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Raman intensity of single-wall carbon nanotubes

R. Saito, T. Takeya, and T. Kimura
Department of Electronics Engineering, University of Electro-Communications, Chofugaoka, Chofu, 182-8585 Tokyo, Japa
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~Received 26 August 1997!

Using nonresonant bond-polarization theory, the Raman intensity of a single-wall carbon nanotube is cal-
culated as a function of the polarization of light and the chirality of the carbon nanotube. The force-constant
tensor for calculating phonon dispersion relations in the nanotubes is scaled from those for two-dimensional
graphite. The calculated Raman spectra do not depend much on the chirality, while their frequencies clearly
depend on the nanotube diameter. The polarization and sample orientation dependence of the Raman intensity
shows that the symmetry of the Raman modes can be obtained by varying the direction of the nanotube axis,
keeping the polarization vectors of the light fixed.
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I. INTRODUCTION

An important advance in carbon nanotube science1 is the
synthesis of single-wall carbon nanotubes~SWCN’s! in high
yield using the laser ablation method with transition-me
catalysts, in which a bundle of SWCN’s forms a triangu
lattice of nanotubes, known as arope.2,3 Using such nano-
tube ropes, several solid state properties pertaining t
single nanotube have been observed. In particular,
et al.4 have reported Raman spectra for SWCN’s in wh
they assigned the observed Raman modes with spe
(n,m) nanotubes known to be present in their samples. T
showed that the Raman signal from the rope not only c
sists of the graphite-orientedE2g ~or Eg) modes, which oc-
cur around 1550–1600 cm21, but also contains a strong low
frequencyAg-active mode, known as the nanotube rad
breathing mode, which is special to the nanotube geome
Within the bond-polarization theory, they have assigned
spectral contribution as coming from armchair nanotube5,6

which are denoted by the chiral vectors4–6 (n,n) for n58,9,
and 10. The authors, however, did not consider the cas
other chiral nanotubes in their theoretical analysis.

Recently Katauraet al.7 reported that various chiral nano
tubes with almost all possible nanotube chiral angles are
pected from the assignment of the observed Raman sp
to the calculatedA1g breathing modes,8 under different syn-
thesis conditions through variation of the catalyst compo
tion and the furnace temperature. According to their resu7

smaller diameter nanotubes are obtained by lowering the
nace temperature to the range of 1000–1200 °C and usi
Rh/Pd catalyst instead of the Ni/Co catalyst that was use
prepare the samples in Ref. 4.

As for the distribution in chiral angle of carbon nanotub
prepared by the method in Refs. 3 and 4, Cowleyet al.
showed from TEM experiments that the observed range
chiral angle lies within 7.3° from the armchair angle.9 Thus
it is interesting to examine the Raman spectra for ch
nanotubes theoretically.

The group theory for carbon nanotubes predicts that th
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are 15 or 16 Raman-active modes atk50 for all armchair
(n,n), zigzag (n,0), and chiral (n,m) (nÞm) nanotubes.1,8

The number of Raman-active modes does not depend on
number of carbon atoms in the unit cell, which is given
2N54(n21m21nm)/dR for (n,m) nanotubes.1 HeredR is
the highest common divisor of (2m1n) and (2n1m). A
simple explanation for why we get almost the same num
of Raman modes for any nanotube is as follows: For low
Raman frequencies, the vibrations can ‘‘see’’ only the cyl
drical surface, while for higher Raman frequencies, the
brations see only the localsp2-bond structure of graphite
which is the same for any nanotube. However, the chira
of the nanotube may affect the Raman frequency, as we
show below.

An another interesting point concerns polarization effe
in the Raman spectra, which are commonly observed in lo
dimensional materials. Since nanotubes are one-dimensi
materials, the use of light polarized parallel or perpendicu
to the tube axis will give information about the low dime
sionality of the nanotubes. The availability of purifie
samples of aligned nanotubes would allow us to obtain
symmetry of a mode directly from the measured Raman
tensity by changing the experimental geometry, such as
polarization of the light and the sample orientation, as d
cussed in this paper.

The enhancement of the Raman intensity is observed
function of laser frequency when the excitation frequency
close to a frequency of high ‘‘optical’’ absorption and th
effect is called the resonant Raman effect. The observed
man spectra of SWNT’s show resonant Raman effec4

which reflect the one-dimensional van Hove singularities
the electronic density of states~DOS! of the p bands. The
resonant Raman effect is expected to be observed clear
carbon nanotubes when the singularities in the o
dimensional density of electronic states are separated f
each other in the DOS spectra. The number of singularitie
the DOS spectra of a nanotube depends on the numberp
energy subbands 2N, whereN is the number of carbon atom
in the unit cell defined above. Thus nanotubes with smallN,
4145 © 1998 The American Physical Society



ar
n
no
ce
n
so
o
m

e
s
g
a
w
a

en

e
Se
o
th
ith
th

io
in
wo
e
-
ar
de
ss

de
t

lty
no
n
e
t
s

en

re
e

n

a-

o
,
lat-

ce
fol-

sid-

e

n

.
the

own

ig.

4146 57R. SAITO et al.
such as the achiral nanotubes and chiral nanotubes with l
dR , may show a clear resonance effect when the freque
of the laser light is tuned. On the other hand, chiral na
tubes with largeN may not show the resonance effect. Sin
the numberN depends strongly on the chirality, the resona
Raman intensity depends on the chirality. The different re
nant energies come from the electronic structure of the c
stituent nanotubes of the sample, which have different dia
eters and chiralities. Since the Raman modes can
reasonably well identified for a single chirality nanotub
such a resonant effect from a mixed sample emphasize
fects associated with a distribution of nanotube radii. Thou
the present theory is within a nonresonant scheme so th
cannot be used to obtain the resonant spectra explicitly,
believe that our model nevertheless gives important inform
tion about the Raman modes for nanotubes with differ
diameters and chiralities.

In Sec. II we first show the method for calculating th
phonon dispersion relations in carbon nanotubes and in
III the calculated Raman intensities for different chiral nan
tubes are presented as a function of the polarization of
light and the relative orientation of the nanotube axis w
respect to the polarization vector. Finally, a summary of
findings is given in Sec. IV.

II. METHOD

A. Force-constant model

A general approach for obtaining the phonon dispers
relations of carbon nanotubes is given by the zone-fold
method, whereby the phonon dispersion relations of a t
dimensional~2D! graphene sheet are folded into the on
dimensional Brillouin zone10 for the carbon nanotube. How
ever, in the zone-folding method, special corrections
necessary, especially for the lower-frequency phonon mo
since some phonon modes of SWCN’s cannot be expre
by the zone-folded phonon modes of 2D graphite.10 This
comes from the fact that the in-plane and out-of-plane mo
are decoupled in the 2D graphite phonon modes, but tha
not the case for a nanotube. In order to avoid this difficu
tight-binding molecular dynamics are adopted for the na
tube geometry, in which the atomic force potential for ge
eral carbon materials is used.4,8 Here we use the scaled forc
constants from those of 2D graphite and we construc
force-constant tensor for a constituent atom of the SWCN
as to satisfy the rotational sum rule for force constants.11

In general, the equations of motion for the displacem
of the i th coordinate,uW i5(xi ,yi ,zi) for N atoms in the unit
cell, are given by

MiuẄ i5(
j

K ~ i j !~uW j2uW i ! ~ i 51, . . . ,N!, ~1!

whereMi is the mass of thei th atom andK ( i j ) represents the
333 force-constant tensor that couples thei th and j th at-
oms. The sum overj in Eq. ~1! is normally taken over only
a few neighbor distances relative to thei th site, which for a
2D graphene sheet has been carried out up to fourth-nea
neighbor interactions.10 Using the Fourier transform of th
displacementsuW i , we get a 3N33N dynamical matrixD(kW ),
which satisfies
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D~kW !uW kW50. ~2!

To obtain the eigenvaluesv2(kW ) for D(kW ) and the nontrivial
eigenvectors uW kWÞ0W , we solve the secular equatio
detD(kW )50 for a givenkW vector. It is convenient to divide
the full dynamical matrixD(kW ) into small 333 matrices
D( i j )(kW ) ( i , j 51,... ,N), where we denote the dynamical m
trix D(kW ) by $D( i j )(kW )% and it follows thatD( i j )(kW ) is ex-
pressed as

D~ i j !~kW !5S (
j 9

K ~ i j 9!2Miv
2~kW !I D d i j 2(

j 8
K ~ i j 8!eikW•DRW i j 8,

~3!

where the sum overj 9 is taken for all neighbor sites~relative
to the i th atom! with K ( i j )Þ0 and the sum overj 8 is only
taken over the sites equivalent to thej th atom.

Since we have 2N carbon atoms, the dynamical matrix t
be solved becomes a 6N36N matrix. In analogy to graphite
the hexagonal lattice of a nanotube consists of two sub
tices denoted byA andB. Here we denote the 2N atoms as
Ai andB j ( i , j 51,...,N), where theNAi ~or NB j) atoms are
geometrically equivalent to one another. This equivalen
reduces the calculation of the force-constant tensor as
lows. When we divide the full 6N36N dynamical matrix
into the 333 small matricesD(AiB j) for a pair ofAi andB j
atoms, we then consider (2N)254N2 small matricesD(AiA j),
D(AiB j), D(BiA j), andD(BiB j) ( i , j 51,...,N), in which inter-
actions only up to fourth-nearest-neighbor pairs are con
ered. The corresponding force-constant tensorK (ApBq) can
be generated using

K ~ApBq!5~U21!p21K ~A1Bq2p11!Up21, ~4!

where U is a unitary matrix for rotation by an angl
C52p/N around the nanotube axis andUp21 is defined as

Up215S cos~p21!C sin~p21!C 0

2sin~p21!C cos~p21!C 0

0 0 1
D , ~5!

where thez axis is taken for the nanotube axis. Whe
(q2p11) is negative or zero in Eq.~4! we use
(N1q2p11) for (q2p11). When the value ofp goes
from 1 to N, we go over allAp atoms once in the unit cell
Thus we can generate all force-constant tensors from
nonzero tensors related toA1 or B1, such asK (A1Ap),
K (A1Bp), K (B1Ap), andK (B1Bp).

The force-constant tensorK (A1Bp) is generated by rotating
the chemical bondA1Bp from the two-dimensional plane to
the three-dimensional coordinates of the nanotube, as sh
in Fig. 1. We now explain how to rotate the bondA1B1. At
first the atomA1 is on thex axis andB1 is at an open circle
in thexy plane, as shown in Fig. 1~a!. We move theB1 atom
from the xy plane to another open circle as shown in F
1~a! by rotating byp/62u around thex axis, whereu is the
chiral angle defined byu5tan21@A3m/(m12n)#. Then in
the top view of Fig. 1~b!, we rotateB1 from the open circle
to the solid circle by an anglew/2 aroundA1, wherew is
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57 4147RAMAN INTENSITY OF SINGLE-WALL CARBON NANOTUBES
defined by the angle betweenA1 andB1 around thez axis.
This notation allows us to put theB1 atom on the cylindrical
surface of the nanotube. Finally, we rotateA1 and B1
around thez axis by the angleC in Eq. ~5! as discussed
above@Fig. 1~c!#. The force constant matrix in the new co
ordinate system is generated by the corresponding rotatio
the second rank tensor in which the two-dimensional gra
ite force-constant parameters10 are used.

Multiplying the force-constant tensor thus obtained
exp(ikDzij) , whereDzi j is the component ofDRW i j along thez
or nanotube axis, the dynamical matrix is obtained as a fu
tion of the wave vectork @see Eq.~3!#. The phonon energy
dispersion relationv(k) is obtained by solving the dynam
cal matrix of Eq. ~3! for many k points in the one-
dimensional Brillouin zone.

It should be mentioned that the effect of curvature is
perfectly included in the force constants thus obtained
the calculated frequency atk50 for the rotational acoustic
mode is not zero as it must be, but rather has a finite va
@;4 cm21 for the ~10,10! nanotube#. It is clear that the
rotational motions of the two neighboring atoms are not p
allel to the chemical bonds between the two atoms and
effect gives an artificial out-of-plane force using the meth
described above. To avoid this unphysical result, we sca
the force-constant parameters10 by the formulas:

FIG. 1. Rotations of the chemical bonds from the tw
dimensional plane to the cylindrical surface. The force cons
matrix is generated by performing the corresponding set of rotat
on a second-rank tensor. See details in the text.
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f to8 5f to1f toF12cosS w

2 D G ,
f r85f r1f r cosS p

6
2u D F12cosS w

2 D G , ~6!

f t i8 5f t i1f t i sinS p

6
2u D F12cosS w

2 D G ,
where thef to8 and f to are, respectively, the scaled and th
original force-constant parameters, and a similar notation
used for the force constant parametersf r andf t i . The idea
for using this scaled force-constant approach comes from
fact that we recover a reduction in the force due to the d
ferent directions of the force defined for the chemical bond
free space from the force on the cylindrical surface. Wh
we make these corrections to the force constant using
~6!, we always get the correct vanishing of the purely rot
tional mode frequencies atk50 for any nanotube, and this
condition is necessary in order to satisfy the rotational su
rule for the force constants.11 As for the other phonon
frequencies, the frequencies at theG point shift by at most 4
cm21 in the lowestE2g mode resulting from the correction
to the force-constant parameters for a~10,10! nanotube asso-
ciated with Eq.~6!. As for the higher-frequency modes, th
correction to these frequencies is very small. We emphas
that although the magnitude of the corrections in Eq.~6! is
small, this correction is important to ensure that the symm
try conditions for translations of the centers of mass a
rotations about the center of mass are correctly satisfied.

B. Raman intensity

Using the calculated phonon modes of a SWCN, the R
man intensities of the modes are calculated within the no
resonant bond-polarization theory, in which empirical bo
polarization parameters are used.12 The bond parameters tha
we used in this paper are listed in Table I. In the table w
also list the Raman polarizability parameters that are used
carbon atoms. In order to obtain these parameters, we s
from the values for the bond polarizability that were used f

-
nt
ns
ths of
TABLE I. Raman polarizability parameters for various carbon-related molecules. The bond leng
CuC and CvC for C60 and CvC for SWNT are 1.46, 1.40, and 1.44 Å, respectively, anda8 denotes the
derivative ofa.

Molecule Bond
a i12a'

~Å 3!
a i2a'

~Å 3!
a i812a'8

~Å 2!
a i82a'8

~Å 2!

CH4
a CuH 1.944

C2H6
a CuC 2.016 1.28 3.13 2.31

C2H4
a CvC 4.890 1.65 6.50 2.60

C60
b CuC 1.28 2.306 0.01 2.306 0.30

CvC 0.326 0.09 7.556 0.40 2.606 0.36
C60

a CuC 1.286 0.20 1.286 0.30 1.356 0.20
CvC 0.006 0.20 5.406 0.70 4.506 0.50

SWNTc CvC 0.04 4.7 4.0

aReference 12.
bReference 13.
cPresent work.
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4148 57R. SAITO et al.
C60 ~Refs. 12 and 13! and other materials for single~1.46 Å!
and double~1.40 Å! carbon bonds and we interpolate b
tween these values to obtain an estimate for the bo
polarizability parameters for SWCN’s. We then adjust the
parameters so as to reproduce the Raman signal for rand
oriented nanotubes. Although the values thus obtained
within a reasonable range, the values listed in Table I for
various carbon materials show considerable scatter.

It is known, however, that the polarizability parameters
carbon are similar for a variety of carbon materials. Furth
more, the relative intensities for the Raman modes are no
sensitive to small changes in the values of the bo
polarization parameters except for the lowestE2g mode.
Only the lowestE2g mode is found to be sensitive to th
bond-polarization parametera i2a' . Thus the fitted values
listed in Table I were used for the present calculation. T
Raman intensity is calculated using the eigenvectors for
vibrational modes, obtained by solving the dynamical mat
and the polarizability parameters are obtained using bo
polarization theory.12

III. CALCULATED RESULTS

A. Phonon dispersion relations

The results thus obtained forv(k) for a ~10,10! armchair
carbon nanotube are given in Fig. 2~a!, whereT denotes the
unit vector along the tube axis.1 For the 2N540 carbon at-
oms per circumferential strip for the~10,10! nanotube, we
have 120 vibrational degrees of freedom, but because
mode degeneracies there are only 66 distinct pho
branches, for which 12 modes are nondegenerate and 5
doubly degenerate. We also show the phonon density
states for~10,10! in Fig. 2~b!. Here we integrated the state
with an accuracy of 10 cm21. The phonon density of state

FIG. 2. ~a! Calculated phonon dispersion relations of an ar

chair carbon nanotube withCW h5(10,10). The number of degrees o
freedom is 120 and the number of distinct phonon branches is
~b! Phonon density of states of~10,10! nanotubes.
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is close to that for 2D graphite except for the small peaks
to the one-dimensional singularities.

Let us focus our attention on the acoustic modes of
~10,10! carbon nanotube. In Fig. 3 the phonon dispers
relations around theG point are shown on an expanded sca
for the ~10,10! carbon nanotube. The lowest-energy mod
neark50 are the transverse-acoustic~TA! modes, which are
doubly degenerate, and havex andy displacements perpen
dicular to the nanotube (z) axis. The highest-energy mode
the longitudinal-acoustic~LA ! mode whose displacement ex
ists in the direction of the nanotube axis. Since the displa
ments of the three acoustic modes are three dimensional
frequencies of the phonon dispersion relations are prop
tional to k for all three phonon branches, as is common
observed in the solid state. The sound velocities of the
and LA phonons for a~10,10! carbon nanotube,vTA

(10,10) and
vLA

(10,10), are estimated as vTA
(10,10)59.42 km/s and

vLA
(10,10)520.35 km/s, respectively. Since the TA mode of e

ery nanotube has both an ‘‘in-cylindrical-plane’’ and a
‘‘out-of-cylindrical-plane’’ component, the TA modes of th
nanotube are softer than the TA or LA modes of 2D graph
On the other hand, the LA mode of the nanotube has only
in-plane component mode that is comparable in slope to
LA mode of 2D graphite. In fact, with the force-consta
parameters that are used in this paper, we have calculate
phonon dispersion relations of 2D graphite, which gi
vTA

G 515.00 km/s andvLA
G 521.11 km/s for the in-plane TA

and LA modes, respectively. The calculated phase velo
of the out-of-plane TA mode for 2D graphite is almost
km/s because of itsk2 dependence. It is clear that thevTA

(10,10)

that has an out-of-plane component is smaller than the pu
in-planevTA

G . Further, the sound velocities of 2D graphite d
not depend on the direction in the graphitic plane becaus
the threefold symmetry in the hexagonal lattice. Howev
since the threefold symmetry is broken in carbon nanotub
we expect a chirality dependence of the sound velocity
vLA

SWNTand so on. This effect will be reported elsewhere.
From the value forvLA

(10,10), the elastic constant,C11,
where 1 denoteszz, can be estimated byvLA5AC11/r, in
which r is the mass density of the carbon atoms. When
assume a triangular lattice of nanotubes with latt
constants3 a516.95 Å andc51.443A3 Å, the mass den-
sity r becomes 1.283103 kg/m3, from which we obtain

-

6.

FIG. 3. Phonon dispersion relations shown on an expanded s
for a ~10,10! carbon nanotube near theG point ~k50!.
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Young’s modulusC115530 GPa. Young’s modulus is a
most the same asC11 since C12 is expected to be much
smaller than in 2D graphite.14 This value is much smalle
than C1151060 GPa~Ref. 15! and the range discussed b
several other groups,16,17 and the difference in the estima
for Young’s modulus is due to the smaller values for t
mass density.

In addition, there is a fourth acoustic mode for the carb
nanotube, which is related to a rotation around the nanot
axis atk50. Since the force driving this wave motion is
twisting motion of the nanotube,4 we call this mode a twist-
ing mode. The velocity of the twisting acoustic wave is e
timated to be 15.00 km/s for a~10,10! nanotube. This value
is equal to the calculated velocity ofvTA

G for a graphene shee
since the twisting mode is an in-cylindrical-plane mode. It
noted that the sound velocities that we have calculated
2D graphite are similar to those observed in 3D graphit15

for which vTA
G3D512.3 km/s andvLA

G3D521.0 km/s. Although
there is some difference in the sound velocities calculated
various groups, the present calculation gives good results
the Raman mode frequencies as shown below.

It is interesting to note that the lowest phonon mode w
nonzero frequency atk50 is not a nodelessA1g mode, but
rather anE2g mode with two nodes in which the cross se
tion of the carbon nanotube is vibrating with the symme
described by the basis functions ofx22y2 andxy. The cal-
culated frequency of theE2g mode for the~10,10! carbon
nanotube is 17 cm21. Although this mode is a Raman-activ
mode, there is at present no experimental observation of
mode. Possible reasons why this mode has not yet been
served is that the frequency may be too small to be obse
because of the strong Rayleigh scattering or that the
quency of theE2g mode may be modified by the effect o
internanotube interactions.

The strongest low-frequency Raman mode is the ra
breathingA1g mode whose frequency is calculated to be 1
cm21 for the~10,10! nanotube. Since this frequency is in th
silent region for graphite and other carbon materials, thisA1g
mode provides a good marker for specifying the carb
nanotube geometry. Another merit of theA1g mode is that
theA1g frequency is sensitive to the nanotube diameterdt or
radiusr . In Fig. 4 we give the calculated lower Raman-acti
mode frequencies as a function of the carbon nanotube ra
r on a log-log plot for (n,m) in the range
8<n<10, 0<m<n. Figure 4 clearly shows straight-lin
dependences onr for all four Raman modes, showing
power dependence ofv(r ) on r , but no chirality depen-
dence, which is consistent with the fact that the energy
of a semiconducting nanotube and the strain energy dep
only on the nanotube radius.18,19From the slopes ofv(r ) for
this range ofr , we conclude that, except for the lowestE2g
mode, the frequencies are inversely proportional tor within
only a small deviation. This dependence is closely relate
the circumferential length of the nanotube. As for the low
E2g mode, the frequencyv2g(r ) has a dependence o
r 21.9560.03, which is approximately quadratic, and may r
flect the curvature effect of the nanotube. The fitted pow
law for theA1g mode that is valid in the region 3 Å<r<7 Å:

v~r !5v~10,10!S r ~10,10!

r D 1.001760.0007

, ~7!
n
be

-

or

y
or

is
b-

ed
e-
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5

n
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p
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to
t

r

should be useful to experimentalists. Herev (10,10) andr (10,10)

are, respectively, the frequency and radius of the~10,10!
armchair nanotube, with values ofv (10,10)5165 cm21 and
r (10,10)56.785 Å, respectively.

It is the noted that theE1g and A1g modes exist in a
similar frequency region. However, since the intensity of t
E1g modes is not as strong as that for theA1g mode, the
experimental Raman spectra between 100 and 300 cm21 are
dominated by theA1g mode. As for the higher-frequenc
Raman modes, we do not see a strong dependence onr since
the frequencies of the higher optical modes are more se
tively determined by the local movements of the atoms.

B. Raman intensity of nanotubes

The Raman intensity for the various Raman-active mo
in carbon nanotubes is calculated at a phonon temperatu
300 K, which appears in the formula for the Bose distrib
tion function for phonons. The eigenfunctions for the vario
vibrational modes are calculated numerically at theG point
(k50).

1. The chirality dependence of the Raman intensity
as a function of the polarization of the light

In Fig. 5 we show the calculated Raman intensities for
~10,10! armchair,~17,0! zigzag, and~11,8! chiral nanotubes,
whose radii are, respectively, 6.78 Å, 6.66 Å, and 6.47 Å a
are close to one another. Here the Raman intensity is a
aged over the sample orientation of the nanotube axis r
tive to the Poynting vector, in which the average is calc
lated by summing over the many possible directio
weighted by the solid angle for that direction. Here we co
sider two possible geometries for the polarization of t
light: the VV and VH configurations. In theVV configura-
tion, the incident and the scattered polarizations are para
to each other, while they are perpendicular to each othe
the VH direction. Generally the cross section for Ram
scattering is a function of the scattered angle of the lig
However the formula of the bond polarization theory cons

FIG. 4. A log-log plot of the lower Raman mode frequencies
a function of carbon nanotube radius.
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4150 57R. SAITO et al.
ers only S-scattered waves12 and thus the calculated resu
cannot distinguish between forward and backward scatte
of the light.

When we compare theVV with theVH configurations for
the polarized light, the Raman intensity shows anisotro
behavior. Most importantly, theA1g mode at 165 cm21 is
suppressed in theVH configuration, while the lower-
frequencyE1g and E2g modes are not suppressed. This a
isotropy is due to the degenerate vibrations of theE modes,
whose eigenfunctions are partners that are orthogonal to
other, thus giving rise to largeVH signals. The Raman in
tensity is normalized in each figure to the maximum intens
of unity. From the figure we see that the relative intensit
for the same lower-frequencyA1g mode between theVV and
VH polarizations are quite different. However, the absol
values for the intensities for theVV andVH polarizations are
on the same order for all theE modes.

It is interesting that the higherA1g mode does not show
much suppression between theVV and VH geometries,
which is closely related to the direction of the vibration
Even if the phonon mode is anA1g mode, we can expect
signal in theVH geometry if the vibration is not parallel t

FIG. 5. Polarization dependence of the Raman scattering in
sity for ~10,10! armchair~top!, ~17,0! zigzag ~middle!, and ~11,8!
chiral ~bottom! nanotubes. The left column is for theVV scattering
configuration and the right column is for theVH configuration.
g
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ch
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the polarization. In fact, in Sec. III B 2 we can see a stro
dependence of the Raman intensity on the sample orienta
for theA1g mode. As mentioned in Sec. II, the lattice can
split into two sublattices consisting ofA andB atoms. In the
higher-frequencyA1g mode, theAandB atoms move in op-
posite directions~out of phase! in the unit cell, while in the
lower-frequencyA1g mode, theAand B atoms move in the
same way~in phase!. When we investigate the vibration o
the higher-frequencyA1g mode, the vibration corresponds t
the folded vibration of one of the higherE2g modes of graph-
ite. Thus, in the cylindrical geometry, we may get a res
that is not so polarization sensitive. On the other hand
C60, since all 60 atoms are equivalent, no carbon atom
move in an out-of-phase direction around theC5 axes for
either of the twoA1g modes, so that both modes show sim
lar polarization behavior to each other.1

When we compare the calculated Raman intensities
armchair, zigzag, and chiral nanotubes of similar diamet
we do not see large differences in the lower-frequency
man modes. This is because the lower-frequency modes
a long wavelength, in-phase motion, so that these mo
cannot see the chirality of the nanotube in detail, but rat
the modes see a homogeneous elastic cylinder. However
interesting to see whether the Raman intensity is sensitiv
the nanotube chirality for the higher-frequency Ram
modes. An explanation for the chirality dependence in
higher-frequency Raman modes may come from the cu
ture of the nanotube as follows. In the high-frequency regi
all phonon modes consist of the out-of-phase and
cylindrical-plane modes that result from the folding of th
phonon modes with variousk points of 2D graphite.20 The
out-of-phase modes for a CvC bond consist of CvC radial
~or bond stretching! motion and tangential in-plane~or bond-
bending! motion, in which the tangential motion is perpe
dicular to the radial motion. The Raman-activeE2g mode of
2D graphite at 1582 cm21 corresponds to CvC bond-
stretching motions for one of the three nearest-neigh
bonds in the unit cell. A similar motion in a nanotube shou
be expected to give a large Raman intensity. When we
the motion of the Raman-active modes of a nanotube, we
consider an envelope function for the amplitude of the vib
tion, multiplying it by the above-mentioned out-of-pha
motions. We can say that the envelope function should
isfy the selection rules for Raman-active modes among
many phonon modes. For example, the envelope funct
for the A1g , E1g and E2g modes are functions with zero
two, and four nodes around the tubez axis, respectively.
Thus the envelope functions with a given symmetry are si
lar to one another for nanotubes with any (n,m) values.
However, the directions of the out-of-phase motions of
A1g modes are different for armchair and zigzag nanotub
In fact, the CvC bond-stretching motions can be seen in t
horizontally and the vertically vibrating C5C bonds for arm-
chair and zigzag nanotubes, respectively. Thus the curva
of the nanotube affects the frequency of these modes
similar discussion can be applied to theE modes or to a
chiral nanotube, in which the direction of the out-of-pha
mode is affected by the curvature. The ratio of the bon
stretching displacement to the bond-bending displacemen
the out-of-phase motions affects the relative intensity of e
mode and the relative intensity depends on the chirality

n-
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the nanotube. Although these higher-frequency modes
difficult to distinguish from one another in the experime
because of their similar frequencies, it should be possibl
identify the different modes experimentally, once purifie
aligned, single-wall nanotube samples become available
shown in Sec. III B 2, where the angular dependence of
Raman intensities is discussed.

It could be very interesting to discuss the Raman frequ
cies in the intermediate frequency region where the
quency may show the greatest chirality dependence.21 The
calculated results, however, show almost no intensity for
intermediate Raman modes around 1200–1500 cm21. The
Raman experiments on single-wall nanotubes show w
peaks that have been assigned to armchair modes.4 From the
calculation we cannot explain why these low-intensity pe
appears. The peaks might come from a lowering of the s
metry of the nanotube. In fact, broad Raman peaks aro
1350 cm21 are observed in the experiment.4,22 Broad peaks
around 1350 cm21 are known to be associated wit
symmetry-lowering effects in disordered graphite23 and in
carbon fibers.15 The relative intensity of the broad pea
around 1350 cm21 to the strongE2g mode at 1582 cm21 is
sensitive to the lowering of the crystal symmetry
graphite,23,24 and the amount of disorder in carbon fibers15

and in graphite nanoclusters25 can be controlled by the hea
treatment temperatureTHT or by ion implantation.26 The
non-zone-center phonon mode at 1365 cm21 has a flat en-
ergy dispersion around theM point in the Brillouin zone of
graphite, which implies a high phonon density of states27

Moreover, in small aromatic molecules, though the f
quency and the normal mode displacements are modifie
the finite-size effect, theseM -point phonon modes becom
Raman active28 and have a large intensity.25,29 Thus some
symmetry-lowering effects such as the effect of the end ca
the bending of the nanotube, and other possible defects
likely to give rise to Raman intensity for thisM -point mode.
Note that if the nanotube is deformed to a 232 structure for
any reason, theM point phonon can be folded to theG point
and the folded modes become Raman-activeAg modes.
However, since a Peierls instability is unlikely, this situati
may occur only in the case of intercalated nanotubes22 or
when there is orientational ordering of the nanotubes in
rope.

As is noted in the Introduction, it is important to consid
the resonance effect when discussing Raman intensities
though the three nanotubes in Fig. 5 have similar radii,
number of carbon atoms per 1D unit cell is very differe
For example, the~10,10! and ~17,0! nanotubes have 40 an
68 carbon atoms in their 1D unit cells, respectively. Ho
ever, the~11,8! nanotube has 364 carbon atoms in its u
cell. The singularities in the electronic density of states
difficult to observe in the~11,8! nanotube within the resolu
tion of the scanning tunneling microscope and thus the re
nant Raman effect for chiral nanotubes should also be r
tively difficult to observe compared to the case of achi
nanotubes. It would be interesting to be able to assign
chirality of a nanotube from the Raman spectra by us
many laser excitation frequencies.

2. Sample orientation dependence

Finally, we show the Raman intensity of the~10,10! arm-
chair nanotube as a function of sample orientation. Here
re
t
to
,
as
e

-
-

e

k

s
-

nd

-
by

s,
re

e

l-
e
.

-
t
e

o-
a-
l
e

g

e

rotate the nanotube axis from thez axis by fixing the polar-
ization vectors to lie along thez andx axes, respectively, for
the V andH polarizations. In this geometry, three rotatio
of the nanotube axis are possible for theVV and theVH
configurations and these three rotations are denoted
u i ( i 51,2,3). Hereu1 andu2 are the angles of the nanotub
axis from thez axis to thex andy axes, respectively, while
u3 is the angle of the nanotube axis around thez axis from
the x to they axis. Since we put the horizontal polarizatio
vector along thex axis, u1 and u2 are different from each
other for theVH configuration. Even for theVV configura-
tion the rotations byu1 and u2 are not equivalent to eac
other in the case of the~10,10! armchair since the~10,10!
armchair nanotube has a tenfold symmetry axis (C10) that is
not compatible with the Cartesian axes. Here we define
x,y,z axes so that we put a carbon atom along thex axis
whenu350°. In Fig. 6 we show the relative Raman inte
sities for the~10,10! armchair nanotube for theVV andVH
configurations as a function ofu i ( i 51,2,3).

When we see the Raman intensity as a function ofu1, the
A1g mode at 1587 cm21 has a maximum atu150, which
corresponds tou25u350 for the VV configuration, while
the E1g mode at 1585 cm21 has a maximum atu1545°.
When u1 increases to 45°, the relationship between the

FIG. 6. Raman intensities as a function of the sample orienta
for the~10,10! armchair nanotube. As shown on the right,u1 andu2

are angles of the nanotube axis from thez axis to thex axis andy
axis, respectively.u3 is the angle of the nanotube axis around thez
axis from thex axis to they axis. The left- and right-hand figure
correspond to theVV andVH polarizations. TheE2g modes at 368
and 1591 cm21 are almost on the same curve in the figures exc
for the VH (u2) configuration.
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tensities of theA1g mode at 1587 cm21 and theE2g mode at
1585 cm21 becomes reversed for both theVV andVH con-
figurations. Thus we can distinguish these two close-ly
modes from each other experimentally if we have an axia
aligned nanotube sample. There is also anE2g mode at 1591
cm21 that can be distinguished from theA1g andE1g modes
since theE2g mode has a maximum atu1590°. As for the
other Raman-active modes, we can also distinguish them
their frequencies and polarizations. Even the modes belo
ing to the same irreducible representation do not always h
the same basis functions since we have two inequivalen
omsA andB in the hexagonal lattice. For example, theA1g
mode at 165 cm21 has a different functional form from th
A1g mode at 1587 cm21.

From Fig. 6 it is seen that the angular dependences
almost all the Raman intensities onu1 andu2 are similar to
each other for theVV configuration, except for theE1g mode
at 1585 cm21. The difference of theE1g modes betweenu1
andu2 at 1585 cm21 is due to the form of the basis function
There is also a symmetry reason why we can see onlA
modes andE modes in theVV (u3) and theVH (u2 andu3)
configurations, respectively. On the other hand, we can
that there are some very weak intensities in the figure s
the triangular lattice of the nanotube ropes is incompat
with the tenfold symmetry axis. Even if we get an align
sample in thez axis, thexy direction of the constituent nano
tubes should be random since the tenfold symmetry of
~10,10! nanotube does not satisfy the symmetry of the tri
gular nanotube lattice. Thus an averaged angular depend
for u1 andu2 is expected for a general aligned sample. Ev
in this case, since theA1g modes at 165 cm21 and 1587
cm21 are independent ofu3, this signal will be clearly seen
It is pointed out that the~9,9! armchair nanotube is thus o
special interest since it is one of a few examples where
u
.
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n-fold symmetry of the nanotube can match the lattice sy
metry operations, for which detailed angular-dependent
lection rules can be expected.

IV. SUMMARY

In summary, we have investigated the Raman intensity
armchair, zigzag, and chiral nanotubes as a function of t
polarization geometry and sample orientation. We found t
there is no significant dependence on chiral angle of the
tensity for the lower-frequency Raman modes below 5
cm21 for carbon nanotubes, while the higher-frequency R
man modes have different relative intensities depending
their chiralities. The resonant Raman intensity may dep
on the number of carbon atoms in the unit cell. The sam
orientation dependence of the Raman intensity shows
not only the symmetry but also the direction of the displa
ments gives rise to its own angular dependence, which
be used for distinguishing between the symmetry ass
ments for the higher-frequency Raman modes. Such a s
metry analysis will also be useful for identifying the chirali
of carbon nanotubes.
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