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Orbital current mode in elliptical quantum dots

Llorenç Serra and Antonio Puente
Departament de Fı´sica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain

Enrico Lipparini
Dipartimento di Fisica, Universita` di Trento, I-38050 Povo, Italy

and INFM sezione di Trento, I-38050 Povo, Italy
~Received 5 August 1999!

An orbital current mode peculiar to deformed quantum dots is theoretically investigated; first by using a
simple model that makes it possible to analytically interpret its main characteristics, and second, by numeri-
cally solving the microscopic equations of time evolution after an initial perturbation within the time-
dependent local-spin-density approximation. Results for different deformations and sizes are shown.
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The study of collective excitations in semiconduct
quantum dots is currently attracting much interest. Rec
experiments, using resonant Raman scattering in t
dimensional GaAs-AlxGa12xAs quantum dots,1,2 have
probed both charge-density and spin-density collective e
tations, as well as single-particle excitations. From the th
retical side, charge-density excitations have been inve
gated since several years ago, with different approac
such as Hartree,3 Hartree-Fock,4 and density-functiona
theory.5 In addition, a general scheme to describe sp
density excitations of both longitudinal and transverse ch
acter was presented in Refs. 5 and 6. All these theore
calculations applied the well-known random-phase appro
mation in circularly symmetric dots, for which the angul
momentum selection rules can be exploited.

Experiments on deformed nanostructures are curre
providing very interesting pieces of information~for in-
stance, in Ref. 7 on ellipsoidal deformations!. This has
prompted, in Refs. 8–11, the extension of theoretical
proaches to the symmetry-unrestricted situation. Motiva
by this exciting direction of the quantum dot field, we repo
in this communication on an unusual class of collective
citations. It involves the generation of orbital currents and
peculiar to deformed quantum dots. We will show that t
orbital current excitation~OCE! is strongly connected to th
quadrupole charge-density excitation~QCDE!, and that its
clearest signature is in the magnetic dipole strength~M1!.
The characteristics of this mode will be investigated fi
analytically, by using a simplified model, and second,
numerically solving the time-dependent Kohn-Sham eq
tions corresponding to this particular motion. It is wort
while to point out that current modes similar to this one ha
been measured12 and theoretically predicted13 in atomic nu-
clei, and are also expected to exist in deformed me
clusters,14 and in the condensate of trapped bosons. In f
while writing the present paper, we have become aware
microscopic calculation for metal clusters, using a schem
random-phase approximation, that has been published in
15, and one for Bose gases which is in preparation.16

Let us assume a perfectly elliptic quantum dot, who
electronr and kinetic energyt densities are functions of th
ellipse contour lines
PRB 600163-1829/99/60~20!/13966~4!/$15.00
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2 1
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2D , ~1!

whereRx andRy are the ellipse radii. IfRx5Ry , we obvi-
ously recover the circularly symmetric densities. A tim
dependent displacement may be represented asa(t)u(r ),
wherea(t) is a time-dependent parameter andu(r ) gives the
vector displacement at pointr . The corresponding displace
ment operatorD, that acting on theN-electron ground state
gives the displaced stateud&5Du0&, is

D5expF i

2\
a~ t !(

i 51

N

@u~r i !•pi1H.a.#G , ~2!

where pi is the i th electron momentum operator and H.
stands for the Hermitian adjoint operator.

The OCE is represented by the following displacem
field:

u~r !5êz3r1h¹~xy![@2y~12h!,x~11h!#. ~3!

It is a combination of a rigid rotation withz axis and a
quadrupole distortion, weighted with a parameterh. This is
a divergency free field¹•u50 and, by choosing

h5
Ry

22Rx
2

Rx
21Ry

2 , ~4!

it can be shown that the density variations up to second o
in a are

dr50 ~5!

dt5
a2

6 (
kl

~¹kul1¹ luk!
2t.

This result implies that the collective motion does n
modify the electron density and therefore, it is not affect
by the Coulomb interaction. In fact, the cost in the Coulom
R13 966 ©1999 The American Physical Society
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energy is minimized by adding the quadrupole term¹(xy)
in the displacement field~3!. The collective motion associ
ated with this field modifies the kinetic energy density a
thus it is an example of an elastic~or shear! mode exhibited
by a Fermi system, that has been extensively studied
atomic nuclei.13 The electronic motion is in fact a collectiv
rotating flow along the ellipse contour lines.

The frequency of the OCE may be estimated assuming
oscillator formulavOCE5Ak/M , where the restoring force
k52E(u) is fixed by the energy changeE(u) associated
with the displacement field~3!, M5m*u2rdr is the collec-
tive mass parameter andm is the single-electron effective
mass. One gets

k5
16

3
h2Ekin

(0)

M5Nm^r 2&~12h2!, ~6!

whereEkin
(0) is the unperturbed kinetic energy. If we furth

assumê r 2&5 1
2 r s

2N and Ekin
(0)5 1

2 «FN ~where«F and r s are
the Fermi energy and the Wigner-Seitz radius, respectiv!
we finally get

vOCE'A16

3

\

mrs
2

h

A12h2
N21/2. ~7!

This simple expression tells us how the electronic O
scales withN, deformation of the ellipseh, and electronic
density (r s parameter!.

Repeating a similar treatment with a pure quadrupole
placementu5¹(xy), the frequency of the QCDE can b
estimated

vQCDE'A2v0 , ~8!

wherev0 is the average parameter of the external confin
potentials inx and y directions, assumed of parabolic typ
i.e., v05(vx1vy)/2 ~see below!.

From a physical point of view, we expect both mode
OCE and QCDE, to manifest themselves in the respons
the magnetic orbital dipole~M1! operatormBLz , and to the
electric quadrupole~E2! operatorxy. However, to really as-
certain what is the relative weight of each mode in the
channels, we need to perform a more microscopic calc
tion. This is our goal in what follows.

We will describe the time evolution within density func
tional theory, in the local spin-density approximation. T
time-dependent Kohn-Sham equations are solved by
cretizing thexy plane in a uniform grid of equally space
points and using the Crank-Nicholson approximation.
course, the unperturbed state is the Kohn-Sham ground s
numerically obtained by solving the static Kohn-Sham eq
tions in the same grid by a steepest descent method. Tec
cal details of the method can be found in Ref. 10.

The set of single-particle orbitals$w i(r )% evolves in time
as17

i
]

]t
w ih~r ,t !5hh@r,m# w ih~r ,t !, ~9!
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where the spin index ish5↑,↓, and total density and mag
netization are given in terms of the spin densitiesrh(r )
5( i uw ih(r )u2, by r5r↑1r↓ andm5r↑2r↓ , respectively.
The Hamiltonianhh in Eq. ~9! contains, besides the kineti
energy, the confining potentialv (conf)(r ), the Hartree poten-
tial v (H)(r )5*dr 8r(r 8)/ur2r 8u, and the exchange
correlation piece vh

(xc)(r )5(]/]rh)Exc(r,m). The
exchange-correlation energy densityExc(r,m) has been de-
scribed as in Refs. 8–10.

To model the elliptic quantum dots, we will follow th
prescription of Refs. 7 and 9 and consider the confinem
produced by anisotropic parabolas with parametersvx and
vy in x and y directions, respectively. We define the rat
b5vy /vx and fix the centroid with the Wigner-Seitz radiu
as v0

251/r s
3AN. In terms of these parameters, the exter

confining potential reads

v (conf)~r !5
1

2
v0

2 4

~11b!2 ~x21b2y2!. ~10!

As discussed in Ref. 7, this is a reasonable approximatio
the real confining potential in vertical quantum dots w
rectangular~mesa! structure.

An initial perturbation, modeling the interaction with th
physical probe, is needed in order to excite the system
monitor its time evolution. This is achieved by modifying th
orbitals with the displacement operator~2!. With our previ-
ous discussion, three natural options for the displacem
field u(r ) come inmediately to mind: a pure rotation~twist!,
a pure quadrupole distortion, and the combination given

FIG. 1. Results for the time evolution of an elliptic dot withN
520, b50.75, andr s51.51a0* , with the three different initial per-
turbations ~rigid twist, orbital, and quadrupole distortions!. Left
panels display the simulated orbital M1 signal as a function of tim
while right panels show the corresponding strength functions
arbitrary units. The middle right panel also shows the independ
particle strength function~dashed line! and the position of the ana
lytical approximations~7! and ~8! with arrows.
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Eq. ~3! ~orbital distortion!. In the latter case, we fixh with
the elliptic potential parameters by assuming thatRx /Ry
5b, i.e., the ratio betweenx and y radii is given by the
inverse ratio of the corresponding parabola coefficients.
looking at the density contour lines, we have checked t
this assumption is well satisfied. It yields

h5
12b2

11b2 . ~11!

Figure 1 shows the results for theN520 electron dot
confined withr s51.51a0* and b50.75 ~i.e., vx50.29 H* ,
vy50.22 H* ). This figure nicely confirms the results antic
pated with the analytical model. The orbital M1 strength
divided into two clear regions. One at high energy, which
associated with the QCDE, and one at low energy associ
with the OCE. The relative weight given to both states
sensitively controlled with the parameterh. When this is
forced to zero~twist!, the QCDE takes a large part of the M
strength. But whenh is taken according to the system defo
mation, the OCE is the dominant mode. The decoupling
not perfect, as it is in the simple model, and the short per
signal of the QCDE can be clearly seen, although with mu
lesser amplitude than for the twist excitation. The analyti
expressions~7! and~8! yield for this case the numerical va
ues 0.066 H* and 0.36 H* , respectively, which agree quit
reasonably with the microscopic result. The OCE is stron
fragmented because of Landau damping. This can be
from Fig. 1, since the OCE overlaps with peaks associa
with single-particle excitations, obtained by keepinghh fixed
to its static value in Eq.~9!. In contrast, the QCDE is move
to higher energy by the residual interaction and is not fr

FIG. 2. Time dependence of the different energy variations a
an initial twist and orbital perturbations: kinetic~solid!, internal
Coulomb ~dash!, external confining field~dash-dot!, exchange-
correlation~dots!, and total~dash-dot-dot!. Notice that the sum of
kinetic, Coulomb, external field, and exchange-correlation contri
tions yields the total energy increment and remains constant in t
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mented. The lower panels of Fig. 1 show the M1 signal a
an initial quadrupole distortion. In this case, the QCDE is
most dominant and we have used a logarithmic vertical sc
to show that the OCE intensity is around 2% of the QCD
one. We conclude from Fig. 1 that the OCE produces a c
signature in the experimental orbital M1 strength of elliptic
dots.

We have peformed the same analysis with thexy signal,
corresponding to the E2 channel, with similar conclusio
although the QCDE is more dominant in this case. The fr
mentation patterns are the same as for the M1 results alre
discussed, and the percentage of the OCE highest peak
respect to QCDE is;1%, ;75%, and;1% for the twist,
orbital, and quadrupole distortions, respectively.

The elastic behavior of the OCE, in contrast to charg
density excitations, can be appreciated from the time evo
tion of the different contributions to the total energy after t
initial perturbation. As seen from Fig. 2, after a rigid twis
the system only increases its energy in the external fi
This triggers the motion and, as a consequence of total
ergy conservation, the other energy contributions begin
increase at the expense of the external field term. With p

r

-
e.

FIG. 3. Dependence of the OCE and QCDE with deformat
(b parameter, see text! for N520 electrons andr s51.51a0* . The
arrows indicate the energies given by Eqs.~7! and ~8!.

FIG. 4. Dependence with size of the OCE and QCDE stren
for a fixed deformation ofb50.75. As in Fig. 3, the arrows indicat
the energies of the analytical expressions~7! and ~8!.
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turbation ~3! the situation is qualitatively different. Att
50, there is an important increase in both kinetic and int
nal Coulomb energies. The first is due to the elasticity
Fermi systems mentioned before, while the second app
because the quantal densities are not really uniform wi
the ellipsoid, but have shell oscillations. The rotation alo
the elliptic contour deforms this structure and thus increa
the internal Coulomb energy. Again, because of energy c
servation, once the motion has started, all contributions fl
tuate in a correlated manner.

Figure 3 shows the evolution with deformation of the M
strength, forN520 andr s51.51a0* , after an initial orbital
displacement~3!. In each case, the positions of the analytic
energies~7! and ~8! are indicated by arrows. The energ
dependence of the OCE is in qualitative agreement with
~7!, decreasing fromb50.5 to 0.875. However, formula~7!
begins to deviate from the miscrocopic result for the high
deformation (b50.5). The QCDE does not change mu
with deformation since we keep the centroidv0 fixed. It can
also be seen from this figure that whenb approaches unity
i.e., the dot becomes circular, the OCE carries less stre
with respect to the QCDE. In fact, forb50.875 we have
B
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used logarithmic scale, since the OCE height is only;1%
of the QCDE one.

In Fig. 4 we show the M1 strength for a fixedb and
varying the number of electrons. There is a tendency to
crease the OCE energy with increasing size, corre
pointed by the analytical expression~7!. It is also seen that
the fragmentation of the OCE increases with size becaus
the increasing role of Landau damping.

To summarize, the existence of an intense, low lying O
in the M1 strength of elliptical quantum dots has be
pointed out. The importance of this mode with respect to
QCDE, as well as its evolution with dot deformation an
size, have been discussed. Our analysis is based on the
evolution of the microscopic Kohn-Sham equations and o
simplified model that allows us to obtain analytical solution
The validity of the analytical expressions has been chec
by comparison with the microscopic result. The microsco
calculation has also shown a sizeable fragmentation of
low energy mode, that we attribute to an important role
Landau damping.
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