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We report calculations of the energies of excitons and biexcitons in ideal two-dimensional bilayer systems
within the effective-mass approximation with isotropic electron and hole masses. The exciton energies are
obtained by a simple numerical integration technique, while the biexciton energies are obtained from diffusion
quantum Monte Carlo calculations. The exciton binding energy decays as the inverse of the separation of the
layers, while the binding energy of the biexciton with respect to dissociation into two separate excitons decays
exponentially.
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Bound excitons and biexcitons have been observed in
semiconductors under a variety of conditions. In this paper
we consider bilayer systems in which the electrons are spa-
tially separated from the holes, leading to what are known as
“indirect excitons.” Such systems have been realized in
double-quantum-well structures under an applied perpen-
dicular electric field, which serves to confine electrons in one
well and holes in the other.1,2 The possibility of Bose-
Einstein condensation of excitons in such structures has re-
cently aroused much interest1–4 and there is a need for a
deeper understanding of the processes that laser excitation
initiates in these systems. In this paper we consider an aspect
of excitations in coupled quantum wells which may be rel-
evant to experiments on such systems—the energetics of
biexcitons in bilayer systems.

The effective-mass approximation with isotropic electron
and hole masses gives a simple description of excitons and
biexcitons that has been applied to many systems. This
model is highly idealized, and effects due to anisotropic
masses, nonparabolic bands, and finite well widths and
depths will be significant. The model is, however, simple
enough to be solved to very high accuracy, providing bench-
mark results while still permitting comparisons with experi-
mental data. We have calculated exciton and biexciton ener-
gies within the effective-mass approximation for a system
consisting of ideal two-dimensional electron and hole layers
separated by a distanced.

An exciton in an ideal two-dimensional bilayer geometry
is described by the Schrödinger equation
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whereme and mh are the electron and hole masses, respec-
tively, ande is the static dielectric constant of the material. In
the following, energies are given in terms of the exciton
Rydberg,R* =mehe
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wheremeh=memh/ sme+mhd is the reduced mass.

Equation(1) may be simplified by transforming into the
center-of-mass frame and separating the variables in cylin-
drical polar coordinates. For the zero-angular-momentum
states we obtain
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wherer is the in-plane component of the electron-hole sepa-
ration. Equation(2) may be solved analytically whend=0,
which gives a ground-state wave function ofFsrd~expf
−2rg and an energy ofEX=−4R* . For d.0 we solved Eq.
(2) using a standard Runge-Kutta numerical integration tech-
nique. The exciton energy is plotted as a function ofd in Fig.
1. The energy takes its minimum value of −4R* at d=0,
while at small separations the energy varies linearly withd
and at large separations it varies as 1/d. The results shown in
Fig. 1 may be fitted to the expression

EX = −
4 + Ad+ Bd2 + Cd3

1 + Dd + Ed2 + Fd3 + Gd4 , s3d

where A=154.363, B=648.9, C=225.005, D=46.4263,
E=384.976,F=628.158, andG=129.672. This expression

FIG. 1. Exciton energy as a function of the separation of the
electron and hole layers.

PHYSICAL REVIEW B 71, 033303(2005)

1098-0121/2005/71(3)/033303(3)/$23.00 ©2005 The American Physical Society033303-1



gives a maximum error of less than 0.0028R* in the range
0,d,10aB

* .
The Schrödinger equation for the biexciton is
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where 1 and 2 denote the electron coordinates,a andb de-
note the hole coordinates,r12= ur 1−r 2u, r1a=Îur 1−r au2+d2,
etc., ands=me/mh. When expressed in units ofR* , EX is a
function only ofd, but the biexciton energy,EXX, is a func-
tion of bothd and s. Equation(4) does not separate in cy-
lindrical polar coordinates and we have to solve the many-
body problem. For this purpose we have used the diffusion
quantum Monte Carlo(DMC) method, which is a stochastic
projector technique for solving the imaginary-time many-
body Schrödinger equation.5 In the ground state of the biex-
citon the electrons have opposite spins and the holes have
opposite spins, so the spatial part of the wave function is
nodeless. The DMC method is exact in principle for nodeless
wave functions, and although there are biases due to the use
of finite time steps and populations of walkers, these can be
made negligible for small systems such as this.

The sampling within DMC is guided by an approximate
wave function that must be sufficiently accurate to give low
statistical noise and to keep the biases small. The form of our
approximate wave function was guided by the symmetries of
the problem and the long- and short-distance behavior. The
system composed of two separated bound excitons is always
more stable than one consisting of four unbound charges.
Therefore we expect the wave function to be exponentially
small when all four particles are far apart. When one of the
particles is far from the other three we expect the wave func-
tion to be exponentially small because the single charge will
be attracted to the other three. Likewise we expect that the
part of the wave function corresponding to one bound exci-
ton and a free electron and hole is exponentially small. When
d is large we expect the system to consist essentially of two
separated excitons, and the form of the approximate wave
function must allow for this possibility. The short-range be-
havior of the wave function is fixed by the Kato cusp
conditions,6 which ensure that the divergences in the poten-
tial and kinetic energies cancel when two particles are coin-
cident. The biexciton wave function,C, should be unaltered
by exchange of(i) the two electron coordinates, or(ii ) the
two hole coordinates, i.e.,Csr 1,r 2,r a,r bd=Csr 2,r 1,r a,r bd
=Csr 1,r 2,r b,r ad, and when the electron and hole masses are
equal,C should have the additional electron-hole symmetry
Csr 1,r 2,r a,r bd=Csr a,r b,r 1,r 2d.

The binding between the excitons is expected to be small
compared with the binding within an exciton. We therefore
write the wave function as an appropriately symmetrized
product of two exciton wave functions, which is then multi-
plied by a Jastrow function containing electron-electron and
hole-hole terms. We use the following form, which satisfies
all of the above conditions,
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wherec1−c9 are parameters. This form is similar to that used
by Lee et al.7 for the three-dimensional biexciton, although
our form has more flexibility in the electron-hole part. We
require c2,c4,c7,c9.0 so thatC is well behaved, andc6,
c8,0 so thatCeh decays when the electrons and holes are
far apart. Equation(5) describes two separated excitons
when eitherc6 or c8 go to zero.

The values of the parametersc1 andc3 were fixed by the
electron-electron and hole-hole Kato cusp conditions.6 The
value of c5 was fixed by the electron-hole cusp condition
whend=0, while for d.0 there should be no electron-hole
cusp and so we setc5=0. Whens=1 electron-hole symme-
try requires thatc1=c3 andc2=c4. The optimal values of the
remaining variable parameters were obtained by minimizing
the variance of the variational energy.8,9

We calculated the energy of the biexciton,EXX, as a func-
tion of d for s=1 and 2. Tests indicated that the time step
and population control errors in the DMC results were neg-
ligible. All the Quantum Monte Carlo calculations were per-
formed using theCASINO code.10 The biexciton binding en-
ergy with respect to dissociation into two separate excitons,
Eb=2EX−EXX, is plotted as a function ofd in Fig. 2 for
s=1 and 2. For smalld and s=1, Eb is close to the value

FIG. 2. The binding energy of the biexciton,Eb=2EX−EXX, as a
function of the separation of the electron and hole layers,d, for
s=1 and 2. The error bars are smaller than the thickness of the
lines.
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obtained in earlier calculations ford=0 of 0.771R* .11 Eb
goes to zero at larged much more rapidly thanEX itself
because the electron-electron and hole-hole repulsions domi-
nate the electron-hole attraction in the biexciton at larged,
tending to unbind the biexciton. Examination of the biexci-
ton wave function shows that two separated excitons are
formed at larged. The behavior ofEb at larged is reasonably
well represented by a simple exponential form,

Eb = a expf− bdg, s6d

where a=0.675 73 and b=15.023 for s=1, and
a=0.717 14 andb=14.187 fors=2.

As a simple example of the use of these results we esti-
mate the biexciton binding energy,Eb, in the experiments of
Butov et al.,1 who studied a system of two 80-Å-wide GaAs
quantum wells separated by a 40-Å-wide barrier of
Al0.33Ga0.67As. The electron mass in GaAs isme=0.067m0,
while the heavy-hole mass should be reduced from its bulk
value of 0.45m0 by confinement effects, and for simplicity
we take a value ofmh=0.134m0. This gives a 2:1 mass ratio,
although the results are not sensitive to the precise value of
mh. The value ofmh=0.134m0 is in the middle of the range
considered by Szymanska and Littlewood12 for this geom-
etry, and is close to the value reported by Butovet al.13

Using a dielectric constant appropriate to GaAs of 13.2 we
find aB

* =156 Å and R* =3.5 meV. Eb is sensitive to the

value ofd, and therefore we fix its value such that we repro-
duce the large-field exciton binding energy of 4 meV
s1.14R*d calculated for this structure by Szymanska and
Littlewood,12 who used a realistic description of the finite
well widths and depths. Using Eq.(3) we find
d=0.64aB

* s100 Åd, which is a very reasonable value as it lies
between the experimental barrier width of 40 Å and the dis-
tance between the centers of the wells of 120 Å.1 Substitut-
ing d=0.64aB

* into Eq. (6) and using the parameters for
s=2 we obtain Eb=8.2310−5R* s2.9310−4 meVd. This
model predicts an extremely small biexciton binding energy,
which is unlikely to lead to measurable effects.

In conclusion, we have calculated the energies of excitons
and biexcitons in ideal two-dimensional bilayer systems
within the effective-mass approximation with isotropic elec-
tron and hole masses. The exciton binding energy decays as
the inverse of the layer separation, while the biexciton bind-
ing energy with respect to dissociation into two separate ex-
citons decays exponentially. This model indicates that biex-
citon formation, which would hinder Bose-Einstein
condensation of excitons, is effectively suppressed in the ge-
ometry used by Butovet al.1
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