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We present experiments where a single subwavelength scatterer is used to examine and control the
backscattering induced coupling between counterpropagating high-Q modes of a microsphere resonator.
Our measurements reveal the standing wave character of the resulting symmetric and antisymmetric
eigenmodes, their unbalanced intensity distributions, and the coherent nature of their coupling. We discuss
our findings and the underlying classical physics in the framework common to quantum optics and provide
a particularly intuitive explanation of the central processes.
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The radiative properties of atoms can be strongly modi-
fied by coupling them to resonators [1]. A historical corner-
stone of this field of research, known as cavity quantum
electrodynamics (CQED), was set in 1946 by E. M. Purcell
who proposed that the radiation rate of an oscillating dipole
at wavelength � can be enhanced by a factor F �
3Q�3=4�2Vm in a resonant cavity of quality factor Q
and mode volume Vm [1]. This so-called Purcell effect
holds in the dissipative weak coupling regime where the
cavity finesse is small so that the atomic radiation remains
dominated by its coupling to the bath of the electromag-
netic modes. In the strong coupling regime, coherent ex-
change of energy between the atom and the resonator
causes the atomic resonance to lose its identity and to
become replaced by a doublet. These phenomena have
been studied for more than three decades [2–5] although
the in situ manipulation of a single emitter in a single mode
of a high-Q microresonator remains a challenge [4,5]. In
this Letter, we consider the controlled coupling of a clas-
sical nano-object to a high-finesse whispering-gallery
mode (WGM) microresonator. We discuss both theoreti-
cally and experimentally the resulting coherent coupling
between two degenerate counterpropagating WGMs and
the modification of the Rayleigh scattering rate. Our find-
ings show that the concepts of strong and weak coupling
play a central role even in this fully classical system.

The resonators in our work consist of microspheres
melted at the end of silica fibers [6]. Such spheres support
very high-Q WGMs and have been studied by several
groups [7–9]. About ten years ago, it was discovered that
the high-Q resonances of these cavities are often composed
of doublets [10]. Such a mode splitting has been since
discussed in conjunction with various WGM resonators
[8,9,11–13]. It turns out that mode splitting has been
observed in other ring resonators and has been explained
as the result of the coupling between the electric fields Ec
and Ecc of the degenerate clockwise (c) and counter clock-
wise (cc) modes via back scattering. The new superposi-

tion states (�) and (�) are described by

 E� � aEc � bEcc; E� � aEc � bEcc: (1)

Here a and b are complex coefficients. In the simplest case,
the coupling between Ec and Ecc can be caused by a
reflector [14,15]. In the case of WGM resonators, however,
it has been suggested that backscattering from a distribu-
tion of residual subwavelength inhomogeneities in the
glass matrix or on its surface is the source of this coupling
[8–10]. The orders of magnitude of the doublet splitting
can be correctly estimated from classical electrodynamic
considerations following this hypothesis [8–10,12,13,16].
Nevertheless, the direct link between the spectral features
of a doublet and the nanoscopic details of the backscatter-
ing sources has not been demonstrated experimentally, and
a proper treatment of the losses inflicted by the scatterers is
missing in the literature. In fact, an intuitively perplexing
and interesting question arises in this context: given that
the radiation of a subwavelength scatterer is nearly iso-
tropic and that the angle subtended by a typical cavity
mode is merely about 10�4 rad [17], how could the rate
of scattering back into a cavity mode dominate the rate of
scattering out of the resonator to ensure the population of
E� and E�?

The schematics of our experimental arrangement are
shown in Fig. 1(a). A narrow-band diode laser (� �
670 nm, linewidth <300 kHz, tuning range �60 GHz)
was used to excite the WGMs via a prism. Photodetector
PD1 was used to record spectra in transmission through the
prism whereas PD2 captured the light globally scattered
out of the microsphere into a multimode fiber. Figure 1(b)
displays a typical doublet with a splitting of 29 MHz and
Q ’ 8� 107 recorded on PD2. The peaks represent the
intensities jE�j2 and jE�j2 of the symmetric and antisym-
metric eigenmodes. Following the procedure described in
Ref. [18], we applied scanning near-field optical micros-
copy (SNOM) to map the spatial intensity distribution of
the WGMs on PD3 and to identify the fundamental mode
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of the resonator, which exhibits a single intensity maxi-
mum in the r and � directions. In our previous works, we
have shown that an uncoated glass tip might broaden and
shift cavity modes depending on their Q and on the tip size
[19]. Here we demonstrate that a subwavelength tip can
modify or induce the coupling between the degenerate c
and cc microsphere modes.

Equation (1) implies that the interference between the c
and cc running modes should give rise to sine and cosine
standing waves along the equator. The locations of the
nodes and antinodes of E� and E� are automatically
established by the random distribution of a large number
of inhomogeneities in the silica sphere [9,10]. To visualize
this effect, we have scanned a sharp fiber tip along the
equator (i.e., in the � direction) of an already split funda-
mental WGM and have recorded spectra at each point (note
that the radial coordinate of the tip is kept constant using a
shear-force feedback [18]). Figure 2(a) shows that the
intensities of the two peaks of a doublet undergo out of
phase periodic modulations as a function of the tip loca-
tion. A slight slope of the middle base line is attributed to a
drift in the shear-force tip-sphere stabilization. At
location (i), the tip is positioned in the node of the sym-
metric mode and the antinode of the antisymmetric mode.
Thus, it induces loss in the E� mode while it leaves E�
nearly unaffected. Position (iii) shows the opposite coun-
terpart of (i) whereas at position (ii) both modes are
affected equally strongly.

As shown in Fig. 2(b), the three spectra reveal that in
addition to a change in the intensity balance of the dou-
blets, their splittings are also modified. Figure 2(d) displays
the modulation of the splitting about its initial value of
24 MHz shown by the dotted line. Interestingly, we find
that the tip can not only increase the mode splitting, but it
can also decrease it. This is due to a destructive interfer-
ence between the field scattered by the tip and the field
scattered by the inhomogeneities in the microsphere that
gave rise to the initial splitting. Figs. 2(e) and 2(f) provide
further data on the increase and decrease of the mode
splitting as the tip was scanned in the � direction for two
different � positions spaced by half of the interference
period along the equator. Finally, Fig. 2(c) plots the reso-

nance spectra recorded simultaneously on PD2 and PD3,
i.e., via global scattering from the sphere and via the fiber
tip. The different line shapes on the two channels might
seem unexpected at first. However, this effect shows that if
the tip is placed in an antinode of E� or E�, it efficiently
extracts photons out of that mode, leading to a larger signal
in the fiber tip and thus a lower intensity in the cavity
mode. On the contrary, the mode that is less perturbed is
stronger in the resonator and is nearly uncoupled to the
fiber tip. It is evident that the mode that is coupled to the tip
has experienced an additional broadening.

We now show that the radiation properties of a subwa-
velength object such as its scattering rate are modified
much in the same manner as those of the spontaneous
emission of an atom. Our guiding thought is that many
central features of CQED, including the modification of the
mode density in a resonator, can be traced to the spatial
character of the modes and should be thus shared by
classical cavity electrodynamics. We first present a simple
treatment of the free-space Rayleigh scattering using a
semiquantum electrodynamic (semi-QED) approach,
where the material scatterer is treated classically while
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FIG. 2 (color online). (a) The intensities of the two peaks in a
doublet as a function of the tip position along the equator. The
dotted line marks the slight intensity drift in the detection.
(b) Spectra recorded at positions (i), (ii), and (iii) in (a). The
spectra are displaced vertically for clarity. (c) Simultaneously
measured spectra on PD2 and PD3. (d) The recorded splitting
corresponding to the data in (a). The solid curve shows a
sinusoidal fit. (e) and (f) The variations of the mode splitting
as a function of the tip in the � direction for positions (i) and (iii),
respectively. The solid curves display fits according to the spatial
mode function of the fundamental WGM.

FIG. 1 (color online). (a) Whispering-gallery modes of a mi-
crosphere are excited via a prism. A glass fiber tip can be
positioned in (r, �, �) close to the sphere surface. The resonator
spectrum can be recorded on PD1 in transmission, on PD2 from
global scattering out of the sphere via a multimode fiber, and on
PD3 through the fiber tip. (b) An example of the doublet
spectrum recorded on PD2.
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the field is quantized. Then we will discuss the modifica-
tion of the scattering rate when the scatterer is coupled to a
resonator.

Let us assume that a freely propagating photon is inci-
dent on a subwavelength spherical scatterer of radius a and
refractive index n. We take the photon to be in a mode Êk
with volume Vk, frequency !k, and a linear polarization
along the unit vector �k such that Êk � Ek�k�â

y
k � âk�

where âyk and âk are the usual creation and annihilation
operators and Ek �

������������������������
@!k=2�0Vk

p
. In the limit where the

scatterer is considerably smaller than �, it can be described
by a dipolar polarizability � [20] so that the induced dipole
moment operator reads p̂k � "0�Ek�â

y
k � âk��k. Thus the

interaction energy between this dipole moment and another
mode Êj becomes

 V̂ k;j � �p̂k � Êj � @gkj�â
y
k âj � â

y
j âk� (2)

if we neglect the terms that do not conserve pho-
ton numbers. Here we have taken gkj �
�� ������������!k!j
p

j�	j � �kj=2
��������������
VkVvac

p
and have set Vj � Vvac for

all vacuum modes j into which the incident beam is
scattered. The system Hamiltonian becomes [21]

 Ĥ � @!kâ
y
k âk �

X

j

@!jâ
y
j âj �

X

j

@gkj�â
y
k âj � â

y
j âk�;

(3)

leading to the Heisenberg equation of motion

 i _̂ak � !kâk �
X

j

gkjâj: (4)

The last term in Eq. (4) signifies the scattering of the
incident field into all vacuum modes. Following the
Weisskopf-Wigner formalism [22], we find the rate

 �R �
2!2

kVvac

3�c3 g2
R �

�2!4
k

6�c3Vk
(5)

for this scattering event [21]. Here we have restricted
ourselves to !k � !j for elastic scattering and have used
the notation gR � ��!k=2

��������������
VkVvac

p
. Now we can calcu-

late the Rayleigh scattering cross section �R [20] by con-
sidering the total power radiated by the scatterer according
to Iinc�R � @!k�R. Given that Iinc � @!kc=Vk and � �
4�a3j n

2�1
n2�2
j, one obtains the well-known relation

 �R �
8�k4a6

3

��������
n2 � 1

n2 � 2

��������
2
: (6)

We note that a rigorous quantum optical treatment of
scattering is not frequently discussed in the literature [23]
and goes beyond the scope of this Letter. However, the fact
that �R can be derived via the Weisskopf-Wigner formal-
ism using quantized fields provides a robust support for the
intuitive expectation that a modification of the mode den-
sity, for example, in a resonator or in front of a mirror,
could also lead to a change in the Rayleigh scattering rate.
The corresponding Purcell effect offers a physical expla-

nation for the question posed earlier. The rate with which
energy is transferred from Ec to Ecc is enhanced by F and
is given by�Fwhere� is the geometric factor determining
the fraction of the solid angle subtended by the mode.
Therefore, a fundamental WGM with Vm ’ 130 	m3

(sphere diameter 30 	m) and Q � 108 yields F
 104,
compensating for the very small geometric acceptance of
the order of 10�4. The influence of the Purcell factor F also
explains why reducing the cavity Q results in the disap-
pearance of light in the counterpropagating mode as re-
ported previously [10].

Having shown that the density of states plays a central
role in the description of Rayleigh scattering, next we
consider the coupling of two counterpropagating cavity
modes Ec and Ecc via a single Rayleigh scatterer. The
details of the calculations are provided in the supplemen-
tary materials of this Letter [21]. Returning to a classical
notation, we find
 

_~E� � ��i�� 
0� ~E� � �0;

_~E� � ��i�� 2ig� 
0 � �� ~E� � �0:
(7)

Here we have defined ~E � ei!tE, � � !�!c shows the
detuning of the laser frequency !, � � �0ei!t is the mode
excitation rate, and 2
0 denotes the unperturbed cavity
linewidth. When dealing with Rayleigh scattering out of
a cavity, we have to take into account the spatial variation
f�r� of Ec and Ecc in the resonator mode. Going back to the
definition of gkj and noting that Vj � Vk is the WGM
volume Vm of the two modes, we thus obtain [21]

 2g���f2�r�!c=Vm; ���2f2�r�!4
c=6�c3Vm; (8)

for the mode splitting and broadening, respectively.
A close scrutiny of Eq. (7) shows that if j2gj is suffi-

ciently large to overcome 
0 and if 2j n
2�1
n2�2
j< � �2�a�

3 to
assure that j2gj> �, a mode splitting is resolved. This is
similar to the case of the strong coupling in CQED where
the coherent exchange of energy between the cavity mode
and an atom leads to a mode splitting if the coupling
coefficient jgj becomes larger than the cavity linewidth.
As in CQED, the mode splitting j2gj grows with decreas-
ing Vm and increasing !, but the atomic dipole strength is

FIG. 3. (a) The mode splitting measured as a function of
sphere-tip separation in the r direction. (b) Plot of the measured
splitting versus the additional tip-induced broadening. The solid
curve displays the fit to a quadratic function.
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replaced here by �, and the splitting is asymmetric. The
antisymmetric mode remains unperturbed [see Eq. (7)]
whereas the symmetric mode undergoes an additional
broadening given by �. This is a consequence of the fact
that the phases of the new eigenmodes are self-adjusted so
that the local scatterer is placed in a node (antinode) of the
antisymmetric (symmetric) mode. This unbalanced split-
ting has been recently also observed for the coupling of a
far-detuned cold atom ensemble to a high-Q ring cavity
[3]. Indeed, in that case several million atoms detuned from
their transition resonances also behave essentially as a
large dielectric object.

Equations (8) predict a linear dependence between the
tip-induced splitting and line broadening if f�r� is varied.
However, due to the finite spatial extent of the tip and the
WGMs, � effectively grows as the tip enters the mode.
This position dependence leads then to a quadratic rela-
tionship between the tip-induced broadening and splitting.
To investigate this effect, we have moved the tip in the
radial direction and have recorded spectra at each location.
Figure 3(a) shows that, as expected, the mode splitting
becomes larger when the tip enters the evanescent field
of the microsphere. Figure 3(b) plots the tip-induced split-
ting versus the increase in the linewidth of E�, confirming
their quadratic dependence.

To realize an ideal scenario for studying the interaction
of a single well-defined scatterer with the fundamental
mode of a microsphere, we have searched for spheres in
which no mode splitting was observable in the beginning
and it was created only when the tip was introduced.
Figure 4 presents four spectra of a resonance as the tip
was scanned in the � direction from outside the mode (a) to
the maximum of the mode at the equator (d) at constant
separation from the sphere surface. The E� mode is shifted
in frequency by 13 MHz and broadened by about 6 MHz.
Given that j2gj=� � 3�3=4�2� according to Eqs. (8), the
observed ratio of the splitting to broadening implies a
radius of a
 140 nm for a spherical Rayleigh scatterer.
This is in very good quantitative agreement with the ex-
perimental parameters, considering a typical value of 50–
100 nm for the radii of curvature of SNOM tips and
accounting for the overlap of the conical tip taper with
the evanescent part of the mode.

In conclusion, we have considered the phenomenon of
Rayleigh scattering both in free space and in the presence
of a resonator. By using a semi-QED approach, we have

pointed out the roles of the modification of the density of
states and of the Purcell effect in classical scattering. Our
results demonstrate that although the introduction of a
scatterer into a high-finesse resonator might be commonly
thought to introduce losses, it can mediate a coherent
coupling of the resonator modes and cause their conse-
quent normal mode splitting.
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[17] S. Götzinger et al., Nano Lett. 6, 1151 (2006).
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