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Resonance states of two-electron quantum dots
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Autoionizing resonance states of two-electron quantum dots are studied by using the effective-mass
complex-eigenvalue equation approach. It is shown that two-electron quantum dots may have very rich spectra
of resonance states. The number of them and their lifetimes depend strongly on the dot size. It is observed that
a resonance state may change its character from Feshbach to shape type with the dot size decreasing. Since the
resonance states may have very long lifetimes they should not be neglected in the description of transport

processes in quantum dots.
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I. INTRODUCTION

Quantum dots are often called artificial atoms, since they
exhibit many electronic and optical similarities to atoms. In
particular, a few-electron QD system may exist in quasi-
bound states like the autoionizing states of atoms. Although
the autoionizing states of a few electron atoms have been
intensively studied for the last four decades,' very little has
been done for the resonance states of quantum dots. Only
one-electron resonances have been investigated.?>

So far, most of the investigations of many-electron quan-
tum dots were focused on bound states. This is a conse-
quence of the parabolic confining potential, that was most
commonly used in the research. Such a potential describes
quite well the lowest energy states of a quasi-two-
dimensional quantum dot (especially in a magnetic field).*’
Unfortunately, for large distances from the dot center the
harmonic oscillator potential is unphysical and is useless in
the modelling of resonance autoionizing and tunnelling states
of quantum dots. The number of papers involving asymptoti-
cally finite potentials is rather limited.”® All these works
were devoted to the bound states exclusively.

However, applications of quantum dots, e.g., electron or
spin transmission nanodevices,'” require precise description
of scattering (tunnelling) many-particle states of excess elec-
trons in semiconductor quantum dots. In this paper we ini-
tiate the investigation of the resonance autoionizing states of
two-electron quantum dots.

II. THE QUANTUM DOT MODEL

The model of quantum dot we consider is of spherical
symmetry. The electrons are confined in a finite rectangular

potential well
- Vo, r<< R,
V(r) = (1)

0, r=R

of the depth V|, and of the radius R. Such a model describes
well a quantum dot built of a narrow-gap semiconductor
nanocrystal of radius R, surrounded by a wide-gap semicon-
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ductor (or a dielectric medium) with the conduction band
off-set equal to V.

We work within the one-band effective-mass approxima-
tion. For simplicity we assume that the effective mass, m",
and the dielectric constant, €, are uniform within the whole
structure. The Hamiltonian for two electrons confined by the
potential V (two excess electrons in the conduction band en-
ergy range of the quantum dot) is

ﬁZ ﬁZ 2
H== =A== A + V) + V() + . (2)
2m" "t 2m 2 €lr, — 1|
We use wunits of the effective Rydberg, R,
=m"k*e*/2h*€> and the effective Bohr radius a,

=eh’/m"ke®, where k=1/41€,, €, is the vacuum permittiv-
ity and e is the electron charge. The depth of the potential
well has been taken as V,=10R,. For typical values of m"
=0.1m, and e=5, which we use in our computation, V|, re-
sults to be ~0.54 eV. This fits well (the order of magnitude)
the conduction band off-sets typical for semiconductor quan-
tum dots. We have performed a series of calculations for the
quantum dot size from ~1.5 nm to ~40 nm, covering the
size-range of chemically synthesized nanocrystals.'-1?

This choice of the parameter values is due to the practical
(experimental) reasons as given above. The other reason is
that computations for the bound states of such systems were
recently performed by Szafran, Adamowski, and Bednarek®
and by Varga, Navratil, Usukura, and Suzuki.” So we can
discuss our bound-state results in the context of those works.
Also our investigations of resonances can be considered as a
continuation of those works.

III. METHOD OF COMPUTATION

We are interested in both the bound and resonance eigen-
solutions of

HV =EV, (3)

for the Hamiltonian given in Eq. (2). We obtain approxima-
tions to them by performing variational calculations involv-
ing a Cl-type trial expansion,
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\IIZ E Ck'yzlk’ (4)
k

where the two-electron configuration functions,

= Ay () i, (F2) X &)

are constructed of Slater-type orbitals (STOs), (bki(?). The
two-electron spin function is represented by Xs. M A stands
for all the operations necessary to couple the angular mo-
menta and to antisymmetrize the total function.

The usual CI approach is suitable for the bound states. For
resonances we use the complex-eigenvalue Schrodinger
equation (CESE) approach!? as it is described in Ref. 14. The
method is based on two fundamental properties of resonance
eigensolutions of Eq. (3): First, since resonance state is an
initially bound state of the system which decays by ejecting
one electron, the resonance eigenfunction has a specific
asymptotic behavior. The escaping electron being far away
from the remaining part of the system is described by an
outgoing wave only. The incident wave is absent. Second,
such a specific boundary condition implies that the corre-
sponding eigenvalue is complex with the imaginary part
negative, E=E,—il'/2. The real part of a resonance eigen-
value is the position of the center of quasidiscrete resonance
energy level. The imaginary part corresponds to the half-
width, I', of such a broadened level. Since I' is a measure of
the probability of the decay per unit of time, it determines
the lifetime of the metastable resonance state as 7=#/T.

Another constituent of the CESE approach is the complex
coordinate rotation transformation, 7— re'?, where 6 is a real
parameter. The outgoing wave transforms under the complex
coordinate rotation into a square-integrable function. This
implies that after the complex rotation the resonance eingen-
function can be found in the space of square integrable func-
tions, as the bound state functions are. Which is suitable
from a computational point of view.

The practical CESE prescription is the following: The
trial expansion (4) is divided into two parts. One is to de-
scribe the localized character of a resonance. The configura-
tion functions, ¥, belonging to this part are of the usual
form, Eq. (5), proper for bound states. The role of the other
part is to take the asymptotics of resonance states into ac-
count. In those configurations, STOs representing the outgo-
ing (free) electron are complex rotated,

= Ay (F) i (Fae ™) X (6)

This basis set leads to a non-Hermitian Hamiltonian ma-
trix problem dependent on the complex-rotation angle 6
which is considered as a variational parameter. Thus the ma-
trix eigenproblem is solved repeatedly for various values of
6. The complex eigenvalues that stabilize against € variation
correspond to resonances. Their real and imaginary parts are
interpreted as given above.

In our computations the length of the expansion (4) was
1531 for the 'S¢ states, 1630 for the 2S¢ states and 2560 for
both singlet and triplet P’ symmetries. The configuration
functions were made of 20 unrotated STOs of each s, p, d, f,
and g angular type. The number of complex rotated STOs
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was 21 of each applicable angular type. The complex rota-
tion parameter was varied from 0 up to 0.7 in steps of 0.05.
The exponent parameters of STOs were partially optimized
for R=1ay, 8ay, and 15a,. Since they seemed to fit exponen-
tial dependence on R the interpolated values were used for
QDs of other sizes.

IV. RESULTS

A wide spherical well of the radius of a 10 or so a, sup-
ports many one-electron bound states of various angular mo-
mentum values. In the one-electron picture, they lead to a
manifold of bound two-electron states, which is rich regard-
ing the number of states as well as the variety of **'L7™
symmetries (L is the total angular momentum quantum num-
ber, S is the total spin, and 7 indicates the parity). For
smaller quantum dots the binding is weaker and the number
of bound states is smaller. With the quantum dot radius
decreasing, each two-electron bound level approaches the
continuum threshold determined by the 1s or 1p one-electron
levels, respectively, for the states of w=(-1)" or
m=(—1)1*! parity (7=1 is for even states and w=-1 is for
odd states; hereafter we use e and o to label even and odd
states, respectively). Eventually, for some critical R, specific
to a given two-electron state, its level crosses over the
threshold and enters into the continuum. The state is no
longer bound because the electron correlation mixes the
bound configuration of the state under consideration and the
unbound electron configurations which now correspond to
the same energy.

This quite obvious qualitative picture has been confirmed
by quantitative computations of Szafran, Adamowski, and
Bednarek.® They followed the changes of bound levels with
respect to decreasing R until they had reached the 1s con-
tinuum threshold. The aim of the present paper is to follow
the levels further, when they are embedded in the continuum.
We consider the 'S¢, 38¢, 'P°, and *P? states.

A. Bound state energies

We also have performed computations for the bound
states. The reason for computing them was to check the ac-
curacy of our computation. This could be done by comparing
our results to the data of Szafran et al.® and Varga et al.” In
both works the electron correlation effects were taken into
account by using efficient variational methods implementing
correlated trial functions. Unfortunately, the presumably ac-
curate results of Varga et al. are presented in a figure (Fig. 7
of Ref. 7) of poor resolution so that no quantitative compari-
son is possible. As regards the work of Szafran et al. one can
read their results for R=15a from their Fig. 4. Those results
are compared to ours in Fig. 1. It is seen that our energy
levels of the bound states are significantly lower, than those
of Ref. 8. This means that the variational CI wave functions,
as used in this paper, represent better the electron correlation
effects than the rj,-correlated functions, as used in Ref. 8
(although in principle the latter are more powerful).

Several differences in the sequence of levels are also well
seen in Fig. 1. One of them should be emphasized, for QD as
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FIG. 1. Several lowest energy levels of the two-electron QD of
radius 15a,. (a) Reference 8, (b) this work.

large as R=15a, the ground two-electron state is of the 'S
symmetry as it is for smaller QDs, and not of 3pe symmetry
as obtained in Ref. 8.

The issue of the symmetry of the ground state of a two-
electron QD was discussed in the literature.”"> In 1996,
Fujito!® suggested that for a parabolic confinement the sym-
metry of the ground state changes from singlet to triplet
when the size of the dot increases. Then, this opinion was
denied by Szafran et al..® who proved that for a parabolic
confinement, the ground state has always singlet-spin sym-
metry and that the results of Ref. 15 suffered from the ne-
glect of the correlation effects. However, based on their nu-
merical results and theoretical discussion confined to
harmonic potentials, Szafran et al.® could not judge definitely
whether the “singlet-triplet phase transition” observed in
Ref. 8 was a fictitious effect due to incomplete inclusion of
the electron correlation. So they left this question open. The
problem was undertaken by Varga et al.” Among many other
systems they considered two electrons in the confining po-
tential of a finite depth, as the one of Eq. (1), used in the
present work and in Ref. 8. Varga er al. observed no level
crossing between the lowest triplet and singlet states. The
result of Szafran et al.® was not confirmed. However, be-
cause of the resolution of Fig. 7 of Ref. 7 where the results of
Varga et al. are presented, it is impossible to state whose
results, these of Ref. 7 or those of Ref. 8, are more accurate
and reliable, and which is the physically right result. The
comparison in Fig. 1 of our results with those of Ref. 8
makes legitimate the conclusion that the ground state of two
electrons confined in the potential (1) is a singlet S state,
independently of the dot size (up to R=15ay).

B. Resonance states

Let us turn now to our main interest, to resonance states.
In Figs. 2(a) and 2(b), respectively, the energies of the S¢ and
P? levels are plotted versus the QD size, R, in the range from
0.5a( up to 2.5a,. They are labeled with the leading electron
configurations. A few low lying one-electron levels are also
plotted. They serve as thresholds for continua of unbound
two-electron state energies. In particular, the 1s one-electron
level constitutes the critical energy position above which the
localized two-electron states presented in this work (i.e., of
the S¢ and P° symmetries) are not strictly bound but reso-
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FIG. 2. Energies of two-electron bound and resonance states vs
dot radius, R. (a) and (b) are for S¢ and P° states, respectively. Open
circles are used for singlet states and full points for triplet ones. The
levels are labeled with the leading electron configurations. The 1s,
1p, and 1d one-electron levels constitute continua thresholds. The
area above the 1s level is shadowed to indicate the energy
continuum.

nant. In order to emphasize this, the area above the 1s line is
shadowed. One can see that after crossing over the 1s thresh-
old the two-electron resonance level lines continue within
some range of decreasing R. Then they disappear for small
R. Apparently the disappearance of a given two-electron
resonance is correlated with the fact of the disappearance of
one of those one-electron bound states which are involved in
the electron configuration under consideration. For instance,
the 1s2s'S¢ and 3$° resonances do not show up for R
< 1.55ay, in Fig. 2(a), because the 2s one-electron state does
not exist for such small QDs. The 1s2s levels disappear in
the Ises continuum (corresponding to the one-electron
bound in the ls state and the other electron free and having
the kinetic energy e and the orbital angular momentum /=0).
They do not get into another one. Some other two-electron
energy levels cross the higher one-electron levels, nl, and
enter into next continua, nlel’. For example, the 1d1f 3P’
level crosses the 1p threshold at R=~2.28q, then it crosses
the 1d and 2s thresholds at R=1.98a, and R=1.84a,, re-
spectively.

Having the energy levels embedded in multiple con-
tinuum, the resonance states may decay in many channels,
each one connected to one continuum nlel’. Decay in the
nlel’” channel consists in ejection of one electron with the
kinetic energy € and the angular momentum [/’ and leaving
the other electron in the n/ bound state. Following the con-

075434-3



BYLICKI et al.

cept of artificial atom, such a decay process may be called
autoionization.

The probabilities of autoionization per unit of time, given
by the widths I', are presented in Fig. 3. The autodecay prob-
ability of a state having the critical energy position at the 1s
threshold, is equal to zero. The width increases monotoni-
cally when the resonance level is getting deeper into the
continuum (higher above the 1s threshold; when R is de-
creasing). The dependence of the width on the QD size is
specific to a given state. In particular, it depends on the re-
lation between the leading electron configuration of the reso-
nance and the configurations belonging to the continuum. Let
us discuss the 'S¢ resonances shown in Fig. 3 (the most up-
per part). The widths of the 15> and 1s2s states behave in a
way similar to each other, they increase rapidly but smoothly
with decreasing R. These two localized states are strongly
coupled to the lses unbound continuum states. Therefore
their widths reach quickly large values of about 1072 eV.
Both levels disappear before reaching next continuum
threshold.

The behavior of the widths of the 1p? and 14 'S¢ states is
different (see Fig. 3). These states are weakly coupled to the
Ises continuum. After a rapid increase, corresponding to the
position just above the ls threshold, the widths stabilize at
values of the order of 107 eV. Only after getting into the
1pep continuum the width of the 1p? level jumps up and the
level disappears soon (for the QD size for which the one-
electron 1p state gets lost). The opening of the Ipep con-
tinuum does not affect significantly the width of the
1d* level. It increases a bit and then remains stable at
3X 10™* eV until the level has reached the 1ded continuum
at R=1.62a,. These continuum states are closely related to
the 14> configuration. There is strong coupling between
them. Hence, the width increases rapidly for R <1.6q,,.

The relationship between the continuum electron configu-
rations and the resonance configuration is the main criterion
for distinguishing between the so-called Feshbach and shape
resonances. The ones whose configurations are closely re-
lated to the configurations of the continuum in which they
are embedded, are of the shape type. They decay easily and
their widths are large. The configuration of a Feshbach reso-
nance is not related to the background continuum
configurations.'®!” Hence the decay must involve reconfigu-
ration of the system remaining after autoionization. There-
fore, the lifetimes of Feshbach resonances are relatively
longer than those of shape resonances. As one can see from
the discussion above, in our system we have resonances of
both categories. Moreover, most of them change the charac-
ter from Feshbach to shape when the QD size decreases and
the levels enter into the proper continua. One can state that
every resonance evolving down the QD size starts as a bound
state and reaches the shape stage before disappearing. Those
of lsnl configurations miss the Feshbach phase.

The Feshbach and shape resonance concepts are simpli-
fied models only. Real complex systems are more compli-
cated due to the electron-correlation effects mixing the open
and closed channels. Nevertheless, from the discussion
above it is seen how well these models work in the present
case. It is also interesting to observe how the character of a
given state changes versus the size parameter. Such changes
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FIG. 3. Widths of two-electron resonance levels vs the QD ra-
dius R. The consecutive figures are for the '8¢, 35¢, 'P°, and *P°
resonances. The labels and open and full symbols are used as in Fig.
2. Diamonds are used for the 1d1f states so as to avoid confusion.
The resonance width is equal to zero for the critical value of the QD
size, proper for a given state. (The curves start at those points.)
Vertical bars placed on a given line indicate the QD size values for
which the corresponding resonance level crosses the excited one-
electron levels (these are consecutively the 1p, 1d, and 2s levels)
and enters higher continua. Drastic change of the slope of the line
associated with such a crossing over the threshold is due to the
Feshbach-to-shape change of the resonance character. This does not
happen to the 1sn/ states, they omit the Feshbach phase.

also occur in other systems, e.g., along an isoelectronic
atomic sequence, where the atomic number is the key param-
eter. An electron configuration which leads to a Feshbach
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resonance in the case of neutral atom (of atomic number Z)
can lead to a shape resonance in the isoelectronic negative
ion (Z-1). In computations one can change the atomic num-
ber in a “continuous” way from Z down to Z—1 and observe
how the character of the state changes. However, this cannot
be done experimentally. Unlike the true atoms, the artificial
ones—quantum dots—can be fabricated with the size control
down to a single monolayer (=0.3 nm), e.g., chemically syn-
thesized nanocrystals.'? Thus, it is possible to produce such
QDs that their size values cover quite densely the range of R
investigated in present work. This makes an experimental
investigation of changes discussed above possible, provided
the experiment is capable of seeing the resonance levels. We
believe that the experiments like those performed by Klein et
al.'® and Banin et al.,'” where single electrons were transmit-
ted through QDs, could be used for this purpose.

V. CONCLUSION

We have performed computations for two-electron quan-
tum dot bound and resonance states. We have obtained re-
sults with the accuracy which allows us to state that the
ground two-electron state is of the singlet S symmetry, in
the wide range of size of the investigated quantum dots (up
to 15ag).

PHYSICAL REVIEW B 72, 075434 (2005)

Decreasing the QD size we followed the transformation of
two-electron bound states into Feshbach and then into shape
resonances. The widths of resonance levels increase mono-
tonically with the decreasing QD size. Eventually, each reso-
nance disappears if QD is small enough. The size of QD
critical for such a disappearance is specific to a given state. It
is correlated with the size at which the one-electron states
needed for the one-configuration description of the resonance
under consideration turn to be unbound.

The largest widths we obtained were about 1072 eV, cor-
responding to the lifetimes of the order of 10713 s. On the
other hand, the lower limit for the widths is zero, which
means that a given resonance can live arbitrarily long pro-
vided QD is of proper size. Thus the existence of resonances
should not be neglected if the electron transport processes in
QDs are considered.

In our opinion our theoretical findings can be confirmed
by single-electron-transmission experiments. We also believe
that our results may be helpful in tailoring the transport prop-
erties of QD-based nanodevices by selecting the QD size.
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