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a b s t r a c t

We review a formalism developed previously to deal wi

electromagnetic response of colloidal systems. We use

limit, a general expression for the local energy conservat

to the non-local response of the system. We find an expl

of these non-local parameters and show that there are s

permittivity and the magnetic permeability. The sign

refraction is also discussed.
26/$ - see front matter & 2010 Elsevier B.V. A

016/j.physb.2010.01.004

esponding author. Tel.: +52 55 5622 5093; fa

ail address: rbarrera@fisica.unam.mx (R.G. Ba
th the non-local (spatially dispersive) effective

this formalism to find, in the long wavelength

ion theorem in terms of parameters associated

icit expression for the Poynting vector in terms

everal ways to write it in terms of the electric

ificance of this problem in the treatment of

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The flux of electromagnetic energy through space is defined in
terms of Poynting’s vector (PV). An explicit expression for PV in
terms of the electric and magnetic fields is obtained by deriving,
from Maxwell’s equations, a relation that can be identified as a
local energy conservation law. Although it has long been
recognized that a local conservation law does not provide a
unique identification of the electromagnetic energy flux, it has
been accepted that the energy flux in free space is given, in SI
units, by ~E � ~B=m0, where ~E is the electric field, ~B is the magnetic
field and m 0 is the so called permeability of vacuum. However
there are further possible definitions of PV within material bodies.
It was proposed, long ago [1], that in order to avoid energy
accumulation at the boundary between two media one should
define PV as ~E � ~H , recalling that the tangential components of
~H are continuous across the interface. This has become the
standard choice. However, in the high-frequency range the choice
of the correct expression for PV had not been given much
attention because in this frequency range the difference between
~B=m 0 and ~H , in common materials, is negligible. However, due
to the recent activity in negative refraction, metamaterials and
colloidal systems the distinction between ~B=m0 and ~H becomes
fundamental.

Here we start by reviewing the non-local formalism and the
main results obtained in our recently-developed effective-med-
ium treatment of colloidal systems. Then we use this non-local
formalism to derive Poynting’s theorem for a quasi-monochro-
matic pulse and consider frequencies at which the system has a
ll rights reserved.
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negligible absorption. Then we take the long wavelength limit.
The main advantage of this approach is that in the non-local
formalism the magnetic effects are incorporated into the general-

ized non-local dielectric tensor e
2

gðk;oÞ of the system. Within this
approach there is no formal difference between ~B and ~H , that is
~B ¼ m0

~H . Poynting’s vector can then be expressed in terms of this
generalized non-local dielectric response. In the long wavelength
limit we keep the quadratic coefficients of e

2

gðk;oÞ when
expanded in powers of the wave vector k. Due to the intrinsic
non-local character of the magnetic response, the expressions
obtained here in the long wavelength limit (k-0) have a very
general validity and are not restricted to colloidal systems with
small inclusions. Finally we relate the expansion coefficients of
the non-local response to the usual local permittivity eðoÞ and
local permeability mðoÞ and show that there is not a unique way
to express PV in terms of them. The lack of uniqueness arises from
the freedom in the choice of eðoÞ and mðoÞ.

Colloids are very complex systems usually defined, in their
simplest form, as a dispersed phase embedded within a homo-
geneous one. Typical examples of these systems are milk, clouds,
blood, paints, fog, and ink. The dispersed phase consists of small
colloidal inclusions located randomly in space. When light enters
into these systems it gets scattered and absorbed by the
inclusions. The description and understanding of how energy is
transported within these systems, and how light gets refracted
and reflected in the presence of a ‘‘flat’’ interface is a problem that
has attracted the interest of many researchers for quite a long
time [2].

When the size of the inclusions is not too small compared to
the wavelength of the incident radiation, scattering gives rise to
an electromagnetic field that propagates in all directions. This
diffuse field is responsible for the turbid appearance of some
colloids like milk, blood and clouds. Nevertheless, due to
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constructive interference, there is also a field that propagates in
the direction of the incident radiation. This is usually called the
coherent beam or the average field. Due to the presence of both
fields, it is not clear a priori if a concept like an effective index of
refraction would make any sense.

Nevertheless, if we focus our attention on the coherent beam,
we realize that this beam propagates in a single direction and gets
refracted and reflected at interfaces, suggesting that this behavior
could indeed be described in terms of an effective medium with
appropriate optical properties like an effective index of refraction.
Recently we have shown that this is indeed possible, but the
effective medium turns out to be spatially dispersive [3], that is,
its effective optical properties depend not only on the frequency
of the external exciting source but also on its wave vector. This
corresponds to a non-local electromagnetic response of the
system in real space. Furthermore, we also found [3] that there
might be a sizable effective magnetic permeability at optical
frequencies coming from closed currents induced within the
inclusions. Although it is now clear that one may extend effective-
medium theories to situations in which turbidity is strong, to keep
things simple while gaining a full understanding of PV in
magnetic media, we will focus our attention to the case where
turbidity is negligible but non-locality is still important yielding
induced magnetic properties at optical frequencies. In this
respect, colloids are analogous to magnetic metamaterials.
2. Formalism

Here we introduce the effective-medium formalism necessary
to deal with spatially dispersive (non-local) systems and show
that refraction experiments are probably the most convenient
way to determine their bulk effective properties. The properties of
an effective medium characterizing an inhomogeneous system
are defined in terms of appropriate averages of the fields and the
currents induced by an external source. By ‘‘average’’ we mean a
procedure that irons out the rapid spatial variations of the
electromagnetic field due to the presence of the inhomogeneities
down to a certain length scale, while the word ‘‘appropriate’’
refers to the adequate correspondence between the averaging
procedure and the quantities that are actually measured.

As an example of a non-local electromagnetic response, let us
take the relation between the average of the total induced current
~J ind and the average electric field ~E (Ohm’s law). This relation is
referred as being non-local whenever the current density induced
at point ~r depends not only on the value of the average electric
field at ~r , but also on its values around ~r (non-local Ohm’s law),
that is,

~J indð~r ; tÞ ¼

Z
dt0
Z

d3r0s
2

gð~r�~r
0
; t�t0Þ �~Eð~r

0
; t0Þ; ð1Þ

where s
2

g is the generalized non-local effective conductivity
tensor. Similarly, its non-local dependence on t�t0 accounts for
the non-instantaneous character of the response that yields the
usual dependence on frequency usually referred simply as
‘‘dispersion’’, or more precisely, as ‘‘time dispersion’’. The word
generalized is attached to s

2
g because ~J ind includes all contribu-

tions to the induced currents, even those that are usually
interpreted in terms of the magnetization.

Even when the current induced at a point~r within an inclusion
responds locally to the total electric field at the same point ~r , it
might respond non-locally to the external field, as the latter has
no information about the size and shape of the inclusion,
information that is incorporated by the generalized non-local
conductivity tensor. If the inclusions were small enough spheres
or ellipsoids, then both the total and the external electric fields
would be spatially constant within the inclusion, and therefore,
proportional to each other. The proportionality constant would
have the information about the size and shape of the inclusion. In
this case, the induced current would be algebraically proportional
to the external field and described with a local response function.
Nevertheless, when the inclusions are so large that the spatial
variations of the external and the total electric fields within the
inclusion are non-negligible, an algebraic proportionality would
no longer hold. Instead, we would require a non-local response
whose kernel is the generalized non-local conductivity tensor.

We have shown [3] that in the case of dilute colloids regarded
as a collection of randomly located spherical inclusions, the
averaging procedure preserves some of the non-local character of
the response of the individual inclusions. Furthermore, for
systems that are homogeneous ‘‘on the average’’, the Fourier
transform of the effective conductivity tensor depends indepen-
dently on both the frequency o and the wave vector k. By
homogeneous ‘‘on the average’’ we mean that the probability
density for finding an inclusion centered at ~r is translationally
invariant. If the system is also isotropic ‘‘on the average’’ the
generalized effective conductivity tensor can be written as

s
2

gð
~k;oÞ ¼ sL

gðk;oÞ P
2

LþsT
g ðk;oÞ P

2
T ð2Þ

in terms of only two scalar functions sL
gðk;oÞ and sT

g ðk;oÞ, the

generalized longitudinal and transverse conductivities. The tensors

~P
L
�~k~k=k2 and ~P

T
¼ 1

2

�~k~k=k2 ¼�~k �~k � =k2 are the longitudinal
and transverse projection operators, respectively. The correspond-
ing generalized non-local effective permittivity is

e
2

gð
~k;oÞ ¼ 1

2

e0þ
i

o
s
2

gð
~k;oÞ ¼ eL

gðk;oÞ P
2

LþeT
g ðk;oÞ~P

T
ð3Þ

We will call this form of expressing the electromagnetic response
as the LT scheme. As mentioned above,~J ind includes all contribu-
tions to the induced currents, even those that are usually
interpreted in terms of the magnetization. Therefore, the
magnetic response may be expressed in terms of eL

g and eT
g . It

can also be shown that in the long wavelength limit ðk-0Þ eL
g and

eT
g have a quadratic dependence on k, that is

eL
gðk;oÞ ¼ e

½0�
g ðoÞþe

L½2�
g ðoÞ

k2

k2
0

þ . . . and

eT
g ðk;oÞ ¼ e

½0�
g ðoÞþe

T½2�
g ðoÞ

k2

k2
0

þ . . . ; ð4Þ

and both tend to the same value e½0�g ðoÞ in the k-0 limit. Here
k2

0 �o2e0m0.
One of the main characteristic features of non-local systems is

the possible existence of longitudinal free-propagating modes,
with a dispersion relation

eL
gðk;oÞ ¼ 0; ð5Þ

as obtained from Gauss’ law, besides the usual transverse free-
propagating modes, whose dispersion relation can be written as,

k2 ¼ k2
0
~eT

g ðk;oÞ; ð6Þ

where the tilde on top of a symbol indicates dimensionless
quantity, i.e. ~e � e=e0. One can now introduce the concept of an
effective index of refraction by solving first Eq. (6) for k as a
function of o. Denoting this solution by kT ðoÞ, the effective index
of refraction index can be defined as

neff ðoÞ ¼
ffiffiffi
~e
p T

g ðk
T ðoÞ;oÞ; ð7Þ

which is a function of frequency only. Note that: (i) the solution
for k in Eqs. (5) and (6) might be a complex quantity, where
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k¼
ffiffiffi
~k

p
�~k ¼ k0 þ ik

00

, (ii) there might be several different solutions
of Eqs. (5) and (6), thus in the case of transverse modes one could
have several effective indices of refraction, one for each mode, (iii)
since eT

g is in general complex, neff ðoÞ is also, in general, a complex
quantity, and (iv) neff ðoÞ may not be substituted for the usual
index of refraction of local optics in reflection and refraction
problems due to its non-local origin; its applicability should be
carefully examined first.

The experimental determination of neff ðoÞ would be extremely
useful for the characterization of the colloidal inclusions: their
size and shape as well as their filling fraction. Nevertheless, most
of the experimental techniques used today in local optics for
the determination of the index of refraction, are based on the
inversion of reflection experiments. In our non-local case the use
of reflection complicates the inversion problem because non-
locality translational symmetry is lost and there is necessarily a
surface region that responds differently than the bulk. Thus the
reflection amplitudes depend not only on neff ðoÞ, but also on the
structure of the surface region.

A convenient alternative would be to use the geometry of
refraction instead of the reflection coefficients. It is less demand-
ing because the angle subtended by the energy flux beyond
the surface region would not be affected by its structure. Although
the experimental set up will require some precautions, we
believe that it will be possible to develop a coherent-refraction
spectroscopy that could yield reliable values of neff ðoÞ in colloids.

The main ingredient in the refraction phenomenon is the
direction of the energy flux (PV). There has been a revival of the
refraction problem in local optics due to the advent of negative
refraction and the development of metamaterials [4]. Never-
theless, there has been discussion about the interpretation of
some negative-refraction experiments [5]. Moreover, the mere
existence of negative refraction has been recently challenged [6]
by claiming that the expression commonly used for the calcula-
tion of the energy flux (PV) is not correct. Conversely, there are
also reports of direct experimental confirmation of negative
refraction at optical frequencies [7]. Thus a consensus on this
matter has not yet been achieved.

Here we deal with the issue related to the correct definition of
PV from our non-local perspective. As induced magnetism is an
intrinsically non-local effect, our non-local formalism should yield
the correct expression for the energy flux. We also think that our
non-local perspective should clarify some aspects about the
physics behind this problem.
3. The energy theorem

We consider a quasi-monochromatic electromagnetic plane
wave-packet with an electric field given by

~E ¼ Re~E0ð~r ; tÞ exp½i~k �~r�ot� ð8Þ

where ~k and o are real, fixed, independent quantities, ~E0ð~r ; tÞ is in
general a complex slowly varying function of ~r and t . By this we
mean

jrE0aj5kE0 and
@E0a
@t

����
����5oE0 ð9Þ

where the subscript a denotes cartesian component. By using
Maxwell’s equations, we derive immediately Poynting’s theorem

r �
1

2
Re ~E �

~B
�

m0

 !
þ
@

@t

e0

2
jEj2þ

1

2m0

jBj2
� �

¼�Wext�Wind; ð10Þ

where * denotes complex conjugate and we have taken an average
over time. Eq. (10) has the explicit form required by a local
conservation law, consisting of the relation between the diver-
gence of a flux and the time variation of the conserved quantity.

Here Poynting’s vector ~S ¼ Reð~E � ~B
�
Þ=m0 is the energy flux and

u¼ e0jEj
2=2þjBj2=2m0 the energy density, Wext � Reð~Jext �

~E
�

extÞ=2

denotes the work done on the external currents that keep a fixed

wave vector ~k, frequency o and amplitude ~E0ð~r ; tÞ of the quasi-

monochromatic pulse, while Wind ¼ Reð~J ind �
~E
�
Þ=2 denotes the

work done on the induced currents, where~J ind denotes all possible
currents induced through all possible mechanisms. Wind is
sometimes identified with dissipated heat, but we will show
below that this is not always the case.

We do this by first computing ~J ind using Eq. (1), with the
electric field given by Eq. (8) and using the relation between
sg;ab and eg;ab given in Eq. (3). One gets, following Refs. [8;1,
Chap. XII],

Jind;að~r ; tÞ ¼ exp½ið~k �~r�otÞ�

(
�ioðeg;abð

~k;oÞ�e0dabÞE0bðr; tÞ

�o
@eg;abð

~k;oÞ
@kg

@E0bð~r ; tÞ

@xg

þ ðeg;ab�e0dabÞþo
@eg;abð

~k;oÞ
@o

" #
@E0bð~r ; tÞ

@t

)
ð11Þ

where a first order Taylor expansion of the slowly varying field
amplitudes has been made. Now we calculate Wind in the long
wavelength limit by using the expression for eg;ab given in Eq. (3),
the second order expansions of eL

g and eT
g given in Eq. (4), and for

simplicity in the interpretation we also assume negligible
absorption, that is, ImeL

g 5ReeL
g and ImeT

g 5ReeT
g . One obtains

Wind ¼
o
2
½ImeL

gðk;oÞjE
L
0j

2þ ImeT
g ðk;oÞjE

T
0j

2��r �
1

2
Re

1

e0m0

� �
ð~E0 �

~B
�

0
ÞeT½2��

g ðoÞ

þ
eL½2�

g ðoÞ
oe0m0

ð~kjEL
0j

2þkEL�
0
~E

T

0
Þþ

1

2

@

@t
Re

@oe½0�g ðoÞ
@o

jE0j
2

"

þ
k2

e0m0

@

@o
eL½2�

g ðoÞ
o jEL

0j
2þ

@

@o
eT½2�

g ðoÞ
o jET

0j
2

 !
�e0jE0j

2

#
ð12Þ

where ~E
L

0 ¼
~P

L
�~E0ð~r ; tÞ and ~E

T

0 ¼
~P

T
�~E0ð~r ; tÞ are the longitudinal and

transverse components of the electric field, respectively. Note that
in these definitions we are using the restrictions imposed in
Eq. (9) thus r �~EC~k �~E0. For economy in the notation we have
kept eL

g and eT
g unexpanded in the first term on the r. h. s. of

Eq. (12) while in the second term we have introduced the
magnetic field through ~k �~E0 ¼o~B0, using Faraday’s law and
Eq. (9). One can see that Wind cannot be interpreted simply as
dissipated heat because some of its terms correspond to the
divergence of an additional contribution to the energy flux, i.e. in
the non-local case some of the energy absorbed at a given position
by the induced current may be transported to another position
instead of being dissipated.

We substitute Eq. (12) into Poynting’s theorem, Eq. (10), for
the case when the electric field is purely longitudinal and we keep
the lowest order terms in k, to obtain

r �
1

2
Re �

eL½2�
g ðoÞ
oe0m0

~kjE0j
2

 !
þ

1

2

@

@t
Re
@oe½0�g ðoÞ

@o
jE0j

2

¼�Wext�
o
2

Ime½0�g ðoÞjE0j
2: ð13Þ

We see that the energy flux

~SLONG ¼�
1

2
Re �

eL½2�
g ðoÞ
oe0m0

~kjE0j
2

 !
ð14Þ
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for a longitudinal field has a non-local character, being propor-
tional to the second order coefficient eL½2�

g ðoÞ, of the k-expansion of
eL

g . This is in agreement with the well known fact that the
propagation of longitudinal modes is only possible in the presence
of spatial dispersion.

Similarly, in the case of a pure transverse field, that is,
r �~EC~k �~E0 ¼ 0, one can write

r �
1

2
Re

1

m0

ð~E0 �
~B
�

0Þð1�e
T½2��
g ðoÞ=e0Þ

� �
þ

1

2

@

@t
Re

"
1

m0

jB0j
2

þ
@oe½0�g ðoÞ

@o
jE0j

2þ
k2

e0m0

@

@o
eT½2�

g ðoÞ
o
jE0j

2

#

¼�Wext�
o
2

Im e½0�g ðoÞþ
k2eT½2�

g ðoÞ
o2e0m0

" #
jE0j

2: ð15Þ

Here we have incorporated to the energy flux and the energy
density additional contributions that come from Wind, and have
written the energy theorem directly in terms of the second order
coefficient eT½2�

g ðoÞ of the transverse response. Here

~STRANS ¼
1

2
Re

1

m0

ð~E0 �
~B
�

0Þð1�e
T½2��
g ðoÞ=e0Þ

� �
ð16Þ

is the expression for the Poynting vector for transverse fields
which shows explicitly that the contributions coming from the
presence of matter have a non-local origin, even in the long
wavelength limit. Next we will connect this coefficient with the
more traditional view of the magnetic effects in terms of the
magnetic permeability.
4. The el scheme

We have shown that in the long wavelength limit, the energy
theorem can be clearly expressed in terms of e½0�g , eL½2�

g and eT½2�
g .

Here we will write it in terms of the electric permittivity e and the
magnetic permeability m, in what we call the em scheme. The
problem with this scheme lies in the fact that the definitions of e
and m are not unique and there is no general agreement in how to
define them.

In the em scheme one starts by splitting the induced current

~J
ind
ð~r ; tÞ ¼

@~Pð~r ; tÞ

@t
þr � ~Mð~r ; tÞ; ð17Þ

in terms of two material fields: the polarization ~P and the
magnetization ~M fields. Note that Eq. (17) does not provide a
unique definition of ~P and ~M and specific choices might depend
on the choice of particular models. Since in our case~J ind is quasi-
monochromatic (see Eq. (11)), then ~P and ~Mshould be also quasi-
monochromatic, and we may express the response of ~P and ~M in
several different ways. Here we choose, as an example,

~P0ð~r ; tÞ ¼ ½ðeLðk;oÞ�e0Þ P
2

LþðeT ðk;oÞ�e0Þ P
2

T � �~E0ð~r ; tÞ ð18Þ

~M0ð~r ; tÞ ¼
1

m0

�
1

mðk;oÞ

� �
~B0ð~r ; tÞ; ð19Þ

where ~P0 and ~M0 denote the amplitudes of ~P and ~M , respectively,
and we account for the possibility that the polarization field ~P

responds non-locally and differently to the longitudinal and
transverse components of the electric field. Here eLðk;oÞ and
eT ðk;oÞ denote the longitudinal and transverse dielectric re-
sponses (not to be confused with the corresponding quantites of
the generalized dielectric response), while the magnetic perme-
ability mðk;oÞ is defined through the non-local response of ~M

to ~B, which is a transverse field. For consistency, we demand
eLðk-0;oÞ ¼ eT ðk-0;oÞ � eð0;oÞ. In the em scheme the response
is characterized by three scalar functions eL, eT and m.

If one now compares Eqs. (17)–(19) with Eqs. (1)–(3), one can
identify

eLðk;oÞ ¼ eL
gðk;oÞ and mðk;oÞ ¼ 1

1

m0

�
o2

k2
½eT

g ðk;oÞ�eT ðk;oÞ�
:

ð20Þ

This definition regards the induced magnetism in the system,
enclosed in the magnetic permeability mðk;oÞ, as a non-local
transverse effect. By making a long wavelength expansion in eL

and eT in Eq. (20) one can identify

e½0�g ðoÞ ¼ e
Lð0;oÞ; eL½2�

g ðoÞ ¼ e
L½2�ðoÞ and

eT½2�
g ðoÞ ¼ e

T½2�ðoÞþe0 1�
m0

mð0;oÞ

� �
ð21Þ

where eL½2�ðoÞ and eT½2�ðoÞ are the second order expansion
coefficients of eL and eT in powers of k2=k2

0, similar to the
coefficients used in Eq. (4) for the longitudinal and transverse
components of the generalized dielectric responseeL

gand eT
g . Now

we substitute the expression for eT½2�
g ðoÞ into the expression for

the Poynting’s vector given in Eq. (16) and write

~STRANS ¼
1

2
Re ~E0 �

~B
�

0

m0

�~M
�

0

 !
�~E0 �

~B
�

0

m0

eT½2��ðoÞ
e0

" #
ð22Þ

where

M0 ¼
1

m0

�
1

mð0;oÞ

� �
~B0 ð23Þ

is identified as a local magnetization, that is, we regard a non-
local electric response as a local magnetic response. Nevertheless,
it is now clear that the explicit form for the expression of the
Poynting vector in the em scheme is not unique but depends on
the choice made for the polarization and magnetization fields.
This freedom arises from the ambiguity in the definition of these
same fields.

One common choice is to take eT½2��ðoÞ ¼ 0, demanding a local
transverse dielectric response to second order in k, so that all
transverse non-locality is attached to mðk;oÞ. Then, following
Eq. (22), the expression for the Poynting vector in the long wave-
length limit, can be written as ~STRANS ¼ ð1=2ÞRe~E0 � H�0, which is
the usual textbook expression in terms of the ~H field, defined as
~H ¼~B=m0�

~M .
Another common choice is to take eT½2��ðoÞ ¼ eL½2��ðoÞ, decree-

ing that the non-local permittivity is scalar to second order, with
the same response to the longitudinal and transverse fields.
According to Eq. (22), for this choice one has to modify the usual
expression for the Poynting vector ~STRANS ¼ ð1=2ÞRe~E0 � H�0
by adding an extra term that ‘‘compensates’’ the introduction of
a longitudinal response in what is strictly a transverse effect.
Notice that the values of mð0;oÞ are not the same for these two
choices.

Finally, we want to add a closing comment saying that we have
treated here the problem of energy transport of a quasi-
monochromatic electromagnetic field in the presence of external
sources. This allowed us to keep k and o as independent variables.
We did not approach the problem of energy transport by free-
propagating modes, but we believe it can be dealt in a similar
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manner, suppressing the external sources and taking into account
that the wave vector ~k and k¼

ffiffiffi
~k

p
�~k become frequency-

dependent complex quantities.
5. Conclusions

We used the formalism developed for the treatment of the non-
local effective media associated to colloids to find a general
expression for the energy theorem in the long wavelength limit,
in terms of parameters associated to the generalized non-local
response of the system. We found an explicit expression for
Poynting’s vector in terms of these non-local parameters
and showed that there are many ways of writing it in terms of an
electric permittivity e and a magnetic permeability m, depending
on the choice taken to define them. This freedom of choice comes
from the ambiguity in the definition of the material fields.
The importance of having a correct definition of the Poynting
vector is important for the treatment of refraction. This approach
can be extended to finite wave vectors, non-negligible dissipation
and turbidity, as well as problems related to negative refraction.
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