vo) CV. Thus t,E V for all # sufficiently large. We may therefore
assume, by passing to a subsequence if necessary, that ¢, converges to one
of the points g1, - - -, ¢, call it £&. Let W be a neighborhood of ¢ in S,, mapped
homeomorphically by A\, into ¥,,. Take W so small that \,(W — {t}) CAn, so
that N\, is a homeomorphism of W— {t} onto an open set in ¥,. We may as-
sume that £,EW for all # so that ¢n:(p.) =An(ts) EX(W). Now p,EA; and
Gmi(pn) EAm. Since ¢n; maps a neighborhood of p, homeomorphically into
An, we may assume by invariance of domain that ¢,; maps a neighborhood
Vain A; of p, homeomorphically onto a neighborhood of ¢n:(ps) in A,. We
may assume that ¢ni(Va) CAn(W—{p}). Thus \;; 0 ¢; maps V,, homeomor-
phically onto a neighborhood W, of ¢, in S, and \{” maps V, homeomorphi-
cally onto a neighborhood W™ of A7 (p,) in S;. Therefore the map

B=MAiObmiO\; on W=
maps W* homeomorphically onto W, If fis any function in % then
JoXi=fodniON; =fOAn08 on W=,
Therefore
AT (pn) = BT (pn)) = tn,
so that
pn = oiAT(pn)) = om(ta).



1962] ANALYTICITY IN CERTAIN BANACH ALGEBRAS 543

Therefore { Pn } converges to the point ¢,() in S’. Thus there is a convergent
subsequence of {p,,’ }. Therefore the closure of S/ is compact.

Consider any compact subset K of S/, We have seen above that K Cé(7y:)
for some i. Therefore K Cé(y:). The set

H=35!VUolys)

is a subset of ¢(y;) because it was shown above that S! Cé(y;). Since S/ is
compact H is compact. The set

L=KNH

is also compact. Clearly K contains all points p such that (p, ¢) ET for some
g in L. We shall complete the proof by showing that conversely if p€EK—L
then (p, ¢) €T for some ¢ in L. Consider p in K—L. Thus

p € d(ys) — H.
It follows that
7@ = swpl|f@)]:q€

for all f in . There therefore exists go in ¥; with f’(p) =f(qo) for all f in ¥.
Thus either ¢go& X or go=MNi(q1) for some ¢; in S;. In the first case let ¢, be a
point in y; with 7;(g1) = go, so that in the first case ¢=0(q;) €H and

(@ = f(g) = f(g0) = f(p)

for all fin %. Thus (p, ¢) ET. In the second case let g=0;(q1). Thus ¢€S! CH
and f'(q) =f(Ni(q)) =F(go) =f'(p) for all fin A. Thus (p, ¢ ET. Thus in either
case there exists ¢ in H such that (p, ¢) ET. Also ¢& K because f'(q) =f'(p)
for all fin . Therefore g& KN H = L. This completes the proof of Theorem 2.

We end with a result which completely describes the uniform closure of
an algebra of analytic functions on a compact subset of a Riemann surface.

THEOREM 3. Let K be a compact subset of a Riemann surface S. Let % be a
holomorphically complete algebra of analytic functions on S. Let B be the uniform
closure of % on K. Let Y be the spectrum of B. Let (S’, A’) be the extension of
(S, ¥A) described in Theorem 2, and o and T the maps there described. Let M be
the union of L=0(K) and all of those components of S’ — L which are relatively
compact subsets of S’. Then

(a) B is isomorphic to the uniform closure of A’ on M, via the maps o and 7.

(b) For each ¢ in Y there exists p in M with $(f) =f(p) for all f in B, where
B is considered as a subalgebra of C(M).

(c) The linear space B is of finite codimension in the space By of all con-
tinuous functions on M which are analytic at interior points of M.

Proof. From Theorem 2 it is clear that for each f in % the uniform norm
of fon K and the uniform norm of 7(f) on L are equal. From this (a) follows
readily.
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Now by Theorem 2 there exists a compact set D C M such that for each
¢ in Y there exists p in D with ¢(f) =f(p) for all fin ¥’. By (iv) of Theorem 2
and the principal theorem of [1] it follows that 8’ is of finite codimension d
in By, where B’ is the uniform closure of A’ on. D and where B, is the set of
all continuous functions on D which are analytic at interior points of D.
Assume that D— M is not a finite set. Thus there exist distinct points
P, + -, pap1in D— M. Since D CM, for each i there exists a finite measure
uson M such that §;—pu; LA’, where §; is the point mass at p;. Now considered
as linear functionals on 8B, these measures 8; —u; are all linearly independent
because by Runge’s theorem there exists f; in 8B; which has the value 1 at p;
and 0 at the other p’s and is arbitrarily small on M. But since these d+1 meas-
ures annihilate B’ we have a contradiction. Thus D — M is finite. Thus if ¢
in Y does not have property (b) above then ¢ corresponds to a point p in
D — M. Since p is isolated in D an easy argument shows that ¢ is isolated in
Y. By a theorem of Silov it follows that ¢ is in the Silov boundary of B.
This contradiction shows that (b) is valid for all ¢ in Y. Finally (c) follows
from Theorem 2 and the principal theorem of [1].
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