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1. INTRODUCTION

Being one of the main wave phenomena in a plasma,
ion-acoustic waves have been studied for several
decades. The nonlinear theory of these waves was first
worked out in [1, 2], where their main properties were
investigated by the Sagdeev pseudopotential method. It
was found that steady-state ion-acoustic waves can
exist as a periodic wave or as a solitary wave, whose
speed is bounded below by the linear ion-acoustic
velocity 

 

v

 

s

 

 and above by a value of about 

 

1.58

 

v

 

s

 

. An
explicit exact expression for the upper limiting speed
(the upper Mach number limit) was obtained later in
[3]:

 

(1)

 

where 

 

W

 

–1

 

(

 

x

 

)

 

 is the negative branch of the Lambert W
function [4]. In [1–3], it was assumed that the ion
plasma component is cold and the electron component
is isothermal and inertialess.

The nonlinear theory was further developed in more
than several hundreds of papers by taking into account
various physical factors, such as the influence of the ion
temperature [5–7], the presence of two [8, 9] or more
ion species [10] (in particular, negative ions [11, 13]) or
two groups of electrons with different temperatures
[14, 15], ion inertia [16–19], etc. The general conclu-
sion was that accounting for, e.g., electron inertia does
not change the range of possible Mach numbers of a

M 1– 2W 1–
1
2
--- 1

2
---–⎝ ⎠

⎛ ⎞exp–– 1.5852010065,≈=

 

solitary wave [19], but this range is very sensitive to the
deviation of the electron distribution from a Boltzmann
function [20].

In all of the above papers (as well as in most other
papers on the subject), it was assumed the heated
plasma components (electrons and ions) involved in the
wave process obey an isothermal equation of state, i.e.,
that the electron and ion temperatures are constant. This
is a simplifying assumption: it leaves open the question
of an external source or sink of thermal energy because,
in an isothermal process, the energy is consumed dur-
ing compressions and is recovered during rarefactions.

Hence, more adequate and realistic models for
describing nonlinear waves in a plasma may be those
based on a gas-dynamic (adiabatic) approach in which
the energy is assumed not to be exchanged with the sur-
rounding environment. This approach makes it possible
to account for temperature variations in different
phases of the wave and the effect of these variations on
the properties of the wave itself.

In recent years, the gas-dynamic approach has been
applied to study ion-acoustic and other electromagnetic
waves in a plasma [21–26]. In those papers, the nonlin-
ear equations for the wave structure were analyzed in
the adiabatic approximation in which the ion or dust
plasma component is treated as a gas and is described
by an adiabatic equation of state with an arbitrary adia-
batic index 

 

γ

 

+

 

 lying in the range 

 

γ

 

+

 

 

 

∈

 

 [1; 3]. An exact
solution to the problem of the profile of an ion-acoustic
wave in the gas-dynamic approximation was obtained
in [27]. The analysis carried out in that paper made it
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possible to determine the parameter ranges in which a
solitary wave can exist and the range of its possible
velocities. In [21–27], it was shown that, for 

 

γ

 

±

 

 > 1, the
maximum Mach number of such a wave can substan-
tially exceed 1.58.

In the present paper, a new nonlinear problem is for-
mulated and solved for the first time, namely, that of the
structure of an ion-acoustic wave and a possible range
of velocities of a solitary wave in a collisionless plasma
in which the ion component is a classical gas and the
electron component is a degenerate ideal Fermi gas.

The paper is organized as follows. Sections 2–4 are
auxiliary ones—they are necessary for further presenta-
tion of the nonlinear theory. In Section 2, we determine
the parameter ranges in which the plasma under consid-
eration can exist. In Section 3, we show how the quan-
tum nature of electron hydrodynamics can be described
in the theory of electrostatic waves in a plasma in the
Thomas–Fermi approximation. In Section 4, we derive
dispersion relations in the linear theory of ion sound in
a plasma with degenerate electrons and cold or hot ions.
First of all, these relations are important for determin-
ing the linear ion-acoustic velocity, in terms of which
the Mach number is expressed. In Section 5, we give a
complete and exact solution to the problem of the struc-
ture of ion-acoustic waves and a possible range of
velocities of a solitary wave in an ideal plasma with

cold classical ions and degenerate electrons. In Section 6,
a similar problem is solved for a plasma with hot iso-
thermal ions, and, in Section 7, it is solved for a plasma
with hot ions under conditions such that an ion-acoustic
wave is a spatially developed adiabatic process. In Sec-
tions 6 and 7, it is assumed that, in a collisionless
plasma, there is enough time for the wave to relax to a
local thermodynamically equilibrium state due to
uncorrelated Coulomb interactions between plasma
particles. In the Conclusions, we briefly summarize the
main results of this work.

2. MAIN PARAMETERS OF AN IDEAL PLASMA 
WITH DEGENERATE ELECTRONS

At first glance, it seems doubtful that the ideal
plasma under consideration, which consists of a classi-
cal ion gas and a degenerate electron gas, can indeed
exist. In fact, the ideal nature of the plasma requires that
the pairwise interaction between the particles be weak,
i.e., the electron and ion gases be rarefied, while the
degenerate nature of the electrons requires that their
density be sufficiently high, as well as the ion density
(in view of the plasma quasineutrality).

The answers to these objections can be found in
[28], where the existence diagram for a hydrogen
plasma on the temperature–density (

 

T

 

–

 

n

 

) plane was
calculated and it was found that, in one of the regions
of the diagram, the electrons are degenerate and the
plasma is ideal. Recall that the boundary criterion for
the electrons to be degenerate can be given by the
equality of their Fermi energy  to their tempera-

ture 

 

kT

 

±

 

 in energy units, 

 

λ

 

±

 

 = /

 

kT

 

±

 

 = 1

 

, and that the

boundary criterion for the plasma to be ideal can be
expressed as the equality of the mean energy of pair-
wise interaction to the mean kinetic energy, 

 

Γ

 

c

 

±

 

 =

 

e

 

2

 

/

 

kT

 

±

 

 = 1 in the classical theory and 

 

Γ

 

q

 

±

 

 =

 

e

 

2

 

/

 

 = 1 (for singly charged ions) in the quantum

theory. Hereafter, the plus and minus subscripts refer to
ions and electrons, respectively.

If we plot these criteria as lines in the 

 

T

 

–

 

n

 

 plane on
a logarithmic scale, then we can see that they bound an
inclined strip, which just corresponds to an ideal gas
plasma with classical ions and degenerate electrons
(see Fig. 1, referring to a hydrogen plasma).

In nature, such a plasma can exist in the inner layers
of stars (e.g., white dwarfs [29]) and, under laboratory
conditions, it can exist in laser fusion [30] and
micropinch [31] experiments. A semiconductor plasma
can also can be in a state with degenerate electrons and
nondegenerate holes, provided that the effective mass
of the electrons is much less than that of the holes.

εF±

εF±

n±
1/3

n±
1/3 εF±

   

log

 

n

 

 [cm

 

–3

 

]

48

44

40

36

32

28

24

20

16

12

8

4

0

 

λ

 

+

 

 = 1

 

Γ

 

q

 

–

 

 = 1

 

Γ

 

q

 

+

 

 = 1

 

Γ

 

c

 

+

 

 = 1

 

λ

 

–

 

 = 1

 

Γ

 

c

 

±

 

 = 1

2 4 6 8 10 12 14 16
log

 

T

 

 [K]

 

Fig. 1.

 

 Domains in the 

 

T–n

 

 plane where different types of
plasmas exist. The domain of existence of the ideal plasma
under consideration (that with a classical ion gas and a
degenerate electron gas) is hatched.
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3. DESCRIPTION OF A DEGENERATE 
ELECTRON GAS IN HYDRODYNAMIC 

THEORIES

In hydrodynamic theories of electrostatic waves in a
plasma, it is necessary to know explicit expressions
describing the dependence of each plasma component
on the electrostatic potential 

 

ϕ

 

 in order to solve Pois-
son’s equation. For a degenerate gas of free inertialess
electrons, such expressions are known—they are
obtained in the Thomas–Fermi approximation (see,
e.g., [32, 33]):

 

(2)

 

where 

 

n

 

0

 

 = (8

 

π

 

/3

 

h

 

3

 

)

 

 is the unperturbed density in
terms of the Fermi momentum and 

 

h

 

 is Planck’s con-
stant. In [34] (Section 2, problem 10), the same expres-
sions are obtained in deriving the barometric formula
for a degenerate ideal Fermi gas. Expressions (2) can
also be obtained by considering, e.g., the equation of
motion of a degenerate inertialess (

 

m

 

–

 

  0

 

) electron
gas described by the Thomas–Fermi equation of state

 

P

 

–

 

 = (2/5)

 

ε

 

F

 

n

 

0

 

(

 

n

 

–

 

/

 

n

 

0

 

)

 

5/3

 

 (without allowance for exchange
interactions) from [32, 33].

In what follows, the first of expressions (2) will be
used in the nonlinear theory and the second linearized
expression will be utilized to derive the dispersion rela-
tion.

We describe a degenerate electron gas by assuming
that the electrons are inertialess—an assumption that is
valid for temperatures of up to 

 

10

 

12

 

 K (about 100 MeV),
when the relativistic mass of an electron is only ~10%
of the rest mass of a proton. Note also that, according to
the Lindhardt theory [33], the Thomas–Fermi approxi-
mation is valid when the Fermi wavelength is much less
than the wavelength of the ion-acoustic waves; this

yields the condition 

 

ω

 

p

 

+

 

/

 

ω

 

F

 

 

 

�

 

 

 

 (where 

 

ω

 

F

 

 =

 

ε

 

F

 

/

 

�

 

), which is assumed to be satisfied and which
enables us to ignore the spatial dispersion of the elec-
tron gas.

4. LINEAR THEORY OF ION-ACOUSTIC WAVES 
IN AN IDEAL PLASMA WITH DEGENERATE 

ELECTRONS

We write the standard equations of the hydrody-
namic theory of ion-acoustic waves in a plasma with
cold ions:

 

(3)

(4)

n– n0 1 eϕ
εF

------+⎝ ⎠
⎛ ⎞

3
2
---

n0 1 3eϕ
2εF

---------+⎝ ⎠
⎛ ⎞ ,≈=

pF
3

m–/m+

∂v +

∂t
--------- v +

∂v +

∂x
---------+

e
m+
------∂ϕ

∂x
------;–=

∂n+

∂t
--------

∂
∂x
------ n+v +( )+ 0;=

(5)

In Eq. (3), we ignore the collisional term by virtue of
the ideal nature of the plasma. The effects of collisions
in a plasma are well known and will not be discussed
here. After simple manipulations, we arrive at the fol-
lowing dispersion relation for small harmonic perturba-
tions, with amplitudes varying as ~exp[i(kx – ωt)]:

(6)

This dispersion relation coincides with that obtained in
[35]. Here, ωp+ is the ion plasma frequency in terms of
the unperturbed density n0. Equation (6) implies that, in
a plasma with degenerate electrons, the linear ion-
acoustic velocity is equal to

(7)

Dispersion curve (6) is shown in Fig. 2a.

If, instead of Eq. (3), the gas-dynamic equation for
hot ions in the isothermal approximation is used,

(8)

∂2ϕ
∂x2
--------- 4πe n– n+–( ).=

1
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2
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---------- 1
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----------.=
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Fig. 2. Dispersion curves for ion-acoustic waves in a plasma
with (a) cold ions and (b) hot isothermal ions.
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(where κ is Boltzmann’s constant), then similar manip-
ulations yield a dispersion relation with the same linear
ion-acoustic velocity (7):

(9)

where vT+ =  is the ion thermal velocity. Dis-
persion curve (9) is shown in Fig. 2b. An analogous
result is obtained when the gas-dynamic equation for
hot ions in the adiabatic approximation in used instead
of Eq. (8), the only difference being that the slope angle
of the thermal asymptotic of the dispersion curve is

 times smaller.

Hence, the linear ion-acoustic velocity is described
by formula (7) and, in speaking of the Mach number,
we will mean a velocity normalized to the velocity vs

defined by this formula.

5. NONLINEAR THEORY OF ION-ACOUSTIC 
WAVES IN AN IDEAL PLASMA

OF A CLASSICAL COLD ION GAS
AND A DEGENERATE ELECTRON GAS

Proceeding from Eqs. (3)–(5), we can consider a
steady-state ion-acoustic wave running in the x direc-
tion at a velocity V.  To do this, we introduce a new self-
similar variable,

(10)

We thus pass over from the laboratory frame of refer-
ence to a comoving frame. In this frame, Eqs. (3)–(5)
are reduced to the following set of ordinary differential
equations:

(11)

(12)

(13)

We integrate the continuity equation with allowance
for the relationship  = n0 and express v+ in

terms of n+ to obtain

(14)

We also integrate the equation of motion with allow-
ance for the relationships  = n0 and  = 0:

(15)

We insert relationship (14) into relationship (15) and
express n+ in terms of ϕ to get

(16)

Substituting explicit expressions (2) and (16) for the
electron and ion densities into Poisson’s equation (13),
we obtain

(17)

Equation (17) is an equation of motion of an oscilla-
tor in the one-dimensional pseudopotential U(ϕ) =

− (ϕ')dϕ'. In this equation, the electrostatic poten-

tial plays the role of a pseudo-coordinate and the self-
similar coordinate ξ plays the role of a pseudo-time. In
this context, the right-hand side of Eq. (17) can be
regarded as a pseudo-force F(ϕ).

Integrating Eq. (17) once under the condition U(0) = 0
gives the pseudo-energy conservation law

(18)

It is now an easy matter to get a general solution to
Eq. (17) with the constant of integration ξ0:

(19)
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However, solution (19) is unillustrative and inconve-
nient to analyze. Much more information on the prop-
erties of the solution can be provided by analyzing the
pseudoforce F(ϕ) (17) and pseudopotential U(ϕ) (18).

Note first of all that the ranges of definition of the
functions F(ϕ) and U(ϕ) are bounded from below and
from above by the values ϕmin = –εF/e and ϕmax =
m+V2/2e, which give the largest possible peak-to-dip
amplitude of the electrostatic potential in the wave.

The function F(ϕ) can have either a zero and a neg-
ative root or a zero and a positive root, which corre-
spond to the equilibrium points of the oscillator (see the
upper plots in Fig. 3). Consequently, the function U(ϕ)
can also have either a minimum at zero and a maximum
at ϕ < 0 or a maximum at zero and a minimum at ϕ > 0
(see the lower plots in Fig. 3). Periodic motion of the
oscillator in the well of a pseudopotential corresponds
to periodic ion-acoustic waves and the motion along the
separatrix passing through the saddle point (or, for a
zero velocity, through the maximum point of the func-
tion U(ϕ)) corresponds to a solitary ion-acoustic wave.
It can easily be seen that the plots in Fig. 3a satisfy the

condition (ξ)dξ = n0Λ for a periodic wave with the

spatial period Λ but do not satisfy the boundary condi-
tion  = 0, which is a necessary condition for the

existence of a solitary wave.

In order to determine the equilibrium points of the
oscillator, it is necessary to solve the following equa-
tion for µ = eϕ/εF:

(20)

n±0

Λ∫
ϕ

ξ ∞±→
lim

1 µ+( )3 1 2αµ–( ) 1,=

where α = εF/m+V2. This equation has four roots,

(21)

where

(22)

The cases of Figs. 3a and 3b are separated by the
condition µ2 = 0, which holds for α = 3/2 or accord-
ingly, for the Mach number M = 1. Hence, as in the clas-
sical theory [1, 2], the periodic wave in Fig. 3a is
always subsonic, while the solitary wave in Fig. 3b is
always supersonic.

The highest possible Mach number of a solitary
wave can be determined from the following geometric
condition: the existence of a solitary wave requires that
the rightmost point of the plot of the pseudopotential be
above the abscissa. Otherwise, the wave breaks. The
boundary state is determined from the equality
U(ϕmax) = 0, which leads to the following equation for
λ = α–1:

(23)
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Fig. 3. Plots of the pseudo-force F(ϕ) (on top) and pseudo-potential U(ϕ) (on bottom) for m+V2/εF = (a) 0.3 (M = 0.67 < 1) and
(b) 1.5 (M = 1.5 > 1). The vertical dashed lines show the largest possible peak-to-dip amplitude, (ϕmin; ϕmax), of the electrostatic
potential in the wave.
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This equation has five roots,

(24)

The only physically meaningful root is λ3, correspond-

ing to the limiting Mach number M =  =
1.8495… . Hence, in an ideal plasma with classical ions
and degenerate electrons, the range of possible Mach
numbers of solitary ion-acoustic waves can be far wider
(cf. expression (1)): 1 < M < 1.8495….

This is the main result of the present section. To con-
clude it, we give in Fig. 4 an example of waveforms of
the physical quantities for a subsonic periodic and a
supersonic solitary wave. It should be noted that the
space charge in the wave changes its sign at the points
corresponding to the equilibrium points of the oscilla-
tor (see the lowermost plots in Fig. 4). We also note

λ1 0;=

λ2 = 5
2
---– 3 5

2
----------

1
2
--- 25– 13 5+( )–+  = 0.572237…;–

λ3 = 5
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---– 3 5
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λ4 5,  = 
1
2
--- 5– 3 5– i 2 25 13 5+( )±[ ]

=  –0.5841… i5.19947….±

3λ3/2

that, in the rarefaction phase of the wave, the electron
density may become low enough to be described by the
classical approach. In this case, the rarefaction region
should be described by using the Boltzmann exponent
in expressions (2), just as was done in [1, 2], and then
by matching the classical solution with the quantum
solution that is valid for the compression regions. This
matching procedure was outlined in the above-men-
tioned problem 10 from Section 2 of [34].

6. NONLINEAR THEORY OF ION-ACOUSTIC 
WAVES IN AN IDEAL PLASMA 

OF A CLASSICAL ISOTHERMAL ION GAS 
AND A DEGENERATE ELECTRON GAS

We start with the set of Eqs. (4), (5), and (8). Recall
that we have already substituted the equation of state of
an ideal gas, P+ = n+κT+, with T+ = const, into the last
term on the right-hand side of Eq. (8).

As in the previous section, we introduce self-similar
variable (10), in terms of which continuity and Pois-
son’s equations (12) and (13) keep their forms and
equation of motion (8) becomes

(25)V
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Fig. 4. Waveforms of the relative potential, relative electron density, relative ion density, and relative space charge (from top to bot-
tom) in (a) a subsonic periodic ion-acoustic wave with m+V2/εF = 0.4 (M ≈ 0.77) and (b) a supersonic solitary ion-acoustic wave

with m+V2/εF = 1.5 (M = 1.5) in a plasma with cold ions and degenerate electrons.
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The solution to the continuity equation of this new set

of Eqs. (12), (13), and (25) is again given by formula (14),

and the solution to Eq. (25) has the form

(26)

Resolving solution (26) with respect to n+ yields

(27)

Since the argument of the Lambert W function is nega-
tive, we are formally forced to write two solutions to
Eq. (26), which correspond to the two real branches of
the W function. Accordingly, we must carry out a brief
analysis in order to determine which of the branches
should be discarded.

To do this, we consider the plot of the function
n+(ϕ). The function is seen to consist of two branches
having a conjugation point (Fig. 5); moreover, the
upper branch always corresponds to the principal
branch W0 of the Lambert W function and the lower
branch, to the negative branch W–1 of the W function.
To the right from the conjugation point of the branches,
the function n+(ϕ) is complex. The conjugation point
determines the amplitude ϕmax in the wave:

(28)

In this case, we again have ϕmin = –εF/e.

One of the branches (27) can be chosen in a fairly
simple way: of the two branches of the function

n+(ϕ)/n0, we choose the branch that passes through unity
at zero, because this is the only branch that, together
with expressions (2), satisfies quasineutrality condi-
tion (27) for an unperturbed plasma. An analysis shows
that, for V/vT+ < 1, the quasineutrality condition is sat-
isfied by solution (27) with the principal branch W0 of
the Lambert W function (Fig. 5a) and, for V/vT+ > 1, it
is satisfied by the solution with the negative branch W–1 of
the W function (Fig. 5b).

We substitute expressions (2) and (27) into Pois-
son’s equation (13) to obtain the differential equation

(29)

which has the first integral (similar to conservation
law (18) under the condition U(0) = 0)

V2 n0

n+
-----⎝ ⎠

⎛ ⎞
2

1– 2v T+
2 n+

n0
-----ln+

2e
m+
------ϕ.–=

n+ n0
V /v T+( )2–

W0 1–, V /v T+( )2 V /v T+( )2– 2eϕ/m+v T+
2( )+[ ]exp–{ }

------------------------------------------------------------------------------------------------------------------------------.=

ϕmax

m+v T+
2

2e
---------------- V2

v T+
2

--------- 1– 2 V
v T+
---------ln–

⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

d2ϕ
dξ2
--------- 4πen0 1 eϕ

εF

------+⎝ ⎠
⎛ ⎞

3
2
---

⎩
⎨
⎧

=

–
V2/v T+

2–

W0 1–, V2/v T+
2 V2/v T+

2– 2eϕ/m+v T+
2+( )exp–[ ]

--------------------------------------------------------------------------------------------------------------
⎭
⎬
⎫

,
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Fig. 5. Plots of the function n+(ϕ) for η = (a) 0.5 and (b) 1.5. The discarded branches are shown by dots. The vertical dashed lines
correspond to ϕmax.
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(30)

1
2
--- dϕ

dξ
------⎝ ⎠

⎛ ⎞
2

U ϕ( )–= 4πn0

2εF

5
-------- 1 eϕ

εF

------+⎝ ⎠
⎛ ⎞ 5/2 2εF

5
--------–≡

– m+v T+
2 v T+

V
--------- W0 1–, V2/v T+

2 V2/v T+
2– 2eϕ/m+v T+

2+( )exp–[ ]–

+ m+v T+
2 V
v T+
--------- 1

W0 1–, V2/v T+
2 V2/v T+

2– 2eϕ/m+v T+
2+( )exp–[ ]

--------------------------------------------------------------------------------------------------------------–

and the general solution in quadratures

(31)

Solutions (30) and (31) are too involved and incon-
venient for analytic consideration. We verified numeri-
cally that the profiles of the pseudopotential are similar
to those in Fig. 3 and that the waveforms of the physical
quantities in the wave are similar to those in Fig. 4. This
is why we do not present here the plots of the solutions.

Equations (20) and (23), which determine the max-
imum and minimum possible Mach numbers of a soli-
tary wave, are not solvable analytically. For this reason,
the dependence of the highest possible Mach number of
a solitary wave on vT+ was calculated numerically. The
corresponding curve, which is displayed in Fig. 6, is
similar to that for a classical plasma [27] (it has a min-

imum at m+ /2εF ≈ 0.1 and emerges from the point

ξ ξ0–
ϕ 'd

2U ϕ '( )–
-------------------------.

0

ϕ

∫=

v T+
2

1.8495…, corresponding to cold ions) but lies mark-
edly higher.

Hence, we have solved the problem of the structure
of a steady-state ion-acoustic wave in an ideal plasma
with degenerate electrons and classical isothermal ions.
The main results of the present section are general solu-
tion (30) and (31) in quadratures and the plot in Fig. 6.

7. NONLINEAR THEORY OF ION-ACOUSTIC 
WAVES IN AN IDEAL PLASMA 

OF A CLASSICAL ADIABATIC ION GAS 
AND A DEGENERATE ELECTRON GAS

Here, we consider adiabatic ion-acoustic waves in
an ideal plasma of a classical adiabatic ion gas and a
degenerate electron gas. We make the same physical
assumptions as in the previous sections but describe the
ion gas not by the equation of state P+ = n+κT+ with
T+ = const (see Section 6) but by the adiabatic equation

(32)

where T0+ is the temperature of the unperturbed ion gas.
It is more justified to use this adiabatic equation of state
because it eliminates the question of an external source
or sink of energy in an ion-acoustic wave.

The basic set of equations consists of Eqs. (4) and
(5) and the equation of motion

(33)

In the comoving frame of reference, this equation takes
the form

(34)

The solution to the continuity equation is again given
by formula (14). Under the conditions  = n0 and

P+ n0κT0+

n+

n0
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γ +
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Fig. 6. Dependence of the highest possible Mach number of
a solitary wave on vT+. The arrows show maximum Mach
numbers (1) and (31) for a cold classical plasma and a quan-
tum plasma, respectively.
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 = 0 and with formula (14), equation of motion (34)

has the solution

(35)

For further analysis, we need the derivatives

(36)

(37)

The plot of the function ϕ(n+) (35) is similar to that
shown in Fig. 5. We again must discard the branch that
does not satisfy the condition ϕ(n0) = 0. The point ϕmax
can easily be determined by equating derivative (36) to
zero and by solving the resulting equation for n+:

(38)

(39)

Recall that solution (35) cannot be explicitly
resolved with respect to n+(ϕ). This is why, using the
rule for differentiating a composite function,

(40)

and substituting expressions (2) and (35)–(37), we
rewrite Poisson’s equation (13) as

(41)

The order of this equation can be lowered by making
the replacement p(n+) = dn+/dξ. As a result, we arrive at
Bernoulli’s differential equation

, (42)

in which the coefficients on the right-hand side are
defined by

(43)

We use the fact that Bernoulli’s equation always has
a general solution in quadratures with a constant C1 (see

[36], Section 1.1.5, and also [37]):

(44)
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where

(45)

We return to the sought-for variable n+(ξ) to see that,

under the conditions n+(0) = n0 and  = 0, the

general solution to Poisson’s equation (41) can be writ-
ten as

(46)

Since the solution given by formulas (45) and (46)
is even more complicated than solution (19), as well as

Φ n+( ) 2 f 1 n+( ) n+.d

n0

n+

∫=

dn+

dξ
--------

ξ ξ0=

ξ ξ0–  = 
ηd

2 Φ η( ) Φ η '( )–[ ] f 1– η '( )exp η 'd

n0

η

∫exp

------------------------------------------------------------------------------------------.

n0

n+

∫

solutions (30) and (31), we illustrate it by particular
examples. Figure 7 shows waveforms of the physical
parameters of a periodic and a solitary ion-acoustic
wave in a plasma with degenerate electrons and adia-
batic ions. The temperature waveforms were calculated

from the adiabatic equation as T+ = T0+(n+/ . An
analysis of the waveforms shows, in particular, that the
amplitude and wavelength of a periodic wave decrease
as the ion thermal velocity vT+ increases, all other con-
ditions being the same.

The questions of the upper Mach number limit for
a solitary wave and of how it depends on the ion tem-
perature T+ (or the ion thermal velocity vT+) and adi-
abatic index γ+ require a separate analysis. The
results of relevant numerical calculations are illus-
trated in Figs. 8 and 9.

We can see that the dependences of the critical Mach

number on the quantity m+ /εF are similar to that in
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Fig. 7. Waveforms of the relative potential, relative electron density, relative ion density, relative space charge, and ion temperature

(from top to bottom) in (a) a subsonic periodic wave with M ≈ 0.77, m+ /2εF = 0.05, and γ+ = 5/3 and (b) a supersonic solitary

wave with M = 1.5, m+ /2εF = 0.05, and γ+ = 5/3 in a plasma with adiabatic ions and degenerate electrons.
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Fig. 6: they emerge from the point 1.8495… and have a

minimum at m+ /εF ≈ 0.2. As γ+ increases, the mini-
mum decreases and is displaced toward smaller values

of m+ /εF. We can also see that, at high temperatures,
the critical Mach number increases with γ+. Figure 8
confirms that, in the limiting cases of an isothermal
(γ+  1) and a cold (vT+  0) plasma, the results
obtained in this section coincide with the results
obtained in Sections 6 and 5, respectively.

Since the adiabatic index for an ion gas can only
take discrete values γ+ = (ς + 2)/ς (where ς = 1, 2, 3, …
is the number of degrees of freedom of an ion), the
dependence of the critical Mach number on γ+ for dif-

ferent values of m+ /εF can conveniently be repre-
sented as histograms (Fig. 9). Note by the way that, for
pointlike atomic ions in one-dimensional problems, it is
recommended to use γ+ = 3. From the histograms we
can see that, at low temperatures of the ion gas, the crit-
ical Mach number decreases with increasing γ+,
whereas at high ion temperatures, it increases with γ+.

It is necessary to formulate the applicability limits
of the adiabatic approach. As the ion-acoustic wave
propagates, the temperature of the ion gas varies in such
a way that it increases in the regions of adiabatic gas
compression and decreases in the regions of adiabatic
gas rarefaction. An ion-acoustic wave can be consid-
ered as an adiabatic process if the period of the wave is
too short for heat to diffuse through a distance on the
order of the wavelength λ. Numerical estimates of the
thermal conductivity of a collisionless plasma in accor-
dance with [38] and a comparison of the calculated
wavelength with the effective spatial scale of the ther-

v T+
2

v T+
2

v T+
2

mal conductivity show that, at least for the parameters
of Fig. 7, heat diffusion can be ignored.

Hence, we have solved the problem of the structure
of a steady-state ion-acoustic wave in an ideal plasma
with degenerate electrons and classical adiabatic ions.
The main results of the present section are general solu-
tion (45) and (46) in quadratures and the plots in
Figs. 7–9.

8. CONCLUSIONS

We have constructed a nonlinear theory of steady-
state ion-acoustic waves in an ideal plasma in which the
electron component is a degenerate Fermi gas and the
ion component is a classical gas.

We have determined the parameter ranges in which
such a plasma can exist and have derived dispersion
relations for ion-acoustic waves in such a plasma,
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Fig. 8. Dependence of the highest possible Mach number of
a solitary wave on vT+ for different values of γ+. The heavy
curve refers to a plasma with isothermal ions.
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which have enabled us to find the linear ion-acoustic
velocity.

We have systematically developed analytic gas-
dynamic models of ion sound in a plasma with an ion
component as a cold, an isothermal, and an adiabatic
gas. In all the models, the equations were solved by dif-
ferent mathematical methods and, moreover, all the
solutions were brought to a quadrature form. We have
calculated profiles of a subsonic periodic and a super-
sonic solitary wave and have determined the upper crit-
ical Mach numbers of a solitary wave. For a plasma
with cold ions, the critical Mach number is expressed
by an explicit exact formula. We have verified that, in
the limiting cases γ+  1 and vT+  0, the results
obtained for a plasma with adiabatic ions coincide with
those for a plasma with an isothermal and a cold ion
component, respectively.
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