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Orbital current mode in elliptical quantum dots
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An orbital current mode peculiar to deformed quantum dots is theoretically investigated; first by using a
simple model that makes it possible to analytically interpret its main characteristics, and second, by numeri-
cally solving the microscopic equations of time evolution after an initial perturbation within the time-
dependent local-spin-density approximation. Results for different deformations and sizes are shown.
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The study of collective excitations in semiconductor 2 y?
guantum dots is currently attracting much interest. Recent p(r)=p EJ“E
experiments, using resonant Raman scattering in two- x Y
dimensional GaAs-AGa_,As quantum dot$? have 2 2
probed both charge-density and spin-density collective exci- (=1 =+ Xz ' (1)
tations, as well as single-particle excitations. From the theo- Ry Ry

retical side, charge-density excitations have been investi—h reR. andR. are the el radii. IR.=R.  we obvi-
gated since several years ago, with different approaches, ereny a y are the elipse radil. R,=kRy, We obvi
such as Hartre®, Hartree-Fock. and density-functional ously recover the circularly symmetric densities. A time-
theory® In addition, a general scheme to describe spin-dépendent displacement may be represented:(@pu(r),

density excitations of both longitudinal and transverse charWherea(t) is a time-dependent parameter ar(d) gives the
acter was presented in Refs. 5 and 6. All these theoreticajector displacement at point The corresponding displace-
calculations applied the well-known random-phase approximent operatoD, that acting on thé\-electron ground state
mation in circularly symmetric dots, for which the angular gives the displaced statd)=D|0), is
momentum selection rules can be exploited. _ N

Experiments on deformed nanostructures are currently I
providing very interesting pieces of informatioffor in- D=exr{ﬁa(t)§1 [u(ri)-pi+H.a]|, )
stance, in Ref. 7 on ellipsoidal deformatipnshis has
prompted, in Refs. 8—11, the extension of theoretical apwherep; is theith electron momentum operator and H.a.
proaches to the symmetry-unrestricted situation. Motivategtands for the Hermitian adjoint operator.
by this exciting direction of the quantum dot field, we report The OCE is represented by the following displacement
in this communication on an unusual class of collective exfield:
citations. It involves the generation of orbital currents and is .
peculiar to deformed quantum dots. We will show that the ur)=exXr+yV(xy)=[-y(l-n)x(1+7)]. Q)
orbital current excitatiofOCE) is strongly connected to the
quadrupole charge-density excitati0QCDE), and that its
clearest signature is in the magnetic dipole strer@ii).
The characteristics of this mode will be investigated first
analytipally, by gsing a §imp|ified model, and second, by Ri_Ri
numerically solving the time-dependent Kohn-Sham equa- 1= R2 R
tions corresponding to this particular motion. It is worth- x T Ry
while to point out that current modes similar to this one have can be shown that the density variations up to second order
been measurédiand theoretically predictédin atomic nu-  in, 4 are
clei, and are also expected to exist in deformed metal

It is a combination of a rigid rotation witlz axis and a
guadrupole distortion, weighted with a parame#erThis is
a divergency free field@ -u=0 and, by choosing

4

clusterst* and in the condensate of trapped bosons. In fact, op=0 (5)
while writing the present paper, we have become aware of a

microscopic calculation for metal clusters, using a schematic a? )

random-phase approximation, that has been published in Ref. o7= 6 % (Vi +Viu)r.

15, and one for Bose gases which is in preparalfon.

Let us assume a perfectly elliptic quantum dot, whoseThis result implies that the collective motion does not
electronp and kinetic energy densities are functions of the modify the electron density and therefore, it is not affected
ellipse contour lines by the Coulomb interaction. In fact, the cost in the Coulomb
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energy is minimized by adding the quadrupole tevifxy) where the spin index i%=1, |, and total density and mag-
in the displacement fiel@3). The collective motion associ- netization are given in terms of the spin densitiegr)
ated with this field modifies the kinetic energy density and=>3, |¢,,7(r)| by p=p;+p, andm=p,—p , respectively.
thus it is an example of an elastior shear mode exhibited The Ham|lton|anh in Eq. (9) contains, besides the kinetic
by a Fermi system, that has been extensively studied ienergy, the conﬁmng potential®®(r), the Hartree poten-
atomic nucler:> The electronic motion is in fact a collective tial v(M(r)=fdr'p(r')/|r—r’|, and the exchange-
rotating flow along the ellipse contour lines. correlation  piece  v{9(r)=(d/dp,)Eclp.m).  The
The frequency of the OCE may be estimated assuming thexchange-correlation energy density.(p,m) has been de-
oscillator formulawocg= Vk/M, where the restoring force scribed as in Refs. 8—10.
k=2E(u) is fixed by the energy changg(u) associated To model the elliptic quantum dots, we will follow the
with the displacement fiel@), M =mJu?pdr is the collec- prescription of Refs. 7 and 9 and consider the confinement
tive mass parameter armi is the single-electron effective produced by anisotropic parabolas with parameteysand

mass. One gets oy in x andy directions, respectively. We define the ratio
B= w y/ oy and fix the centroid with the Wigner-Seitz radius
k= E 2E(0) as wi=1/r3|N. In terms of these parameters, the external
=3 7" Ekin confining potential reads
M=Nm(r?)(1- 7%, (6) (confy py_ L 2 4 2, p2,2
= -wi———F7(X+ .
v (r) 2w0(1+ﬁ)2(x :8 y ) (10)

where E() is the unperturbed kinetic energy. If we further
assume(r2)=1r2N and E{Q)=3erN (whereer andrg are  As discussed in Ref. 7, this is a reasonable approximation to
the Fermi energy and the Wigner-Seitz radius, respectuvelythe real confining potential in vertical quantum dots with

we finally get rectangularimesa structure.
An initial perturbation, modeling the interaction with the
16 # ” physical probe, is needed in order to excite the system and
woce™ \/ 3 2 > N2 (7) ~ monitor its time evolution. This is achieved by modifying the
mrs y1—7 orbitals with the displacement operai@. With our previ-

ous discussion, three natural options for the displacement
Eield u(r) come inmediately to mind: a pure rotati¢mvist),
a pure quadrupole distortion, and the combination given in

This simple expression tells us how the electronic OC
scales withN, deformation of the ellipse;, and electronic
density (s parameter

Repeating a similar treatment with a pure quadrupole dis- 100
placementu=V(xy), the frequency of the QCDE can be 1 Twist i
estimated

L)
(=]
|
T
o
o
strength

WQCDE™ \/Ewo, (8)

wherewy is the average parameter of the external confining ' ‘ T
potentials inx andy directions, assumed of parabolic type, time ‘ ‘ e
I.e., wo=(wy+ wy)/2 (see below. 1 Orbital

From a physical point of view, we expect both modes, __ i
OCE and QCDE, to manifest themselves in the response te o F %
the magnetic orbital dipoléM1) operatoruglL,, and to the '\ i

electric quadrupol€E?2) operatorxy. However, to really as- 17 1 T 0
certain what is the relative weight of each mode in these ' ' AR
channels, we need to perform a more microscopic calcula: 1000 fime 2000 0001 02,03 04
tion. This is our goal in what follows. 2 Quadrupole
We will describe the time evolution within density func- 1
tional theory, in the local spin-density approximation. The 7} :
time-dependent Kohn-Sham equations are solved by dis™ 3 !
cretizing thexy plane in a uniform grid of equally spaced K e 01
points and using the Crank-Nicholson approximation. Of -2+ | et 0.01
course, the unperturbed state is the Kohn-Sham ground statr 1000 time 1500 00 01 02,03 04
numerically obtained by solving the static Kohn-Sham equa- , ) o
tions in the same grid by a steepest descent method. Techni- FIG. 1. Results for the time evolution of an elliptic dot with
cal details of the method can be found in Ref. 10. =20, B=0.75, and' ;= 1.51a3 , with the three different initial per-

; ~ : : ) P turbations (rigid twist, orbital, and quadrupole distortions_eft
aSl;Fhe set of single-particle orbitafsyi(r)} evolves in time panels display the simulated orbital M1 signal as a function of time,

while right panels show the corresponding strength functions in
arbitrary units. The middle right panel also shows the independent

(9) particle strength functiofdashed lingand the position of the ana-
lytical approximationg7) and (8) with arrows.
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N S/ ~— FIG. 3. Dependence of the OCE and QCDE with deformation
-0.1 AN / (B parameter, see texfor N=20 electrons and;=1.51aj . The
\\\ P arrows indicate the energies given by E(8.and(8).
0.2 1 — : . .
0 5 10 15 20 mented. The lower panels of Fig. 1 show the M1 signal after
time an initial quadrupole distortion. In this case, the QCDE is the

most dominant and we have used a logarithmic vertical scale

FIG. 2. Time dependence of the different energy variations afteto show that the OCE intensity is around 2% of the QCDE
an initial twist and orbital perturbations: kinet(tsolid), internal one. We conclude from F|g 1 that the OCE produces a clear
Coulomb (dash), external confining field(dash-do}, exchange-  sjgnature in the experimental orbital M1 strength of elliptical
correlation(dots, and total(dash-dot-dot Notice that the sum of gt
kinetic, Coulomb, external field, and exchange-correlation contribu- We have peformed the same analysis with xiyesignal,
tions yields the total energy increment and remains constant in tim%orresponding to the E2 channel, with similar conclusions,
although the QCDE is more dominant in this case. The frag-
mentation patterns are the same as for the M1 results already
! . o discussed, and the percentage of the OCE highest peak with
=p, i.e., the ratio between andy radii is given by the respect to QCDE is- 1%, ~75%, and~ 1% for the twist,
inverse ratio of the corresponding parabola coefficients. By, 1iio1 and quadrupole distortions, respectively.
looking at the density contour lines, we have checked that Thé elastic behavior of the O(fE, in contrast to charge-

this assumption is well satisfied. It yields density excitations, can be appreciated from the time evolu-
9 tion of the different contributions to the total energy after the
n= 1__'82 initial perturbation. As seen from Fig. 2, after a rigid twist,
1+p the system only increases its energy in the external field.
This triggers the motion and, as a consequence of total en-
ergy conservation, the other energy contributions begin to
increase at the expense of the external field term. With per-

Eq. (3) (orbital distortion. In the latter case, we fix with
the elliptic potential parameters by assuming tRat/R,

(11)

Figure 1 shows the results for tHé=20 electron dot
confined withrs=1.51a§ and 8=0.75 (i.e., w,=0.29 H*,
wy=0.22 H"). This figure nicely confirms the results antici-
pated with the analytical model. The orbital M1 strength is
divided into two clear regions. One at high energy, which is 20
associated with the QCDE, and one at low energy associateg, |
with the OCE. The relative weight given to both states is §'° ]
sensitively controlled with the parameter When this is  ~
forced to zerdtwist), the QCDE takes a large part of the M1
strength. But whem, is taken according to the system defor-
mation, the OCE is the dominant mode. The decoupling is S ' T
not perfect, as it is in the simple model, and the short period %0
signal of the QCDE can be clearly seen, although with much_
lesser amplitude than for the twist excitation. The analytical &
expression$7) and(8) yield for this case the numerical val- 2
ues 0.066 M and 0.36 H, respectively, which agree quite 0+ X
reasonably with the microscopic result. The OCE is strongly - ——— I —— T
fragmented because of Landau damping. This can be see o0 0.2 04 00 0.2 0.4
from Fig. 1, since the OCE overlaps with peaks associatea
with single-particle excitations, obtained by keepigfixed FIG. 4. Dependence with size of the OCE and QCDE strength
to its static value in Eq9). In contrast, the QCDE is moved for a fixed deformation o= 0.75. As in Fig. 3, the arrows indicate
to higher energy by the residual interaction and is not fragthe energies of the analytical expressigisand (8).
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turbation (3) the situation is qualitatively different. At used logarithmic scale, since the OCE height is onl¥%

=0, there is an important increase in both kinetic and inter-of the QCDE one.

nal Coulomb energies. The first is due to the elasticity of In Fig. 4 we show the M1 strength for a fixgél and
Fermi systems mentioned before, while the second appeav@rying the number of electrons. There is a tendency to de-
because the quantal densities are not really uniform withifrease the OCE energy with increasing size, correctly
the ellipsoid, but have shell oscillations. The rotation alongPointed by the analytical expressidn). It is also seen that
the elliptic contour deforms this structure and thus increasefe fragmentation of the OCE increases with size because of
the internal Coulomb energy. Again, because of energy cori€ increasing role of Landau damping.

servation, once the motion has started, all contributions fluc- 1© Summarize, the existence of an intense, low lying OCE
tuate in a correlated manner. in the M1 strength of elliptical quantum dots has been

Figure 3 shows the evolution with deformation of the M1 pointed out. The importance of this mode with respect to the
strength, forN=20 andr.=1.51a* , after an initial orbital QCDE, as well as its evolution with dot deformation and
1 S . 1

displacement3). In each case, the positions of the analyticals'ze’ have been d!scusseq. Our analysis is ba?'ed on the time
energies(7) and (8) are indicated by arrows. The energy evolution of the microscopic Kohn-Sham equations and on a

dependence of the OCE is in qualitative agreement with E implified model that allows us to obtain analytical solutions.
(7), decreasing frong=0.5 to 0.875. However, formuléy) he validity of the analytical expressions has been checked

begins to deviate from the miscrocopic result for the highesPy comparison with the microscopic result. The microscopic
deformation B=0.5). The QCDE does not change much calculation has also shown a sizeable fragmentation of this
with deformation since we keep the centraig fixed. It can low energy mode, that we attribute to an important role of

also be seen from this figure that whgnapproaches unity, Landau damping.
i.e., the dot becomes circular, the OCE carries less strength This work was supported in part by Grant No. PB95-0492
with respect to the QCDE. In fact, fg8=0.875 we have from CICYT, Spain.
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