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A mesoscale theory for the tensor order parameter Q is used to investigate the structures that arise
when spherical nanoparticles are suspended in confined nematic liquid crystals �NLCs�. The NLC
is “sandwiched” between a wall and a small channel. The potential of mean force is determined
between particles and the bottom of the channels or between several particles. Our results suggest
that strong NLC-mediated interactions between the particles and the sidewalls of the channels, on
the order of hundreds of kBT, arise when the colloids are inside the channels. The magnitude of the
channel-particle interactions is dictated by a combination of two factors, namely, the type of defect
structures that develop when a nanoparticle is inside a channel, and the degree of ordering of the
nematic in the region between the colloid and the nanochannel. The channel-particle interactions
become stronger as the nanoparticle diameter becomes commensurate with the nanochannel width.
Nanochannel geometry also affects the channel-particle interactions. Among the different
geometries considered, a cylindrical channel seems to provide the strongest interactions. Our
calculations suggest that small variations in geometry, such as removing the sharp edges of the
channels, can lead to important reductions in channel-particle interactions. Our calculations for
systems of several nanoparticles indicate that linear arrays of colloids with Saturn ring defects,
which for some physical conditions are not stable in a bulk system, can be stabilized inside the
nanochannels. These results suggest that nanochannels and NLCs could be used to direct the
assembly of nanoparticles into ordered arrays with unusual morphologies. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2770724�

I. INTRODUCTION

Besides their traditional applications in displays, liquid
crystals �LCs� have recently attracted attention for their po-
tential uses in optical sensors. Recent experiments1–6 and
calculations7,8 have demonstrated that the binding of chemi-
cals, biomolecules, and viruses at solid-LC and liquid-LC
functionalized interfaces perturbs the local ordering of the
LC and triggers the formation of inhomogeneous textures.
Due to the long-range order of the LCs, these inhomogene-
ities can be amplified over several length scales and detected
using polarized light. Systems of particles immersed in liquid
crystals also have potential applications for development of
composites, nanostructured materials, and colloidal
crystals.9–15 The inclusion of colloids induces elastic distor-
tions in the LC, giving rise to long-range interparticle inter-
actions that can induce the formation of a number of ordered
colloid structures. These LC-mediated interparticle interac-
tions can be large, up to several thousands of kBT, according
to recent calculations16–20 and experimental measure-
ments10,15 for colloids in nematic liquid crystals �NLCs�.
Such interactions are reversible and disappear when the LC
is in the isotropic phase. The LC-mediated colloidal interac-
tions also depend on the size and shape of the particles,20 the

local ordering of the molecules of LC at the surfaces of the
colloids, and the alignment of the director field n�r� far away
from the particles.

The response of a biosensor, or the structure of a micro-
emulsion or suspension of particles in LCs, is dictated by the
LC defects that arise around a collection of particles. The
uniform alignment of a nematic is usually distorted by the
inclusion of particles, due to the constraints imposed by the
anchoring of the LC at the particles’ surfaces. Topological
defects are observed when these constraints impose conflict-
ing orientations to the LC, giving rise to discontinuities in
the director field n�r�.21 The LC defect core is characterized
by strong biaxiality and a pronounced decrease in the scalar
order parameter S�r�, which measures the degree of orienta-
tional order; a low value of S�r� reflects the fact that the
liquid crystal “melts” locally at the defect core.21,22 Optimi-
zation of the applications mentioned above therefore requires
a fundamental understanding of the structure and dynamics
of topological defects around particles immersed in a LC, as
well as the LC-induced interparticle interactions that arise
due to elastic distortions.

Three types of defects are observed when a spherical
particle is placed in a NLC: the dipole configuration �where
the NLC forms a point defect known as a hyperbolic
hedgehog�,9,23 the Saturn ring configuration �where the par-
ticle is surrounded by a disclination loop�,24,25 and the sur-
face ring configuration �where the NLC forms two surface
defects known as boojums�.23 They have been the focus of a
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number of theoretical and numerical studies.26–31 The dipole
configuration was found to be stable for strong surface an-
choring and micron-sized spherical particles. The Saturn ring
configuration was predicted to become stable upon reduction
of particle size, which was confirmed experimentally by the
recent work of Völtz et al.32 Magnetic and electric fields.33

and confinement conditions25,34 were also shown to stabilize
a Saturn ring configuration. A surface ring defect is observed
upon reduction of the surface anchoring strength.29,30 Sys-
tems involving two spherical particles exhibiting Saturn ring
�i.e., nanometer-sized particles� �Refs. 16–18� and hyper-
bolic hedgehog35,36 defects have been recently examined us-
ing a mesoscale theory, where the NLC is described using
the tensor order parameter Q�r�. In the former series of stud-
ies, the predictions of the mesoscale theory were compared
to those of molecular simulations, thereby providing a mea-
sure of the validity of the theory at nanometer length scales.
In those calculations, a third disclination ring orthogonal to
the original ones was observed between the two spheres at
short separations.16–18 Given the good agreement between
the defect structures and the potentials of mean force ob-
tained from Monte Carlo simulations and the mesoscale
theory, the latter approach �which is computationally less
expensive� was used to study the stability of arrays of three
spherical nanoparticles immersed in a NLC,19 and sphero-
cylindrical nanoparticles in a NLC.20 The continuum mesos-
cale theory approach was also used to study the structure and
dynamics of a nematic in a two-dimensional �2D� represen-
tation of a liquid crystal sensor,1,2 where chemicals or bio-
molecules �represented as spherical nanoparticles� can ad-
sorb at the sensor walls.7 Very recently, density functional
theory has been used to study the structure of a LC, in its
isotropic and nematic phase, around a cylindrical particle of
infinite length.37

In this work, we use computer simulations to predict the
behavior of systems of one or several nanoparticles in NLCs,
when they are close to or confined in nanochannels of differ-

ent geometries. Micron-sized channels have been used pre-
viously to elongate DNA molecules, as part of a recently
proposed approach for genome analysis.38,39 Very recently,
Fernández-Nieves et al. used flow in microchannels to in-
duce reversible changes in the topological defects of NLC
droplets in water.40 The aim of our work is to explore the use
of NLCs and nanochannels to manipulate nanoparticles �as
opposed to micron-sized channels and particles� and direct
their assembly into controlled, ordered structures. Experi-
mental work for these nanoscale systems is expected to face
more difficulties as compared to their micron-sized counter-
parts. Therefore we turn to computer simulation as a way to
explore and obtain rapid predictions of the behavior of sys-
tems of nanoparticles in NLCs close to nanochannels. Here
we report numerical calculations for the LC defect structures
that arise for such systems. A continuum mesoscale theory in
terms of the tensor order parameter Q is used to model the
nematic solvent. Systems containing one and three nanopar-
ticles with strong homeotropic anchoring are considered. We
also calculate the potential of mean force �PMF� for the dif-
ferent systems. The PMF gives the difference in free energy
between two states, as a function of a specific degree of
freedom of the system, namely, the minimum distance be-
tween a nanoparticle and the bottom of the nanochannel. The
paper is organized as follows. In Sec. II we present a descrip-
tion of our model systems and details of the numerical meth-
odology. Our results are presented and discussed in Sec. III.
Section IV includes some concluding remarks and sugges-
tions for future work.

II. MODELS AND METHODS

A. Details of the model systems

The model system considered in this work consists of a
nanochannel and a wall, “sandwiching” one or several
spherical nanoparticles immersed in a NLC. A schematic rep-
resentation of the different nanochannel geometries consid-

FIG. 1. Scheme of the different
nanochannel geometries considered in
this work: �a� rectangular, �b� rectan-
gular with two straight cuts, �c� rectan-
gular with four straight cuts, �d� cylin-
drical, �e� cylindrical with two straight
cuts, and �f� rectangular nanochannel
for a system of three nanoparticles.
For all cases, the model systems con-
sist of a wall and a nanochannel,
“sandwiching” one or several spheri-
cal nanoparticles immersed in a nem-
atic liquid crystal �NLC�. All the di-
mensions are in nanometers. The total
length of the system in the y direction
is 100 nm for �a�–�e� and 300 nm
for �f�.
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ered in this work for one-particle systems is shown in Fig. 1.
In all cases, the nanochannels exhibit a width of 60 nm, a
depth of 30 nm, and the distance between the top wall and
the bottom of the nanochannel is 130 nm. Spherical nanopar-
ticles with diameters between D=10 nm and D=50 nm are
considered. These particle diameters are given such that
when the colloid is far away from the top wall and the
nanochannel, a Saturn ring defect structure is formed by the
NLC around the nanoparticle. All the surfaces present in the
system �colloids, walls, and nanochannel� exhibit strong ho-
meotropic anchoring conditions for the NLC. Such condi-
tions can be easily achieved experimentally by coating the
surfaces with a self-assembled monolayer of alkanethiols.41

In the absence of particles, and away from the nanochannel,
the system exhibits a homogeneous texture in which the di-
rector field n�r� is parallel to the z axis. Strong variations in
the director field, scalar order parameter, and topological de-
fects are observed inside the nanochannels �particularly in
the rectangular channel, Fig. 1� even when nanoparticles are
not present, due to the conflicting orientations imposed to the
nematic by the homeotropic anchoring conditions. The
boundary conditions at the borders of the simulation box in
the x and y directions are such that the director field n�r� is
parallel to the z axis. In all the systems studied in this work,
the minimum distance between the surface of the particles
and the borders of the simulation box in the x and y direc-
tions is always larger than 25 nm �equivalent to 1.45�, where
� represents a characteristic length scale in our theory for
spatial variations of Q; see Eq. �7� below�, and thus periodic
boundary conditions were not required.

For one-particle systems, we considered different con-
figurations where we changed the position of the nanopar-
ticle along the z axis, from a position where the particle is
close to the top wall to a position where it is near the bottom
of the nanochannel. The PMF and the defect structures were
determined as a function of d, the minimum distance be-
tween the sphere and the bottom of the nanochannel. For
systems containing three colloids, we computed the differ-
ence in free energies between several particle arrangements
involving a rectangular nanochannel.

B. Mesoscale theory for the nematic liquid crystal

The behavior of the NLC was modeled using a mesos-
cale theory for the tensor order parameter Q�r�. In contrast to
the director field n�r�, Q�r� is free of divergences and dis-
continuities even at the disclination lines. The local values of
the scalar order parameter S�r� and the director n�r� can be
obtained from Q through its largest eigenvalue 2S /3 and its
associated eigenvector, respectively.21 In previous studies of
spherical nanoparticles in a NLC,16–18 it was shown that the
results for potentials of mean force and defect structures ob-
tained from this theory are in agreement with those from
molecular simulations �where the NLC was represented as
Gay-Berne ellipsoids�, down to length scales comparable to
the size of a LC molecule. This theory corresponds to a
particular case of the Beris-Edwards formulation of the ther-
modynamics of fluids with internal microstructure.42 In this
formulation, the evolution of the tensor order parameter Q as

a function of position r and time t is determined by the
functional derivative of the system free energy F with re-
spect to Q,

�Q

�t
= −

1

�
� �F

�Q
−

1

3
Tr� �F

�Q
�I� . �1�

Here � is a kinetic coefficient associated with the rotational
viscosity of the liquid crystal, and for simplicity it is as-
sumed to be a constant. In this equation, it is assumed that
�F /�Q has been symmetrized. The free energy F of the liq-
uid crystal includes three contributions given as follows:

F =	 drfLdG�r� +	 drfe�r� + 
 dSfs�r� . �2�

The first term fLdG represents a Landau–de Gennes
expansion21 describing the short-range interactions that drive
the bulk isotropic-nematic phase transition,

fLdG =
A

2
�1 −

U

3
�Tr�Q2� −

AU

3
Tr�Q3� +

AU

4
�Tr�Q2��2. �3�

The phenomenological coefficients A and U depend on the
liquid crystal of interest. A controls the energy scale of the
model, whereas U controls the value of the bulk scalar order
parameter S,

Sbulk =
1

4
�1 + 3�1 −

8

3U
� . �4�

In this model, the system is isotropic for 0�U�2.7 and
nematic for U�2.7. The limits of metastability for the iso-
tropic and nematic phases are U=3 and 8/3, respectively.
The third term in Eq. �2� represents the surface contribution
to the free energy, and accounts for the liquid crystal anchor-
ing at the surfaces. We only consider the case of strong ho-
meotropic anchoring at all surfaces. In this limiting case, the
prescribed perpendicular orientation of the liquid crystal at
every surface must be satisfied, lest fs diverges. In our cal-
culations, the homeotropic anchoring of the liquid crystal at
every surface is enforced through the boundary conditions.

The second term in Eq. �2� describes the long-range elas-
tic forces of the liquid crystal, and introduces a free energy
penalty associated with gradients of the tensor order param-
eter field. For simplicity, in our calculations we have used the
one-elastic-constant approximation,21 where the splay, twist,
and bend elastic constants K11, K22, and K33 have a common
value. In a previous simulation study for systems of sphero-
cylindrical nanoparticles in nematic liquid crystals,20 we ob-
tained similar results for the defect structures and potentials
of mean force when we used the one-elastic-constant ap-
proximation and a three-constant expression that is cubic in
Q and its gradients.42–44 The elastic free energy in the one-
elastic-constant approximation takes the following form:

fe =
L1

2
�kQij�kQij . �5�

In Eq. �5� i , j ,k�x ,y ,z, and the Einstein summation conven-
tion over repeated indexes is used. When the functional de-
rivatives in Eq. �1� are evaluated with Eqs. �2�, �3�, and �5�,
the following partial differential equation for Q is obtained:
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= −
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3
�Qij − AU

��QikQkj −
�ij

3
QklQkl − Qij�QklQkl�� − L1�k�kQij .

�6�

Equation �6� was solved numerically for all the three dimen-
sional �3D� systems considered in this study. The values of
the dimensionless parameters are A=1, U=6, �=400, and
L1=1, corresponding to Sbulk=0.81. Given suitable scaling
factors for pressure �105 Pa�, length �10 nm�, and time
�1 ns�, these parameters correspond to a material having an
elastic constant K=5 pN �within the one-elastic-constant ap-
proximation� and an orientational viscosity of 0.04 Pa s.
These values are representative of a low molecular-weight
liquid crystal, such as 5CB. In addition, from a dimensional
analysis one can obtain a characteristic length scale, or nem-
atic coherence length, for spatial variations of Q,22

� = �18L1/AU , �7�

which corresponds to �=17.3 nm for our numerical param-
eters.

Equation �6� was solved for the five independent com-
ponents of Q �Qxx, Qyy, Qxy, Qxz, and Qyz, since Q is trace-
less� using finite elements.45 In order to solve the equations,
we used the time-dependent algorithm DASPK, combined
with the linear system solver GMRES and the incomplete LU

preconditioner.45 Equation �6� was solved for a sufficiently
long time to observe negligible variations in the numerical
solution with respect to time, which corresponds to finding
the solution that minimizes the free energy �the right-hand
side of Eq. �6��. We performed three-dimensional simulations
using unstructured meshes containing tetrahedral, linear
Lagrange elements.46 Different grid densities were used, and
it was found that for the solutions to be independent of fur-
ther mesh refinements, 59 346 and 72 852 finite elements
were required in systems with one and three particles. The
mesh was significantly finer in the immediate vicinity of the
walls and the nanoparticles, where important curvature ef-
fects and strong variations in Q are present. The minimum
length size of the finite elements was approximately
1.1�10−3 nm. For the smallest particle diameter considered
�D=10 nm�, our finest grid size corresponds to 1.1�10−4D,
which is comparable to those reported by Fukuda et al.31 in
their adaptive mesh refinement scheme. The initial condi-
tions of Q in our simulations are such that the director n is
initially aligned along the z direction, and the scalar order
parameter S was initially fixed to the equilibrium value
Sbulk=0.81 �Eq. �4��. The scalar order parameter at the nano-
particles’ surface was also set to S=Sbulk=0.81. Different
methods are available to depict the NLC defect structures
�the regions where the nematic director field becomes
discontinuous�.47–50 In this work, we follow previous litera-
ture studies16–20 and adopt the contour S=0.30 to visualize
defects in 3D, since it is approximately the smallest value of
scalar order parameter for a stable bulk nematic in our par-
ticular model.22,42 The free energy values used in the com-
putation of the potential of mean force were determined by

numerical integration of Eqs. �2�, �3�, and �5� over the vol-
ume of the system.

III. RESULTS AND DISCUSSION

A. Effect of the ratio particle
diameter/nanochannel width

Our first aim is to determine the defect structures and the
potential of mean force that arise when a spherical nanopar-
ticle, immersed in a nematic liquid crystal, interacts with a
rectangular nanochannel of width 60 nm and depth 30 nm.
Different colloid diameters were considered �D=10, 20, 30,
40, and 50 nm�. All surfaces induce homeotropic anchoring
to the nematic, and the director field far away from the sur-
faces is parallel to the z axis. We consider different configu-
rations, where we changed the position of the nanoparticle
gradually along the z axis, from the top wall to the bottom of
the nanochannel. The PMF was determined as a function of
the minimum distance d between the colloid and the bottom
of the nanochannel. For each of these distances, the PMF
was calculated as the difference in free energy with respect
to that observed when the particle’s center is 50 nm from the
top wall and 80 nm from the bottom of the nanochannel, i.e.,
a situation where the colloid is far away from both the top
wall and the bottom of the nanochannel. In most of the cases,
the x and y coordinates of the colloid are such that the par-
ticle is equidistant from the sidewalls of the nanochannel;
however, we considered one case where a nanoparticle of
D=10 nm is closer to one of the sidewalls of the channel.
Results for the PMF are presented in Fig. 2.

We first discuss the cases where the nanoparticle is equi-
distant from the sidewalls of the channel. For a small particle
of D=10 nm, there is almost no effect on the total PMF
curve �Fig. 2�a��, and we observe a small repulsion when the
particle is close to the top wall and the bottom of the chan-
nel. This repulsion is due to distortions in the director field of
the nematic caused by the curvature effects at the surface of
the particle and the homeotropic anchoring conditions at the
walls and the sphere. These repulsion effects have been ob-
served in a previous study that considered a system of a
colloid in a NLC close to a flat wall, using both Monte Carlo
simulations and theory.16 In Figs. 2�b� and 2�c� we depict the
Landau–de Gennes �LdG� and elastic contributions to the
total PMF. For D=10 nm, the LdG and elastic PMF show a
maximum and a minimum, respectively, of a few kBT occur-
ring at the same value of d, and therefore they compensate
each other so that almost no variation is observed in the total
PMF.

As the diameter of the nanoparticle increases, several
effects are apparent in the curves for the total PMF �Fig.
2�a��. First, the magnitude of the repulsion as the particle is
close to the top wall and the bottom of the nanochannel
increases, since the larger particle sizes cause more distor-
tions in the director field as the colloid gets closer to the
walls. Second, the curves for the total PMF show a decrease
as the particle approaches the nanochannel, reaching minima
of �56kBT�D=20 nm�, �165kBT�D=30 nm�, �315kBT�D
=40 nm�, and �410kBT�D=50 nm�. Such strong interac-
tions arise because the Saturn ring defects around the nano-
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particles interact and fuse with the NLC defects at the sides
of the nanochannel, leading to important reductions in the
total area of LC defects. In Fig. 3, we show visualizations of
the defect structures observed for nanoparticles of D=30 and
50 nm, observed at different distances between the colloids
and the bottom of the nanochannel. When the nanoparticle is
far from both the top wall and the bottom of the nanochannel
�Figs. 3�a� and 3�d��, a Saturn ring defect structure is formed
by the nematic around the colloid, and the sidewalls of the
nanochannel are also covered by defect structures. As a small
colloid �D=10 nm� approaches the nanochannel, there is no
significant interaction between the cores of the NLC defects
around the particle and the sidewalls, and therefore no sig-
nificant changes are observed in the PMF curves �Fig. 2�.
However, when a larger colloid �D=30 nm� approaches the
nanochannel �Figs. 3�a�–3�c��, the defect structures around
the nanoparticle and the sidewalls of the channel start to
interact by extending toward each other and becoming more
and more distorted until they eventually fuse together �Fig
3�b��. This configuration corresponds to the maxima in the
LdG PMF curves �Fig. 2�b��, where the size of the defect
structures �and therefore the amount of nematic that melts in
the defect core� reaches a maximum. From Fig. 2�b�, it is
also apparent that the maxima in the LdG PMF curves de-
crease and move to larger values of d, as the diameter of the
nanoparticle increases.

Further reductions in d lead to smaller defect structures
consisting of an incomplete Saturn ring fused with the de-
fects on the sidewalls of the channel �Fig. 3�c�, which corre-
sponds to the minima of the total and elastic PMF curves,
Figs. 2�a� and 2�c��. In this configuration, the NLC in the
region between the nanoparticles and the sidewalls of the

FIG. 2. �Color online� Potential of mean force �PMF� as a function of the
minimum distance between one nanoparticle and the bottom of a rectangular
nanochannel for different colloid diameters: �a� total PMF, �b� Landau–de
Gennes contribution to the total PMF, and �c� elastic contribution to the total
PMF.

FIG. 3. �Color online� 3D visualiza-
tions of the NLC defect structures
�represented as the contour S=0.30 in
red� and 2D contour maps of the scalar
order parameter S, superimposed with
the director field n in the x-z plane, for
one nanoparticle with D=30 nm �a�–
�c� and D=50 nm �d�–�f�, at different
values of d: �a� d=65 nm �far apart
from both the top wall and the
nanochannel�, �b� d=25 nm �the maxi-
mum in the LdG PMF, Fig. 2�b��, �c�
d=5 nm �the minimum in the total and
elastic PMF, Figs. 2�a� and 2�c��, �d�
d=55 nm �far apart from both the top
wall and the nanochannel�, �e� d
=30 nm �the maximum in the LdG
PMF, Fig. 2�b��, and �f� d=5 nm �the
minimum in the total and elastic PMF,
Figs. 2�a� and 2�c��. For all cases, the
particle is equidistant from the side-
walls of the channel.
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channel becomes highly ordered �Fig. 3�c��. Here, the par-
ticle is close enough to the sidewalls of the channel, and thus
the local homeotropic anchoring persists in the interparticle
space, and a “bridge” of director lines forms �Fig. 3�c��. Mi-
croscopically, this corresponds to a few layers of liquid crys-
tal molecules connecting the nanoparticle and the sidewalls
of the nanochannel, in analogy to what was observed in the
interparticle regions between the spherical17–19 and
spherocylindrical20 colloids immersed in NLCs. These ef-
fects are more pronounced for a particle that has a size
�D=50 nm� comparable to that of the nanochannel �width
=60 nm� �Figs. 3�d�–3�f��. A larger particle surrounded by a
Saturn ring exhibits a larger amount of energy in the defect
cores, since the free energy tends to increase with particle
size.31 As a particle enters the nanochannel and reaches the
minimum of the PMF curve, the reduction in the total area of
NLC defects increases with particle size �compare Figs. 3�c�
and 3�f��. In addition, the nematic in the region between the
nanoparticle and the sidewalls of the channel becomes more
ordered, as compared to what was observed for the case of
D=30 nm �Figs. 3�a�–3�c��. As a result, the interactions be-
tween a particle of D=50 nm and the nanochannel are stron-
ger ��410kBT� when compared to those observed for a col-
loid of D=30 nm ��165kBT�.

So far we have considered cases where the nanoparticle
is equidistant from the sidewalls of the channel. Results for
the PMF for a small nanoparticle �D=10 nm� when it is
closer to one of the sidewalls of the nanochannel are pre-
sented in Fig. 2, and visualizations of the defect structures
are depicted in Fig. 4. In this case, the minimum distance
along the x axis between the particle and the nearest sidewall
of the nanochannel was set at 10 nm. The total PMF for this
case shows two minima at d=20 nm and d=5 nm, and a
local maximum at d=10 nm; these features are also observed
in the elastic PMF. The LdG PMF for this case exhibits one
maximum at d=30 nm and a minimum at d=10 nm. The two
minima and the local maximum in the PMF are caused by
the fact that the Saturn ring defect around the nanoparticle
interacts with the defects at the sidewalls of the channel
which have a nonuniform thickness �Fig. 4�. Note that the
minimum of �50kBT observed in the total PMF is compa-

rable to the interactions observed for the case of a larger
nanoparticle �D=20 nm� interacting with both sidewalls of
the nanochannel.

B. Effect of nanochannel geometry

The experimental fabrication of perfectly rectangular
nanoscale channels can be challenging. We therefore con-
sider in this section a variety of channel geometries. We
present results for the defect structures and the potential of
mean force, for a system of one spherical nanoparticle im-
mersed in a NLC, interacting with rectangular and cylindri-
cal nanochannels that include several variations: �1� rectan-
gular �same geometry analyzed in the previous section�, �2�
cylindrical, �3� rectangular with two “straight” cuts, �4� rect-
angular with four straight cuts, and �5� cylindrical with two
straight cuts. These different nanochannel geometries are
represented in Fig. 1. In all cases, the nanochannel has a
width and depth of 60 and 30 nm, respectively; and the cuts
in the nanochannel have a width of 10 nm each �Fig. 1�. Two
particle diameters are considered, D=30 nm and D=50 nm,
and in all cases, the particle is equidistant from the sidewalls
of the nanochannel. Results for the PMF are presented in
Fig. 5.

In each of the nanochannel geometries considered, it is
apparent that the minima in both the total and elastic PMF
become more negative �Figs. 5�a� and 5�c�� as the diameter
of the nanoparticle increases. In addition, the maxima in the
LdG curves �Fig. 5�b�� decrease and move to larger values of
d, in each nanochannel geometry, as the diameter of the
nanoparticle increases. These effects were also discussed in
the previous section for rectangular channels. Among the dif-
ferent nanochannel geometries, two groups of curves can be
observed in the total PMF for D=50 nm �Fig. 5�a��, where
the strongest channel-particle interactions are observed for
the cylindrical and rectangular nanochannels, followed by
the channels with straight cuts. For D=30 nm, the strongest
channel-particle interactions are observed for the cylindrical
nanochannel, followed by the rectangular channel, the cylin-
drical, and the rectangular channels with two straight cuts,
and finally, the weakest channel-particle interactions are ob-
served for the rectangular channels with four straight cuts

FIG. 4. �Color online� 3D visualiza-
tions of the NLC defect structures
�represented as the contour S=0.30 in
red, top� and 2D contour maps of the
scalar order parameter S, superim-
posed with the director field n in the
x-z plane �bottom�, for one nanopar-
ticle with D=10 nm at �a� d=75 nm
�far apart from both the top wall and
the nanochannel�, �b� d=30 nm �the
maximum in the LdG PMF, Fig. 2�b��,
�c� d=20 nm �the first minimum in the
total and elastic PMF, Figs. 2�a� and
2�c��, �d� d=10 nm �the minimum in
the LdG PMF, Fig. 2�b��, and �e� d
=5 nm �the second minimum in the to-
tal and elastic PMF, Figs. 2�a� and
2�c��. The particle is closer to one of
the sidewalls of the channel. �see text�
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�Fig. 5�a��. In the LdG PMF �Fig. 5�b��, the largest maximum
is observed for the rectangular nanochannel. Maxima of
5–30kBT are present for D=30 nm in the LdG PMF for all
the nanochannel geometries considered; however, these
maxima decrease and in some cases disappear for a 50 nm
nanoparticle.

In Figs. 6 and 7 we present 2D and 3D visualizations of
the defect structures observed when the nanoparticle is close
to the top wall, and at the minima of the total PMF curves

�Fig. 5�a��, for the different nanochannel geometries consid-
ered above. Different LC defect structures form on the side-
walls of the channels in the absence of particles. As men-
tioned before, the sidewalls of a rectangular nanochannel are
covered by a LC that exhibits strong variations in the direc-
tor field and scalar order parameter �S ranges from 0 to 0.82
inside the channel, Figs. 6�a� and 7�a��. Elimination of the
sharp edges in a rectangular channel reduces the variations in
n�r� and S�r�. A smaller area of the sidewalls of a rectangu-
lar nanochannel with two straight cuts is covered by a LC
with S�0.3 �Figs. 6�b� and 7�b��, and no regions of S�0.3
are observed inside a rectangular channel with four straight
cuts �Figs. 6�c� and 7�c��. For cylindrical channels, the re-
gions of S�0.3 are observed close to the sharp edges of the
nanochannel �Figs. 6�d� and 7�d��. Removing the sharp edges
eliminates these regions, and smooth variations in n�r� and
S�r� are observed inside a cylindrical nanochannel with two
straight cuts �Figs. 6�e� and 7�e��.

As discussed earlier, the magnitude of the PMF minima
is dictated by a combination of two factors: �1� how much
the total surface of the NLC defect cores is reduced when the
nanoparticle is inside the channels �i.e., by comparing the
size of the blue regions in the 2D visualizations, when the
particle is far away and inside the channels�, and �2� how
ordered the nematic is in the region between the colloid and
the nanochannel �i.e., how high the value of S is in this
specific region�. From Figs. 6 and 7, it is clear that these
effects are more important for a nanoparticle of D=50 nm in
the cylindrical and rectangular nanochannels, and explain the
magnitude of the different total PMF minima observed in
Fig. 5�a�. Our results suggest that a cylindrical channel pro-
vides the strongest channel-particle interactions. Neverthe-
less, as the ratio between the nanoparticle diameter and the
nanochannel width increases, a rectangular and a cylindrical
nanochannel seem to exhibit similar channel-particle interac-
tions. Our results also suggest that small variations in the
geometry of the channels, such as small cuts removing their
sharp edges, lead to important changes in the channel-
particle interactions. As an example, the difference in the
total PMF minima between a nanoparticle of D=50 nm in-
side a rectangular nanochannel and a rectangular channel
with four straight cuts represents 40% of the PMF minimum.

FIG. 5. �Color online� Potential of mean force �PMF� as a function of the
minimum distance between one nanoparticle and the bottom of a nanochan-
nel for different channel geometries and two colloid diameters, D=30 and
50 nm: �a� total PMF, �b� Landau–de Gennes contribution to the total PMF,
and �c� elastic contribution to the total PMF.

FIG. 6. �Color online� 2D contour maps of the scalar
order parameter S, superimposed with the director field
n in the x-z plane, when a nanoparticle of D=30 nm is
close to the top wall �left�, and when the particle is
inside the nanochannel �at the minima of the total PMF,
center�. For the latter situation, 3D visualizations of the
NLC defect structures are also depicted �represented as
the contour S=0.30 in red, right�. Different nanochan-
nel geometries are represented as follows: �a� rectangu-
lar, �b� rectangular with two cuts, �c� rectangular with
four cuts, �d� cylindrical, and �e� cylindrical with two
cuts. The particle is always equidistant from the side-
walls of the channel.
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C. Systems with several nanoparticles

We now consider the structures that arise when three
nanoparticles are immersed in a NLC, and are confined be-
tween a wall and a rectangular nanochannel. We consider
nanoparticles of D=40 nm, a nanochannel with width 60 nm
and depth 30 nm, and a distance between the top wall and
the bottom of the nanochannel of 130 nm �Fig. 1�. The far-
field director n�r� is parallel to the z axis. Four different
particle arrays are examined: �a� nanoparticles are far apart
from the nanochannel, the top wall, and each other �mini-
mum interparticle distance l=60 nm�; �b� nanoparticles are
close together �l=5 nm� forming a triangular array, and far
apart from the nanochannel and the top wall; �c� nanopar-
ticles are inside the nanochannel but far apart from each
other �l=60 nm�; and �d� nanoparticles are inside the
nanochannel and close together �l=5 nm�, forming a linear
array. These four cases are depicted in Fig. 8, along with the

free energy differences observed between the different par-
ticle arrays.

Previous theoretical work has demonstrated that, for a
bulk system of three nanoparticles in the x-y plane sus-
pended in a NLC where the far-field director n�r� is parallel
to the z axis, a triangular array is more stable than a linear
array of colloids.19 Our results indicate that the difference in
free energy between particle arrays �a� and �b� is on the order
of 320kBT �Fig. 8�. Our calculations also indicate that very
strong interactions can be observed for linear arrays of nano-
particles inside rectangular nanochannels. The differences in
free energy between arrays �a� and �c� and between arrays �a�
and �d� are on the order of 910kBT and 1170kBT, respec-
tively. The differences in free energy between particle arrays
�c� and �d� and �b� and �d� are on the order of 260kBT and
850kBT, respectively. These very strong interactions can sta-
bilize linear arrays of nanoparticles, which otherwise would
not be stable in a bulk system with similar conditions of LC
anchoring at the surfaces and far-field director alignment.

IV. CONCLUDING REMARKS

We have studied the defect structures and potential of
mean force �PMF� that arise when spherical nanoparticles in
a nematic liquid crystal �NLC� are confined between a wall
and a nanochannel. Our results suggest that strong NLC-
mediated interactions arise between the particles and the
sidewalls of the nanochannel. The channel-particle interac-
tions are strongly influenced by the ratio of the nanoparticle
diameter to the nanochannel width. The interactions range
from a few kBT for a relatively small colloid to 400kBT for
the case of a nanoparticle with a diameter comparable to the
nanochannel width. Our results indicate that nanochannel ge-
ometry also affects the channel-particle interactions. Among
the different geometries considered, a cylindrical channel
provides the strongest interactions with a particle; however,
as the ratio of nanoparticle diameter to nanochannel width
increases, a rectangular and a cylindrical nanochannel exhibit
similar interactions with the particles. Our calculations sug-
gest that small variations in the geometry of the channels,
such as small cuts removing the sharp edges of the channels,
lead to important changes in the channel-particle interactions

FIG. 7. �Color online� 2D contour maps of the scalar
order parameter S, superimposed with the director field
n in the x-z plane, when a nanoparticle of D=50 nm is
close to the top wall �left�, and when the particle is
inside the nanochannel �at the minima of the total PMF,
center�. For the latter situation, 3D visualizations of the
NLC defect structures are also depicted �represented as
the contour S=0.30 in red, right�. Different nanochan-
nel geometries are represented as follows: �a� rectangu-
lar, �b� rectangular with two cuts, �c� rectangular with
four cuts, �d� cylindrical, and �e� cylindrical with two
cuts. The particle is always equidistant from the side-
walls of the channel.

FIG. 8. �Color online� 3D visualizations of the NLC defect structures �rep-
resented as the contour S=0.30 in red� for different arrays of three nanopar-
ticles with D=40 nm in a NLC “sandwiched” between a wall and a rectan-
gular nanochannel: �a� nanoparticles are far apart from the nanochannel, the
top wall, and each other �minimum interparticle distance l=60 nm�; �b�
nanoparticles are close together forming a triangular array �l=5 nm�, and far
apart from the nanochannel and the top wall; �c� nanoparticles are inside the
nanochannel but far apart from each other �l=60 nm�; and �d� nanoparticles
are inside the nanochannel and close together �l=5 nm�, forming a linear
array.
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�up to 40% of the PMF minima observed for nanochannels
with sharp edges�. We believe that other geometry variables,
such as the nanochannel depth, will also affect the channel-
particle interactions. For all these systems, we propose that
the magnitude of the channel-particle interactions is dictated
by a combination of two factors: �1� how much the total
surface of the NLC defect cores �which form around the
nanoparticle and the sidewalls of the nanochannels� is re-
duced when the nanoparticle is inside the channels, and �2�
the degree of ordering of the nematic in the region between
the colloid and the nanochannel. Finally, our calculations for
systems of several nanoparticles indicate that linear arrays of
colloids inside the channels can exhibit particularly strong
interactions with the sidewalls. These strong interactions can
stabilize linear arrays of particles, which otherwise would
not be stable in a bulk system with similar conditions of LC
anchoring at the surfaces and far-field director alignment.
Our findings are consistent with the results of Silvestre
et al.,51 who determined that an individual colloidal disk in a
2D nematic exhibits an attractive interaction towards a cavity
with shape and size similar to those of the disk.

Our simulation results suggest that nanochannels could
be used to direct the assembly of spherical nanoparticles into
ordered, controlled arrays, for applications related to nano-
composites, nanostructured materials, colloidal crystals, pho-
tonics, etc. Nanochannels could also be used to separate par-
ticles of different sizes. Colloidal crystals with unusual
structures could also be obtained by using channels and par-
ticles of asymmetric shapes �spherocylindrical, cubic, etc.�
immersed in LCs. On the other hand, the strong LC defect-
mediated channel-particle interactions determined in our cal-
culations indicate that dynamics will play a significant role in
directing the assembly of these systems of nanoparticles in
LCs and nanochannels. Therefore, dynamical
simulations52–54 of these systems, where we follow the mo-
tion and reorganization of the particles and the nematic liq-
uid crystal in different geometries, could allow us to deter-
mine, for example, how likely the particles are to reorganize
between configurations similar to those shown in Fig. 8.
These calculations could also provide useful insights into the
actual mechanisms of self-assembly. These simulations are
beyond the scope of the work presented here, and will be the
subject of our future studies. Experiments are also currently
underway to determine the validity of the predictions put
forth in this work.
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