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Phonon bottleneck in quantum dots: Role of lifetime of the confined optical phonons
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The phonon bottleneck in quantum dots is reexamined theoretically within the intrinsic phonon scattering
mechanism. In the coupled-mode-equation formalism, an analytical solution is derived for the carrier relax-
ation. The result shows that, due to the anharmonic coupling of the confined LO phonon to the bulk acoustic
phonons, the carrier relaxation rate is higher thalf 40" in a wide detuning range of tens of meV around the
LO phonon energy, which differs remarkably from the original phonon bottleneck prediction.
[S0163-18209)04107-1

Due to the sound potential for device applications, the In this paper, restricted in the intrinsic phonon scattering
semiconductor quantum dot®D’s) have been receiving in- mechanism, we reexamine the phonon bottleneck by includ-
creasing attention in recent years. Among the most importanhg the anharmonic decay of LO phonons into bulk acoustic
advantages compared to the conventional semiconductor Ighonons, which is well known to be of crucial importance to
sers, there are such properties as less temperature sensitiye e nymber of physical properties in semiconductors, such
threshold current, lower threshold current densifyen- ;e carrier relaxation dynamics and the carrier-lattice ther-

hanced modulation dynamics, and improved NOIS&nalization. Very recently, we performed a theoretical calcu-

propertied for laser actions, due to the three-dimensional, .. ; . ;
confinement, which gives rise to a sharply discrete electrorha;g)r?o?sr it:Zfgﬂiﬁngg%cvfheigﬂggeegﬁeogftgesgngg?grLao

energy spectrum. However, the realization of these devic . . i
advantages relies in large extent on the efficient carrier re2@AS dot with size larger than 15 nm, depending on the

laxation to the ground state. Thus, the study of energy relaxtemperature from zero to 300 K. Considering the confine-
ation mechanism in quantum dots is of central importance. Ifnént and decay feature of the LO phonons in quantum dot,
quantum dots, due to the discrete nature of the energy level§€ present coupled electron-LO-phonon system is quite
together with the very weak energy dispersion of the LOSimilar to the coupled atom-photon system in an optical mi-
phonons, a simple consideration on the basis of energy corfrocavity, where the enhanced spontaneous emission has
servation predicted that a strongly reduced energy relaxatioheen discussed, due to the confinement and dissipation of the
rate could not be avoided within the intrinsic phonon scatterphotons. Accordingly, we are ready to develop a Wigner-
ing mechanisnf;” unless the electron level spacing equalsWeisskopf description for the carrier relaxation in quantum
the LO-phonon energy, or smaller than a few meV in favordot through LO-phonon scattering: the electron couples di-
of the LA-phonon scattering. This largely reduced relaxationrectly to the confined LO-phonon modes, quantum transition
rate from the inefficient phonon scattering in quantum dots isvould result in a repeated energy exchange between the elec-
referred to as phonon bottleneck in literatures. tron and phonon modes, which is known as Rabi oscillation;
We noticed that this bottleneck, until now, is still dis- however, due to the decay of the confined LO phonons, this
cussed controversially. On the one hand, some experimengscillation will decay rapidly, thus the electron’s energy is
showed the poor luminescence from the ground state dfissipated away through the LO phonons.
quantum dof™! which implied the existence of phonon  More specifically, our calculated result illustrates an effi-
bottleneck. On the other hand, recently there have been @ent relaxation rate higher than 8! in a wide detuning
large number of publications where the bottleneck effecenergy range of tens of meV around the LO-phonon energy,
does not exist? 1°At the same time, in view of the tendency which may lead to the following implicationgi) It extends
that the intrinsic phonon scattering cannot remove the probthe efficient relaxation range to tens of meV from the elec-
lem of phonon bottleneck, some theoretical efforts have beetron level spacing smaller than a few mé¥3 meV) pre-
proposed in specific situations, in an attempt to predict alicted originally by the LA phonon scatteriftg’ or several
rapid energy relaxation in quantum dots, such as the conmeV (~6 meV at 300 K detuning around the LO-phonon
bined LO*LA two-phonon mechanisiff, the defect-assisted energy predicted from the LOLA second-order scattering
multiphonon emission mechanisth®® and the Auger-like calculation?® (ii) Note that the LA-phonon scattering
scattering mechanisAi>* The LOxLA mechanism is an in-  calculation$™’ predicted an intrinsic limitation to the device
trinsic phonon scattering mechanism, but it predicted only application associated with the interband optical transitions,
quite narrow relaxation window of several meV around thesince the QD-based device applications require an efficient
LO-phonon energy; the other mechanidhé® predicted a  relaxation of the carriers to the ground state where the level
much wider relaxation window, but they are extrinsic or non-spacing should be larger than 25 meV in order to realize the
phonon scattering mechanisms, which do not work in som@dvantages of the discrete levels. Favorably, our present re-
situations, e.g., in the absence of defects in the nearby barrsult indicates that the carrier relaxation will be efficient for
ers, or in the absence of dense electron-hole plasma as statestel spacing approximately from 15 to 65 meV at room
in some experiment$:° temperature, which improves the possibility of device appli-
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cations.(iii) The present study might be helpful to clarify LO mode, i.e., 2.5 ps at room temperature and 7 ps at zero
some confusions in literatures. temperature, since the concerned quantum dot has size
Below, considering the discrete nature of the present sysaround 20 nm.

tem (both the electron and the confined LO-phonon states in  To estimate the coupling strenggh in Egs.(2) and(3),
guantum dotg instead of the Fermi golden rule, we employ the knowledge of the confined LO modes is necessary. In
the Wigner-Weisskopf coupled-mode-equation approach t®ef. 27, a continuum hydrodynamic theory was employed to
calculate the electron relaxation rate. In this formalism, westudy the confinement of optical phonons in a spherical
are able to derive an analytical solution for the time-quantum dot, where the material-related realistic boundary
dependent transition probability, from which the relaxationconditions were treated in a rather serious sense. To satisfy
rate can be readily deduced. Specifically, consider the eledoth the hydrodynamic mechanical and the electromagnetic
tron relaxation from the first excited stet#;{n,}) to the  boundary conditions, say, the continuities of the normal
lowest ground stat¢¥ g ;{(n+1)}), where fi+1), indi-  component of vibrating velocity, the hydrodynamic pressure,
cates the emission oflamode LO phonon. Evaluating from the electric potential, and the normal component of electric
the initial state|W¢;{n,}), the time-dependent state can be displacement vector, we included an interface polariton com-

expressed as ponent in addition to the LO vibration. Although it was
) found that the interface polariton component has effect on
W (t)=a(t)e T We;{ny}) the phonon associated electrical potential, for our present
phonon bottleneck problem a simplified model description

+; b(t)e Ed | W ;{(n+1)}), (1) for the confined optical phonons will be precise enough,

since the final result of the relaxation time does not so sen-

wherea(t) andb(t) are the corresponding amplitudes, hav- Sitively depend on the coupling strenggh. .

ing initial conditionsa(0)=1 andb,(0)=0, respectively. In For mathematical simplicity but not losing any physical
Eq. (1), E, and E, are, respectively, thétotal) energies of generality, we assume a press_ure-free_ boundary condlt!ons
the first excited state and the ground state. We define tht" the LO-phonon confinement in a cubic quantum box with
energy detuning\ =E,—E,=AE—#w,, whereAE is the size a. Accordingly, the LO vibration eigenmode has the
electron energy level spacing, afids, is the LO-phonon  displacement — function u(x,y,z)=V®(x,y,2),  and
energy, which is assumed to be constant for each LO-phonoR (X.¥,2) ~sink)sinyy)sinksz), where kj=n;m/a, n,
mode. Substituting Eq(1) into the time-dependent Schro =1,2,3,.... It is easy to check that this solution satisfies the

dinger equation, the following coupled mode equations arénechanical pressure-free and the associated electrical poten-
obtained: tial continuity boundary conditions. Consequently, thehro

lich electron LO-phonon interaction is given by

%I—@ k€' Atby(t), 2) f
3 H,ZEK \/;VkSin(k1X)Sin(k2Y)3in(k3z)(ék+ab’
0
dby(t i 4
dk: ):—igte"“a(t)—rkbk(t)- ® )

where g, (é\l) is the annihilation(creation operator of the
whereI", describes the anharmonic decay of kimode LO  k-mode LO phonon, the Fhiich coupling strengthvﬁ
phonon into bulk acoustic phonons, agdis the coupling =4maAl2mwo(16hwiak?) with k?=k3+k5+k3 and

strength between the electron and #hemode LO phonon. the dimensionless polaron parameter «
Below we present more detailed discussions for them. =(€212h wo) \2mwq /1 (1/e,— 1), Where e, and €, are

Note that at thermal equilibrium the detailed balance printhe high frequency and static dielectric constants. Now, we
ciple requires an equal rate of the decay of LO phonons int@re ready to express the coupling strength in E2jsand (3)
acoustic phonons and the inverse process. Thus(Zkdpias as 9=(Vg:{(n+1)}[H'[¥ei{n}). Considering a GaAs
no dissipation term corresponding to the functi@ft). On  quantum box, and assuming an infinite deep confining poten-
the contrary, Eq(3) consists of a decay term correspondingtial for the conduction-band electrons, we estimate the total

to the functionb,(t), which is resulted from the destruction coupling strength of the electron to all the LO modes as
of the thermal equilibrium condition of the LO phonons, af-

ter a new LO phonon is generated accompanying the electron 0.3% wy
transition. Recently, in Ref. 25, the lifetime of confined op- g=—F—+Ng+1, (5)
tical phonons in semiconductor quantum dots has been cal- Va

culated by considering the typical channel of the anharmoni?

2= 2 - - . .
decaying into two bulk acoustic phonons. The calculated ref\rf’”.‘ gth_?_légdh' where ths dotts;rzla IS In unit 3ftnm, andt
sults show that the lifetime of the confined LO phonons is__B IS the LL-phonon number at the concerned temperature.

weakly size dependent, which decreases with increasing th-ghe numerical factor 0.35 is obtained by a convergent sum-

dot size, and each mode approaches a constant vilue mation over more tha_n_f(l:onf_ined LO-phonon _mo_des.
GaAs dot,~7 ps at zero temperature, ane.5 ps at tem- To obtalr_1 an explicit solution ofi(t), substituting the
perature 300 K after the dot radius is larger than 8 nm. formal solution ofby(t) from Eq. (3) into Eq. (2), we get
These results are in good agreement with the experimental

data in bulk GaA$® On the basis of Ref. 25, in this work we da(t) _ ~S g |zjtdt/eiA(t—t’)e—F(t—t')a(t/) ®)
assume a constant lifetime,, (=I',*) for each confined dt e EK o ’
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tron level spacing\E.
FIG. 1. Probability of the initial electron state, where the solid
curves plot the exact solution E¢p), the dashed curves represent electron relaxation from the first excited state to the ground
the 1k fitting to determine the carrier relaxation time. The small state is shown for energy detunidg= 0, while in Fig. 1b)
circles are plotted using™" ~2#2)" to underestimate the entire en- we show the relaxation for the nonzero energy detuning
velope function ofP(t), which would set a lower bound to the 0. Due to the finite lifetime of the LO phonons, we observe
relaxation rate. The LO-phonon lifetime is 2.5 ps at temperaturey decaying Rabi-like oscillation, however, which decays
300 K. more slowly with increasing the detuning. To determine the
relaxation rate, we need a proper definition for the relaxation
where we have neglected the dispersion of the LO phonongme. We use an exponential functien!” to approximate
(A=4y), and assumed an identical lifetime for each LO-the exact envelope function, wherés determined such that
phonon mode I(=T',). In terms of Laplace transform, the at this time the envelope function has value.lh Fig. 1 we
solution of Eq.(6) can be derived as show this 1¢ fitting by the dashed curves. We notice that
this 1k fitting is exact for the zero detuning, but it overesti-

—y ; . :
A(s)= L[ a(t 7 mates slightly the relaxation for the nonzero detuning. To set
(s)=Lla(n)]= 5+9 @ a lower bound to the relaxation rate, by observing the domi-
where y=—T+iA. Straightforwardly, the inverse Laplace n:imrtigonttnbunon of the first term in Eq9), we apply
transform yields e~ (=282t to approximate the entire envelope function of
P(t), which gives a simple analytical formula for the relax-
ation rate
a(t)=L"A(s)]=e"? cospt— =— 25 sm,Bt (8)
where g is defined fromB?=g?— y?/4. The validity of Eq. = 1 ! , (10)
(8) can be examined in two limiting casgsg) If g=0 (there I'=2B; 1-2(R-X)

is no coupling between the electron and LO phonpsslu-

tion (8) reduces toa(t)=1, which means that the electron where R=\X?+Y2, and X=g2+(A2-T?)/4, Y=TA/2.
remains constantly in the initial statéi) If =0 (the LO  Obviously, this approximation underestimates the relaxation
phonon has infinite lifetime |a(t)|?=cog(Bt) rate, and the fitting result is plotted by the small circles in
+A?/4p% sirf(Bt). This solution can be alternatively derived Fig. 1. From the following Fig. 3 we will see these two
from |a(t)|2=|(i|U(t,O)|i>|2, whereU(t,0) is the quantum approximations differ slightly and do not influence the physi-
evolution operator, anfi) is the initial state at=0. Gener-  cal conclusion. We here emphasize that the envelope func-
ally, for g# 0 andI" #0, we express explicitly the probability tion of P(t) is not an exact exponential function, thus no
of the initial state as mathematicalrelaxation time can be defined exactly, how-
ever, any better exponential fitting must drop between the
two bounds shown in Fig. 3.

To understand more clearly the dependence of the carrier

relaxation rate on the detuning, in Fig. 2 we pj@s as a
+2(4]BI?—]v|* cog 2B,t) function of the the electron level spacidgE illustratively.
_ : Since B8, is an increasing function of the detuning|, the
+8(I'A1—AB)SINZA1Y)], © dominant term of Eq(9) is a slower exponentiallym%|ecreas—
where 8, and 3, are, respectively, the real and imaginary ing function for largetA|, which implies a smaller relaxation
part of 8. rate.

In Fig. 1, the solid curves plotted from E{) show the In Fig. 3 the relaxation rate from the first excited state to
time-dependent behavior of the relaxation of the initial statethe ground state is shown as a function of the level spacing,
Here we consider a GaAs dot at temperature 300 K, thevhere the zero and room temperatures are considgned
corresponding LO-phonon lifetime is 2.5 ps. In Figa)l the  corresponding LO-phonon lifetime are, respectively,,

e—Ft ' .
P(t)Ela(t)FZWuZIB—I’y|292B2t+ |2,8+I)/|2672B2t
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N

phonons, and eventually is dissipated away into the heat bath
(i.e., the acoustic phonohsWe would like to mention that
the present definition for the efficient carrier relaxation is
based on a device relevant criterior., the radiative recom-
bination lifetime of the conduction electrons, which has the
magnitude of nanosecondswvhich sets a critical value of
1051 for the efficient relaxationthus makes us achieve a
wide efficient detuning range of tens of meV. Alternatively,
according to the definition of the usual full width at half
maximum (FWHM) linewidth, from Fig. 3 one may get a
linewidth of about 8 meV. However, this linewidth does not
20 40 60 80 100 correspond to the efficient relaxation detuning range in the
AE (meV) context of phonon bottleneck. Please note that the “phonon
bottleneck™ is not an intrinsic physical phenomenon. This
FIG. 3. Electron rela_xation rate from the first excited state to thephenomenon is closely based on some other parameters such
ground state as a function of the level spackig, where the solid 55 e radiative lifetime, which thus set the corresponding
and dotted curves are obtained from Ef#0) and the 1 fitting, criterion in certain extrinsic sense.

respectively. Note that any better fitting for the relaxation rate in the One mav note that the inverse lifetime of the LO phonon
present Wigner-Weisskopf approach will drop between these two y P

bounds, since these two fitting approaches either overestimate ;orresponds to energy 1.65 meV for 2.5(ps0.59 meV for

—_
—_

—
(@)

Log,o(1/T) (sec_1)

[(e]

underestimate the relaxation rate. Here we see the present fittin SpQ, which is approximately the FWHM linewidth of the

are satisfactory, any further improvements will not change th elaxatl(_)n spectrl_Jm from a Ferr_m golden rule argument. We
physical conclusion. would like to point out that this golden rule treatment is

physically invalid in the present two level system, since the
. Lorentzian spectrum, resulting from the unstable feature of

=7ps andry,=2.5ps), and the solid and dotted curves arehe | 0-phonon state, differs essentially from teal density
obtained from Eq.(10) and the 1¢ fitting (note that any ¢ states in the Fermi golden rule, and in fact no golden rule

better fitting of the relaxation rate in the present Wigner-gyists in this situation. Therefore, it is not suitable to com-
Weisskopf approach will drop between these two bounds pare the inverse LO-phonon lifetime with the FWHM line-

Since the radiative recombination lifetimg.q from the  \yidth obtained from the Wigner-Weisskopf approach. In
conduction-band electrons to the valence-band holes is typpiher words, we should not be surprised to the difference of
cally of ~1 ns, the relaxation of the conduction electrons canpese two quantities. In this context, we would like to claim
be regflrded as efficient if the relaxation rate is higher thamat even using the Fermi golden rule one can also obtain a
10's . From Fig. 3 we achieve an efficient detuning rangeyige detuning range in which the relaxation rate is larger
of ~20 meV at zero temperature, and 60 meV at room  han that determined by the “phonon bottleneck” criterion,
temperature. We stress that this result is qualitatively differy,e to the relatively strong coupling of the electron with the
ent from the earlier prediction for the extremely slowed| o phonons. This may help one to understand more easily
down relaxation resulting from the LA-phonon scattering af-ine obtained wide efficient detuning range. However, it

ter the electron level spacing is larger than a few M&V. shouid be noted that the Fermi golden rule is a misleading
The present result also differs considerably from the res“'&rgument in the present system.

reported in Ref. 20, where although the QA mul- In conclusion, the electron relaxation in quantum dot has
tiphonon scattering mechanism seems intuitively beneficialyeen discussed within the pure phonon scattering mecha-
the obtained window around thﬁeJ._O-phonon energy for rapichism, Due to the anharmonic coupling of the LO phonons to
relaxation rate higher than %" is only ~3 meV at zero  the acoustic phonons, we have demonstrated an efficient car-
temperature, and~6 meV at room temperature. TO OUr rigr relaxation rate higher tham101s™! in wide energy
knowledge, this is the first time to demonstrate such afavordetuning of tens of meV around the LO-phonon energy
able detuning window for efficient carrier relaxation in quan-which modifies remarkably the earlier phonon-bottieneck
tum dots, within the pure intrinsic phonon scattering mechayediction within the phonon scattering mechanfsiy°
nism, which implies that the efficient photoluminescence andconcerning the device applications, the obtained result is of
lasing from the ground state in quantum dots have no intrinyhterest, since it excludes the phonon bottleneck problem in

sic restriction due to the discrete electron energy levels, in @ intrinsic sense in a relatively wide detuning range.
relatively wide energy range, which was predicted to be a

forbidden regime in the earlier studies. This work was supported in part by the Research for the

It would be instructive to emphasize further the physicalFuture Program of the Japan Society for the Promotion of
origin of the efficient carrier relaxation at wide detuning in Science(Project No. JSPS-RFTF96P00204 Grant-in-aid
the context of phonon bottleneck. In terms of the decayingf Priority Area by the Ministry of Education, Science and
Rabi oscillation, we have got a quite intuitive picture how Culture, and the University-Industry Joint Project on Quan-
the energy is exchanged between the electron and L@um Nanostructures.
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