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fundamental limitations resulting from causality.
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I. INTRODUCTION

The ability to fabricate artificial materials with sophisti-
cated electromagnetic properties has generated great interest
recently. By tailoring the electric permittivity and magnetic
permeability, one can obtain arbitrary metamaterial-induced
coordinate transformations, leading to devices such as per-
fect lenses and electromagnetic cloaks �1–3�. Unfortunately,
the performance of these devices is strongly limited by loss.
To overcome this limitation it has been suggested to intro-
duce gain �4–7�.

It is crucial to understand fundamentally how active me-
dia behave electromagnetically. Active media are not new;
lasers and optical amplifiers are well-established technolo-
gies. The new aspects are rather the flexibility of metamate-
rials and their applications. For lasers, gain saturation plays a
vital role when modeling the medium. Nevertheless, in ap-
plications such as optical amplifiers, the medium behaves
linearly; thus the linear susceptibilities and the complex re-
fractive index characterize its operation. For potential appli-
cations to metamaterials, perfect lenses, manipulating the
near fields, cloaks, etc., linear operation is also desired. Nev-
ertheless, gain saturation may, for example, limit the reso-
lution associated with the perfect lens, so nonlinearity needs
to be taken account of in many cases.

Here we will limit the discussion to linear media. In other
words, the fields are nowhere allowed to be larger than the
threshold for gain saturation. Provided there are no instabili-
ties, this may be achieved by ensuring that the excitations are
sufficiently weak. �The fields are, however, considered clas-
sical such that the stimulated emission dominates the spon-
taneous emission.� On the other hand, if there are instabili-
ties, a linear, frequency-domain model is certainly no longer
valid. However, if we assume that the medium is dark at
some time t=0 �for example by having the power supply
turned off at t�0�, a linear transient analysis is still valid
until the fields have grown above the gain saturation
threshold.1 This is the standard approach to analyze active,
possibly unstable systems in other contexts such as electron-
ics and control engineering. In the present work, the transient
analysis is central for understanding the properties of a semi-
infinite medium �Sec. III�.

Recently there has been some confusion about how to
determine the sign of the refractive index �or the direction of

the wave vector� in active media �8–14�. The confusion in
the field is probably due to a nice property of passive media:
One does not have to invoke causality in its most primitive
form to determine the sign of the refractive index. One can
determine its sign straightforwardly at a single frequency by
requiring that the Poynting vector points away from the ex-
citation, or by requiring that the wave decays as it propagates
away from the excitation. This makes it natural to consider
general methods for identifying the sign from the �relative�
permittivity ���� and permeability ���� at a single fre-
quency �, even for active media. While such methods may
give correct answers for a restricted class of media, they are
necessarily incorrect in general. Indeed, there exist both posi-
tively and negatively refracting, nonmagnetic media with
����=1−2i�, 0���1, at a single frequency �15�: Conven-
tional gain media refract positively, while the right-handed
negative-index medium suggested by Chen et al. �16� re-
fracts negatively. To find the sign of the refractive index, we
must go back to first principles, using causality in its most
primitive form: The front velocity of an electromagnetic
wave cannot travel faster than c, the vacuum velocity of
light. �Actually, the correct solution can be found without
invoking causality as an extra principle, as causality is built
into the Maxwell equations.� Similarly to the classical treat-
ment of passive media �17�, this amounts to requiring the
refractive index to be analytic in some upper half plane of
complex frequency, and requiring n→ +1 as �→� �15�.
However, one must watch out for absolute instabilities; the
half plane may be Im ��	�0 instead of Im ��0.

The purpose of the present article is fivefold. First we will
consider microscopic causality of active media �Sec. II�. As
opposed to passive media, it turns out that here causality is
not sufficient for establishing Kramers-Kronig relations. This
has to do with possible instabilities. Second, we will clarify
how to resolve the refractive index and the direction of the
wave vector, and pay particular attention to the ambiguity
mentioned above �Secs. III and V�: Two media with identical
���� and ���� at � may respond completely differently to
monochromatic excitations at �. In particular, we analyze a
slab of thickness d in two dimensions �2D�. Assuming sta-
bility, a nonmagnetic medium with ����=1−2i� at a single
frequency �0���1� will refract positively when d is small,
and negatively when d is large. In other words, all media that
make the slab stable for small d refract positively at the
interfaces, while all media that make the slab stable for large
d refract negatively. Third, we discuss and categorize the
different instabilities that may arise in active media �Sec.
IV�, and relate them to the previous literature in plasma

1For an accurate description of the transient behavior of unstable
systems, perturbations associated with �initiation of� the pump
should strictly be included in the analysis.

PHYSICAL REVIEW E 78, 036603 �2008�

1539-3755/2008/78�3�/036603�10� ©2008 The American Physical Society036603-1

http://dx.doi.org/10.1103/PhysRevE.78.036603


physics. Fourth, we will prove that, for active media, any
refractive index function in a finite bandwidth can be real-
ized approximately, with any precision �Sec. VI�. Fifth, we
consider the ultimate limits of active media, and show that,
in general, there are no upper limits of the gain associated
with media without absolute instabilities �Sec. VII�. Also we
show that there are no lower bounds for the �maximal� gain
associated with right-handed, negative-index media. Permit-
tivity functions of such media with arbitrarily low gain are
provided, giving directions for practical realizations.

II. CAUSALITY FOR ACTIVE MEDIA

As mentioned above, we restrict ourselves to linear me-
dia. Furthermore, the media are assumed isotropic, homoge-
neous, and without spatial dispersion. We also assume that
the medium is time-shift invariant, that is, if an excitation is
shifted in time, the response shifts by an equal time. Con-
sider the case where the applied electric field is due to an
external source with charge density 
e�t� �18�. The effect of
the source is to induce a charge density 
i�t�, which together
with 
e�t� makes up the total charge density 
�t�=
e�t�
+
i�t�. Since the medium is linear and shift invariant, we
have the following relation between the source and the in-
duced charge density:


i�t� = �
0

�

xe���
e�t − ��d� . �1�

Here xe�t� is a real response function, and the lower limit 0 in
the integral is due to causality; the induced charge density
cannot precede the source. We will assume that the induced
charges do not blow up faster than exponentially for any
bounded excitation, which can be formulated as follows:

�
0

t

�xe����d� � C exp�	t� , �2�

for some nonnegative constants C and 	. Transforming �1� to
the frequency domain, we can write 
i���=xe���
e��� and
therefore


��� = �1 + xe����
e��� , �3�

in an obvious notation. Note that for active media, in general,
the transformation must be performed with the Laplace
transform, since the induced charge density may blow up
with time. This amounts to requiring all quantities to vanish
for negative time, and putting Im ��	 in the integrals. For
example,


e��� = �
0

�


e�t�exp�i�t�dt . �4�

Equation �3� together with the Maxwell equations �0� ·E
=
 and � ·D=
e and the constitutive relation D=��0E mean
that

���� =
1

1 + xe���
�5�

or

1

����
= 1 + �

0

�

xe�t�exp�i�t�dt . �6�

Since xe�t� is real we also have the symmetry

��− �*� = �*��� . �7�

We note that it is not the permittivity itself, but its reciprocal,
that is causal in the sense of being the transform of a re-
sponse function that vanishes for t�0 �18�.

At very high frequencies, the electrons behave essentially
as if they were free, yielding the asymptotic form �19�

����� − 1� �
1

�2 , � → � . �8�

While causality �6�, symmetry �7�, and the asymptotic
form �8� are valid in general, Kramers-Kronig relations can-
not be established unless more information about the media
is known. In other words, even though media that satisfy the
usual Kramers-Kronig relations are causal, not all causal me-
dia satisfy the Kramers-Kronig relations. This is particularly
true for active media, which may exhibit certain instabilities.
For example, the response function xe�t� may increase expo-
nentially, which leads to a singularity of 1 /���� in the upper
half plane Im ��0. Or the transformed response function
xe��� may be equal to −1 somewhere in the upper half plane,
giving a singularity of ���� there.

In light of Titchmarsh’ theorem �19,20�, if no such singu-
larities are present, not even at the real frequency axis, �6�
and �8� give the Kramers-Kronig relations

Im ���� =
2�


P�

0

� Re ����� − 1

�2 − ��2 d��, �9a�

Re ���� − 1 =
2


P�

0

� Im �������

��2 − �2 d��, �9b�

where P denotes the Cauchy principal value.2 If ���� has
singularities at the real axis, the Kramers-Kronig relations
must be modified. For example, if the medium is conducting
at zero frequency, ���� is singular at �=0. Then, the
Kramers-Kronig relations are retained if we subtract the sin-
gularity, i.e., make the substitution ����→����− i� /� in �9�,
where ��0 is the zero-frequency conductivity �21�. If ����
has singularities in the upper half plane, ���� loses its mean-
ing at real frequencies and the Kramers-Kronig relations can-
not be expressed along the real axis. The observation fre-
quency � and the integral must instead be taken along a line
above the singularities. We will discuss media with instabili-
ties further in Sec. IV.

2Equation �8� ensures that ����−1 and 1 /����−1 are square inte-
grable. Equation �6� then shows that 1 /����−1 is analytic and uni-
formly square integrable along any line parallel to the real axis, in
the upper half plane. In the absence of singularities of ����, the
analyticity and uniformly square integrability for 1 /����−1 trans-
late into identical properties for ����−1. Thus the real and imagi-
nary parts of ����−1 form a Hilbert transform pair.
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We can treat the magnetic permeability in a similar fash-
ion, yielding

���� = 1 + �
0

�

xm�t�exp�i�t�dt , �10�

instead of �6�. Here xm�t� is a real response function. With a
similar asymptotic form as �8�, and in the absence of singu-
larities in the upper half plane, we may also obtain Kramers-
Kronig relations for the magnetic permeability. Using a
Kramers-Kronig relation analogously to �9b� to calculate
Re ��0� from Im ����, we straightforwardly find that
Re ��0��1 whenever Im �����0. This is not always true
�22�, as demonstrated by the existence of passive, diamag-
netic media. In other words, the Kramers-Kronig relations
for the magnetic permeability must be treated with care.

For the remaining parts of this paper, we will assume
causality only in the sense �6� and �10�, meaning that we
allow for instabilities. However, to retain the meaning of
complex frequencies, we exclude superexponential instabili-
ties; in other words �2� and a similar bound for xm�t� are
required.3 Similarly to �8� we will assume

����,���� → 1 as � → + � , �11�

whenever real frequencies are meaningful, and Eqs. �6� and
�10� imply

����,���� → 1 as Im � → + � . �12�

III. DIRECTION OF THE WAVE VECTOR AND SIGN OF
THE REFRACTIVE INDEX

To identify the direction of the wave vector and the sign
of the refractive index in active media, one can use the fol-
lowing approach �15�. By a transient Laplace transform
analysis of a slab of thickness d, one may compute the fields
for time t�d /c, where c is the vacuum velocity of light.
Then, by causality, the fields have not felt the presence of the
far end; thus they must be identical to those of a semi-infinite
medium. By subsequently taking the limit d→�, one can
extract the wave vector or refractive index. Below we will
obtain the same results as in �15� more directly, by taking the
limit d→� immediately in the region of convergence of the
Laplace transformed fields. Consider a slab with permittivity
���� and permeability ����, surrounded by vacuum �see Fig.
1�. Since the medium may be active, the fields may blow up
with time. Consequently, steady-state frequency-domain
fields do not necessarily exist. The natural remedy is to con-
sider Laplace-transformed fields instead of nonexisting Fou-
rier transforms, assuming that the field is equal to zero for
negative time:

E��� = �
0

�

E�t�exp�i�t�dt . �13�

Here E�t� denotes the real, physical, time-domain electric
field. The Laplace transform �13� exists in a region of con-

vergence Im ��	, where 	 is a sufficiently large, positive
parameter, such that the exponential factor ensures conver-
gence of the integral. The inverse transform is given by

E�t� =
1

2
�

i	−�

i	+�

E���exp�− i�t�d� . �14�

Let the Laplace-transformed incident wave at z=0− be
E+���=E0

+���exp�ikxx+ ikyy�, where E0
+��� is independent of

the spatial coordinates, and kx and ky are the transverse spa-
tial frequencies of the source. Solving Maxwell’s equations
in the transform domain, we obtain the field

E���/E+���

= �exp�ikzz� + R exp�− ikzz� for z = 0−,

S+ exp�ikz�z� + S− exp�− ikz�z� for 0 � z � d ,

T exp�ikz�z − d�� for z � d ,
	
�15�

where the total reflection coefficient R, field amplitudes in
the slab �S+ and S−�, and transmission coefficient T are found
to be

R =
��2kz

2 − kz�
2��1 − exp�2ikz�d��

��kz + kz��
2 − ��kz − kz��

2 exp�2ikz�d�
, �16a�

S+ =
2�kz��kz + kz��

��kz + kz��
2 − ��kz − kz��

2 exp�2ikz�d�
, �16b�

S− =
2�kz��kz − kz��

��kz − kz��
2 − ��kz + kz��

2 exp�− 2ikz�d�
, �16c�

T =
4�kzkz� exp�ikz�d�

��kz + kz��
2 − ��kz − kz��

2 exp�2ikz�d�
. �16d�

Here, kz
2=�2 /c2−kx

2−ky
2 and kz�

2=���2 /c2−kx
2−ky

2. The ex-
pressions above apply to TE polarization; for TM polariza-
tion, the expressions are valid provided � and � are inter-
changed. Note that the fields are invariant if kz�→−kz�, so the
choice of the sign of kz� does not matter.

For active media, R, S+
exp�ikz�z�+S− exp�−ikz�z�, and T
may contain singularities in the upper half plane. Thus the
fields should only be evaluated in their region of conver-
gence Im ��	, where the line �= i	, 	�0, is located above

3We are not aware of any existing media with superexponential
instabilities.

�(ω) � µ(ω)

d

x

z

FIG. 1. �Color online� Slab of thickness d.
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all singularities �23�. Note that singularities in the upper half
plane have nothing to do with noncausality; they rather im-
ply instabilities �15�. In practice, diverging fields imply that
the slab starts lasing �taking gain saturation into account�.

To obtain the fields associated with a semi-infinite me-
dium, we may take the limit d→�. From �12�, it is clear that
kz�� �� /c for sufficiently large Im �. Since the sign of kz� is
arbitrary in �16�, we take kz�� +� /c there. With this choice,
Im kz� is positive for sufficiently large Im �. It is not difficult
to realize that the singularities of S do not move toward �
= i� as the thickness d→�; therefore we may take the limit
d→� to find the field in a region Im ��	. The resulting
expression is given by

S =
2�kz

�kz + kz�
exp�ikz�z� . �17�

We have argued for �17� for Im ��	. The real, time-domain
field is obtained by inverse-transforming SE+��� along the
Bromwich path �= i	. However, by analytic continuation
and Cauchy’s integral theorem, we may move the integration
path down toward the first nonanalytic point of �17�; in other
words, we may now set 	=max�0, Im�zero of �kz
+kz�� , Im�nonanalytic point of kz��. In many cases of interest,
we obtain 	=0, which means that �17� and kz� may be inter-
preted at real frequencies. In these cases, kz���� is the ana-

lytic continuation of the branch of ����2−kx
2−ky

2 that tends
to +� /c as ���→�. Thus if possible the sign of kz� must be
chosen such that kz� is analytic in the upper half plane, and
such that kz�→ +� /c as ���→�. If this is not possible due to
poles or odd-order zeros of ���2−kx

2−ky
2, there are instabili-

ties. Then kz� does not have any physical significance for real
frequencies. The nature of instabilities associated with poles
or odd-order zeros of ���2−kx

2−ky
2 will be discussed in the

next section. Instabilities associated with zeros of �kz+kz� are
related to the boundary of the medium, and may be elimi-
nated by choosing another surrounding material �15�.

Taking kx=ky =0, we have kz�=n���� /c, where n���
= ����������. Thus, provided �������� does not have any
poles or odd-order zeros in the upper half plane, n��� is
identified as the analytic function in the upper half plane that
tends to +1 as �→�. This result was used in Ref. �16� to
determine the refractive index in certain active, nonmagnetic,
negatively refracting media. When n��� can be identified as
an analytic function in the upper half plane, and �������� is
continuous at real frequencies �except possibly at �=0�,
n��� must be continuous at real ��0. Then we can identify
n��� by the simple formula

n��� = ������������� exp�i������ + ������/�2� , �18�

where �����+����� is the complex argument of ��������,
unwrapped such that it is continuous for ��0 and such that
it tends to 0 as �→ ��. If �������� does have poles and/or
odd-order zeros, there will be instabilities, and n��� does not
have meaning at real frequencies; only above the nonanalytic
points. Note, however, that relativistic causality never is vio-
lated �15�; n��� is always analytic in some upper half plane
Im ��	�0.

Due to the phase unwrapping procedure, the sign of n���
at a particular, real frequency is determined from the global
properties of the functions ���� and ���� �15,16,24,25�. As
demonstrated in Sec. V, two materials with the same permit-
tivity and permeability at a particular frequency may have
opposite signs of the refractive index. Therefore, any method
that identifies the sign of n��� from ���� and ���� at a
single frequency � must be incorrect in general. Conse-
quently, although the methods for identifying the sign of
n��� in Refs. �8–14� may give the correct result for certain
active materials, they are incorrect in general.

A critical point that cannot be overemphasized is that the
complex frequency-domain fields are not the physical fields
themselves; they are suitable transforms of the real, physical,
time-domain fields �Fourier transforms for passive systems,
and Laplace transforms for active systems�. Laplace-
transformed functions exist only in their region of conver-
gence Im ��	; thus the transformed fields must not be in-
terpreted elsewhere. For example, it is tempting to take d
→� while letting � be real in �16� �12�. However, for media
that give rise to singularities of �16� in the upper half plane,
this is clearly not a correct procedure and may in fact result
in the incorrect sign for the refractive index. This happens,
e.g., for a conventional gain medium such as an inverted
Lorentzian medium.

Finally, we should keep in mind that any physical medium
is limited by gain saturation. When there are no instabilities,
the linear model is valid provided the excitations are suffi-
ciently weak. When there are instabilities, the time-domain
fields are valid only before they reach the threshold for gain
saturation. Provided this happens sufficiently late, transform-
domain concepts such as the refractive index and the wave
vector have meaning.

IV. INSTABILITIES OF CAUSAL MEDIA

An instability means that the electromagnetic fields blow
up with time. There are three different classes of instabilities
�26–28�. First we let the medium be infinite. An absolute
instability means that the fields at a fixed point in space blow
up with time. A convective instability means that the fields
blow up with time, but at a fixed point, they do not. This
means that the instability is “convected away.” Absolute and
convective instabilities are indicated in Fig. 2. A third cat-
egory, global instabilities, arises when the medium is
bounded. For example, the fields may diverge due to ampli-
fied, multiple reflections.

An example of a convective instability is that of conven-
tional gain media, such as an erbium-doped fiber amplifier.
When such a gain medium is put into a resonator configura-
tion, a global instability may occur. Due to gain saturation
�which is a nonlinear process�, this leads to lasing rather than
infinite fields.

Absolute and convective instabilities are features of the
medium itself, not the total system including boundaries. Ab-
solute instabilities arise when the refractive index n��� can-
not be identified as an analytic function in the upper half
plane Im ��0. This happens if �������� contains poles or
odd-order zeros there.
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An apparent absolute instability arises at oblique inci-
dence to a semi-infinite medium �25�. Even if n��� is ana-
lytic in the upper half plane, kz� at oblique incidence may
have branch points there. This can be interpreted as follows.
Any causal excitation contains necessarily an infinite band of
frequencies. Some of the frequencies make ���2−kx

2−ky
2

zero; this corresponds to waves propagating perpendicularly
to the z axis. Such waves propagate an infinite distance, and
therefore pick up an infinite amount of gain, before arriving
at the plane z=const. This is called a virtual absolute insta-
bility, as it appears mathematically as an absolute instability,
while its physical interpretation is similar to that of convec-
tive instabilities. Virtual absolute instabilities can be elimi-
nated by limiting the extent of the active medium in the
transverse direction.

V. STABILITY AND REFRACTION IN 2D

We will now limit the discussion to absolutely stable me-
dia for which ���� and ���� do not have singularities or
zeros in the upper half plane. �We do not, however, exclude
the possibilities of convective or global instabilities.�

The uniqueness theorem for solutions to Maxwell’s equa-
tions in the frequency domain �29� assumes that the medium
is lossy. Therefore, it is not surprising that for active media �
and � at a single frequency � do not determine whether the
material refracts positively or negatively at �. Indeed, as
pointed out earlier �15�, there are both positively and nega-
tively refracting media with identical electromagnetic param-
eters at a single frequency.

For a semi-infinite material, the sign of kz� determines the
reflection, refraction, and propagation of an incoming wave.
In a slab the sign does not matter as the fields �16� are in-
variant under kz�→−kz�. This seems to be a contradiction: If a
beam is incident on the slab at some angle of incidence �, the
first-order transmitted beam must exit the slab either above
or below the entrance point �see Fig. 3�. A natural question
arises: For a slab of thickness d, and �=1−2i�, 0���1,
and �=1 at the excitation frequency, will the beam refract
positively or negatively at the interfaces? To investigate this

problem, we consider active materials with �=1−0.030i and
�=1 at a normalized frequency �=1. We also assume that,
for any d, there is such a material that makes the slab elec-
tromagnetically stable �no global instabilities�. This assump-
tion will be justified below. Let the frequency-domain exci-
tation be a beam at oblique incidence. The beam comprises a
superposition of plane waves, whose amplitudes A�kx� are

Gaussian distributed: A�kx�=1 /�2�2exp�−�kx− k̄x�2 / �2�2��
where �=0.032, k̄x=0.50, and 0�kx�1, normalizing the
vacuum light velocity �c=1�. To determine where the beam
exits the slab, we consider the function A�kx�T�d ,kx�, where
T=T�d ,kx� is the transmission coefficient �16d�. By evaluat-
ing the inverse Fourier transform in kx, we get the field
E�d ,x� at the right-hand interface. Thus we can determine
the correct solution �positively or negatively refracted beam�
for different d. The field amplitude �E�d ,x�� is plotted in Fig.
4. The beam undergoes multiple reflections in the slab; thus
it exits the slab at several different locations along the x axis.
We observe that the beam refracts positively for d�250 and

z

t

� � � � � � � 	 
 � � � � � 
 � 
 � �

z

t

 � � � 	  � 
 � 	 
 � � � � � 
 � 
 � �

FIG. 2. Absolute and convective instabilities.

� = 1− 2 iα

d

n+ ≈ 1 − iα

n− ≈ −1 + iα

x

z

θ

FIG. 3. �Color online� Schematic view of a ray with oblique
incidence on a nonmagnetic slab with �=1−2i�.

FIG. 4. �Color online� Field amplitude �E�d ,x�� �arbitrary units�
as a function of slab thickness d and transverse coordinate x.
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negatively for d�290. For 250�d�290 the results indicate
that there are no media with �=1−0.03i that make the slab
electromagnetically stable.

The results certainly do not imply that, for a given me-
dium, the beam refracts positively or negatively depending
on the slab thickness. They rather imply that the media that
make the slab stable for small thicknesses refract positively,
while the media that make the slab stable for large thick-
nesses refract negatively. This is indicated in Fig. 5. The first
category of media supports an amplifying, forward-
propagating wave, that is refracted positively. For this cat-
egory, when d�250 the round-trip gain becomes larger than
the Fresnel losses, and the slab is unstable �global instabil-
ity�. The second category supports a backward-propagating
wave that is refracted negatively, and amplified as it propa-
gates toward the left interface �30�. For this category, a glo-
bal instability arises when d�290. When the slab thickness
becomes large, the amplitude of the backward wave is small
at the right-hand interface. This is apparent from the decay-
ing field amplitude as d is increased above 290 in Fig. 4.

We now concretize the two categories of media by ex-
amples. Consider two nonmagnetic materials with �1���=1
+�g��� and �2���= �1+�r����2, respectively, where �r,g���
are Lorentzians in the form

�r,g��� =
Fr,g�r,g

2

�r,g
2 − �2 − i��r,g

. �19�

With the parameters Fg=−0.00016, �g=0.005, and �g=1 for
material 1, and Fr=3.7, �r=0.005, and �r=0.6 for material
2, these two materials have �1,2��g�=1−0.030i. With the
help of �18�, we find the refractive indices n1��g��1
−0.015i and n2��g��−1+0.015i. These materials are both
right handed. They do not support absolute instabilities as
�1,2��� have no poles or zeros in the upper half plane.
Clearly, both of them show convective instabilities.

We should now investigate the stability as a function of d,
when the slab is made of either of the two example materials.
First we limit ourselves to a 1D slab. Active materials in 1D
may, for example, be realized in the form of a transmission-
line model with lumped circuit elements �30�. For 1D propa-
gation, we take kx=ky =0 in �16�, and determine numerically
when there are no poles in the upper half plane. We find that
for d�dlim1

�300 the material 1 slab is stable, while for d
�dlim2

�320 the material 2 slab is stable.
In the 2D case stability requires that there are no poles in

the upper half plane of �16� for any kx. For material 2, it turns
out that the stability limit remains dlim2

�320. On the other
hand, for material 1 the stability limit turns out to be zero
�dlim1

=0�. By reducing the slab thickness, �16� may not have
poles for a fixed angle of incidence, but there will always be
poles for a sufficiently large angle of incidence. This is due

to the fact that, as the angle of incidence increases toward
 /2, the wave propagates longer between two reflections.
Thus, during one round trip, the wave picks up more gain
compared to the losses associated with the two reflections.
By limiting the transverse dimensions of the slab, and limit-
ing the reflections at the upper and lower boundaries �e.g.,
using antireflection coatings or absorbing layers�, this 2D
instability can be eliminated.

As we have seen, the fields of a slab are invariant to the
sign of the refractive index. This is also the case for several
other propagation problems such as plane wave scattering on
a sphere or wave propagation in waveguides �31�. However,
the fact that the sign is invariant does not necessarily mean
that it is irrelevant. The refractive index indicates the direc-
tion of the wave �“forward” or “backward”� before multiple
reflections dominate the picture; it gives you information on
whether the wave will refract positively or negatively at a
boundary, etc. Thus one can determine several properties of a
given system by evaluating �18�, without solving Maxwell’s
equations in detail. Nevertheless, for active materials it is
important to be aware of possible instabilities, which may
make frequency-domain concepts useless for real frequen-
cies. The only way to fully understand whether a given shape
of an active material is stable or not is to solve Maxwell’s
equations with appropriate boundary conditions.

VI. LIMITATIONS FROM CAUSALITY

Passive media, i.e., media in thermodynamic equilibrium
in the absence of the variable field �21�, satisfy

Im ���� � 0 and Im ���� � 0 for � � 0 �20�

in addition to �9�. This leads to fundamental limitations for
left-handed media; for example, there is a lower bound for
the dispersion associated with transparent, left-handed me-
dia, and there is a lower bound for the loss associated with
nondispersive, left-handed media �21,32,33�.

Active media do not have the limitation �20�, i.e., Im ����
and Im ���� may take any value. It is interesting to see if
there are still any limitations resulting from symmetry �7�
and causality in the sense of �9�. It turns out that, in fact, in
a finite bandwidth, there are no fundamental limitations. For
example, ����=����=−1 �lossless left-handedness� can be
approached in a nonzero, finite bandwidth. This result fol-
lows directly from a standard result of the theory of Hardy
spaces: A function ���� satisfying �7� and �9� can approxi-
mate any square integrable function f��� in a finite
bandwidth.4 The approximation may be achieved with any
precision; in the Kre�n-Nudel’man case �34� at the expense
of the norm of ����−1 outside the bandwidth of interest. Of
course, a large norm outside the relevant bandwidth may
imply difficulties of realization. Nevertheless, contrary to

4In mathematical terms, a function h�H2 satisfying
h�−�*�=h*��� can approximate any function f �L2��1 ,�1�, as
precisely as desired in the corresponding metric. Here H2 denotes
the Hardy space of the upper half plane, and 0��1��2��. See,
e.g., Ref. �34�

� � � � � � � � 	 
 � � � d

n = 1 − iα  
 � � � � � �

 
 � � � � � � n = −1 + iα

d� � � 1 d� � � 2

FIG. 5. �Color online� Stability of nonmagnetic 1D slabs with
�=1−2i�.
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claims elsewhere �35�, we note that causality does not pro-
hibit, e.g., ����=�����−1 with any precision, even in a
finite bandwidth.

The possibility of approximating any desired behavior in
a limited bandwidth may seem useless unless the resulting
medium is free from absolute instabilities. With a straightfor-
ward approximation using, e.g., the Kre�n-Nudel’man ap-
proach, the resulting permittivity may not be zero-free in the
upper half plane. A possible remedy is to approximate
ln f��� with a function g��� using the Kre�n-Nudel’man
method, and setting ����=exp�g����. With this approach, it
is necessary to assume that ln f��� is square integrable; in
other words, f��� is not allowed to be zero on an interval of
nonzero measure. This procedure clearly gives an analytic
and zero-free function ���� in the upper half plane. Square
integrability of ����−1 �and Kramers-Kronig relations� are
satisfied provided ln f��� is Lipschitz continuous and ap-
proaches zero at the end points of the interval �36�. �The
latter condition is not a further constraint as it may be satis-
fied by extending the original interval.�

As an example of gain compensation of the losses asso-
ciated with a left-handed resonance, consider the causal me-
dium ����=1+�r���+�g��� and ����=1+�r���, where
�r,g��� are the Lorentzians defined in �19�. Taking �r=1,
�g=1.058, Fr=0.25, Fg=−0.0034, �r=0.005, and �g=0.02,
we find that n���=−1 and d Im n2��� /d�=0 for �=1.06
�Fig. 6�. This medium has Im �����0 in the bandwidth
�1.05, 1.07�; thus it is net active there. This does not imply
that the system is unstable unless the medium is infinite or
put in a resonator configuration; examples of such stable
systems include fiber optic amplifiers. As argued in Sec. IV,
the absence of absolute instabilities of this medium is guar-
anteed by the fact that ���� and ���� do not contain zeros or
poles in the upper half plane. We note that the gain compen-
sation due to �g��� has completely removed the loss which
would have been present in the absence of this gain.

Lossless left-handedness in a finite bandwidth ��1 ,�2�
�with 0��1��2��� may in fact be obtained with a rather
general class of susceptibility functions, even if we restrict
ourselves to passive media. Pick any real, square integrable

function f���, with f���=0 in ��1 ,�2�. Set Im ����
=Im ����= f���. Thus, by tailoring f��� this medium is de-
fined lossless at and near �, and may be defined lossy oth-
erwise. Identifying Re ����=Re ���� with the Kramers-
Kronig relation �9b�, the resulting medium is causal by
definition. From

Re ���� = Re ����

= 1 − �
0

�1 2��f����d��

�2 − ��2 + �
�2

� 2��f����d��

��2 − �2 ,

�21�

we observe that, provided f��� is positive and sufficiently
large below �1, the medium will be left handed. In fact, one
can in principle construct causal, passive, negative-index me-
dia with arbitrarily low �maximal� loss �see the Appendix�.

VII. BOUNDS FOR THE GAIN

The permittivity of an inverted Lorentzian medium,
�1���=1+�g���, has a zero in the upper half plane when
Fg�−1. Thus a sufficiently strongly pumped medium seems
to have an absolute instability. It is natural to ask whether
there is a general, upper bound on the gain for media without
absolute instabilities. It turns out that it is not so. In fact, the
second material in the previous section, �2���= �1+�r����2

and �2���=1, does not have absolute instabilities no matter
how large are Fr and therefore the maximum gain
max��0�−Im �2����. This is realized from the fact that 1
+�r��� is a valid permittivity function of a passive medium,
and does not have zeros in the upper half plane.

Similarly, it is interesting to investigate if there is a least
maximum gain to obtain a nonmagnetic �right-handed�
negative-index medium. A problem with the nonmagnetic
negative-index media that have been suggested so far �16,30�
is that they require very high gain in some spectral areas
adjacent to the working frequency. This may imply difficul-
ties for realizations, potential instability problems due to im-
perfections, etc. We will now prove that it is indeed possible
to reduce this gain without destroying the right-handed,
negative-index behavior. In fact, there exist nonmagnetic,
causal media with arbitrarily low maximum gain, which re-
fract negatively. To see this, we employ the result of the
Appendix, which states that there are causal, passive, left-
handed media with arbitrarily low maximum loss. Examples
of such passive media are those given by ����=����=1
+u���+ iv���, where the required properties of the suscepti-
bility u���+ iv��� are discussed in the Appendix. Letting our
active medium instead have ����= �1+u���+ iv����2 and
����=1, where u���+ iv��� is the susceptibility of the pas-
sive medium in the Appendix, n��� must be identical to the
refractive index of that passive medium. From the fact that
the passive medium can have arbitrarily low maximum loss,
we realize that the maximum gain of the present medium can
be arbitrarily low. Thus, we have obtained a right-handed,
negative-index medium with arbitrarily low maximum gain.
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FIG. 6. �Color online� Refractive index for the left-handed me-
dium with gain compensation. At �=1.06 we have lossless negative
refraction, n=−1, and d Im n2��� /d�=0.
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In Fig. 7 the refractive index of such a medium is indicated,
giving a rough guide to the realization of such media. The
permittivity may, e.g., be taken to be the square of a super-
position of narrow Lorentzians. While a superposition of
Lorentzians might be easy to realize approximately, it is not
necessarily straightforward to achieve the square operation.

For such constructions from passive medium counter-
parts, �A3� is valid for any refractive index functions that
satisfy the Kramers-Kronig relations in the usual form �9�. In
other words, negative refraction requires either �i� large
imaginary part below the working frequency, or �ii� exponen-
tially steep variation immediately below the working fre-
quency, or �iii� singularities at real frequencies.

For arbitrary active media that satisfy the Kramers-Kronig
relations in the usual form, inequality �A3� remains valid if
there is no gain above the observation frequency. If there is
gain above the observation frequency �1, it becomes

u��1� � −
2vmax


�ln

�max

vmax��
+ 1� , �22�

where �max is the maximum frequency with gain, 1 /�� is
the maximum steepness of v���, and vmax
max�Im n����.
The proof of �22� goes similarly to that of �A3� in the Ap-
pendix. This shows that there is a trade-off between the
maximum gain or loss, and the steepness.

There is, however, a possibility that negative refraction
can be obtained with a nonmagnetic medium with large
maximum loss �in accordance with �22�� but small maximum
gain. By letting ����=1+�r���+�g���, where �r=�g is
fixed, it is indeed possible to obtain a refractive index with
Re n�0 in some spectral region, while �Fg� is arbitrarily low.
However, in the limit Fg→0, the figure of merit −Re n / Im n
tends to zero; thus these media may not be very useful.

VIII. CONCLUSIONS

Several questions related to active materials have been
addressed. We have shown that Kramers-Kronig relations
�for real frequencies� cannot always be established for
causal, active media, due to the possibility of absolute insta-
bilities. For active media that satisfy the Kramers-Kronig
relations, causality imposes no fundamental limits to the dis-
persion and loss.

Furthermore, we have considered the direction of the
wave vector, and emphasized that, if possible, the wave vec-
tor and the refractive index must be chosen to be analytic in
the upper half plane of complex frequency, and such that n
→ +1, kz→ +� /c as �→�. If the wave vector or refractive
index has branch points or singularities in the upper half
plane, the corresponding functions do not have meaning for
real frequencies. Such nonanalytic points mean absolute in-
stabilities, which are fundamentally different from the con-
vective instabilities of conventional gain media, and global
instabilities associated with bounded systems.

Materials with �=1−2i� �0���1� and �=1 at a single
frequency refract either positively or negatively. The materi-
als that make a slab stable for small thicknesses refract posi-
tively, while the materials that make the slab stable for large
thicknesses refract negatively. For a fixed thickness, at most
one of the two categories of media makes the slab stable.

Finally, we have argued that there are absolutely stable
media with arbitrarily large gain. Moreover, we have proved
that there are nonmagnetic negative-index media with arbi-
trarily low maximum gain, giving directions for realizations.
The proof is based on the fact that there are passive, left-
handed media with arbitrarily low loss.

APPENDIX: PASSIVE LEFT-HANDED MEDIA WITH
ARBITRARILY LOW MAXIMUM LOSS

Here we will show that there exist causal, passive, left-
handed media with arbitrarily low maximum loss. The proof
is by construction. Let the permittivity be written ����=1
+u���+ iv���, where 1+u��� and v��� are the real and
imaginary parts, respectively. Passitivity means that v���
�0 for ��0. Since v���=0 can be approached, we allow
ourselves to put v���=0 as well; adding a small, slowly
varying function to v��� does not alter the argument below.
Let v����v0�0 for �0����1−��, and v���=0 for

ω

v(ω)

ω0 ω1

∆ω

v0

FIG. 8. The function v��� has support below �1. For �0��
��1−��, we assume v����v0.
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FIG. 7. �Color online� Refractive index of a right-handed
negative-index material with low maximum gain. The required gain
to obtain Re n���=−1 at some frequency can be made arbitrarily
low by letting the edge of Im n��� be sufficiently steep. The refrac-
tive index is n���=1+u���+ iv���, where u���+ iv��� is the super-
position �A2� of Lorentzians. The parameters used are �1−��=1
and �=0.001.
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���1 �see Fig. 8�. Estimating u��1� by the Kramers-Kronig
relation �9b�, we find

u��1� = −
2


�

0

�1 v���� d�

�1
2 − �2

� −
v0


�

�0

�1−�� 2� d�

�1
2 − �2

= −
v0


�ln

�1 − �0

��
− ln

2�1 − ��

�0 + �1
� . �A1�

Now we can choose any small v0 and require the maximum
of v��� to be less than, say, 2v0. By having a sufficiently
narrow transition region ��, u��1� becomes smaller than −1.
Setting ����=����=1+u���+ iv��� completes the proof.

Note that the required function can be approached by su-
perpositions of several narrow Lorentzians, with resonance
frequencies equally spaced in the interval ��0 ,�1−���. For
example, in the limit of continuously varying resonance fre-
quencies from �0=0 to �1−��, we obtain

u��� + iv��� � �
0

�1−�� �0
2d�0

�0
2 − �2 − i��

= �1 − �� − s arctan��1 − ��

s
� , �A2�

where s= i��2+ i��. The required permittivity and perme-

ability are obtained by choosing a sufficiently small �.
The steep edge in the transition band may imply that the

medium is difficult to realize. Given a maximum loss vmax
�v����vmax for all ��, one can prove that such steep edges
are the only way to obtain left-handedness for media that
satisfy Kramers-Kronig relations in the usual form �9�. In-
deed, for any square integrable function v����0 with lim-
ited steepness ��dv��� /d���1 /�� for some ���,

u��1� � −
vmax


�ln

2�1

vmax��
+ 1� . �A3�

Here �1 is an observation frequency. The inequality �A3� is
found by a similar argument as that of �A1�, considering the
fact that the least possible u��1� is obtained when v���
=vmax for 0����1−��, and v��� decreases linearly to
zero above �1−��. Here �� is a positive parameter. Letting
1+u���+ iv��� be equal to ����, ����, or n���, the bound
�A3� applies to the permittivity, permeability, and refractive
index of all passive media that satisfy the Kramers-Kronig
relations in the conventional form �9�. For media with singu-
larities of ���� or ���� at real frequencies �e.g., an ideal
plasma�, �A3� does not apply. We can conclude that left-
handedness implies either �i� large loss below the working
frequency, or �ii� exponentially steep variation immediately
below the working frequency, or �iii� singularities at real
frequencies. The trade-off between requirements �i� and �ii�
is quantified by �A3�.
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