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Abstract
The propagation of sound through temperature gradient regions of a glow
discharge plasma is analysed. Using a JWKB solution known for a
Schrödinger’s equation describing the propagation of quantum particle
through a potential barrier, an algorithm for evaluation of the reflection
coefficient is proposed. The analytical results are compared with those
obtained by numerically solving Euler’s equations using a second order
finite difference approach. The sound reflection coefficients calculated for
temperature distribution profiles that are typical for atmospheric glow
discharge plasma demonstrate that, at zero-incidence angle, a significant
part, up to 25%, of the wave energy can be reflected. These results indicate
that sound attenuation by the atmospheric glow discharge plasma by more
than 10 dB, as demonstrated in a recent experiment, can be explained,
accounting for three-dimensional effects, by the thermal gradient
sound–plasma interaction mechanisms.

1. Introduction

Experimental observations of structural changes in shock
waves interacting with a glow discharge [1–4] have generated
considerable discussion in the aerospace community. Gas tem-
perature gradients around the plasma formation are believed to
be the primary cause for the observed wave modifications [5,6]
although certain inherent plasma mechanisms have also been
considered for their explanation [7]. Recently, research into
the application of glow discharge plasma has been expanded
from shock wave mitigation to air vehicle drag reduction [8]
and flow control [9, 10]. The present work explores another
potential use of plasma: the control of aeroacoustics, particu-
larly, the containment of aircraft noise [11].

In a weakly ionized gas, the evolution of a flow disturbance
is affected by the non-uniform temperature field that results in
refraction index gradients around the plasma region. A portion
of the wave is reflected in these gradient zones and the forward
moving wave passing through the plasma is attenuated. Similar
effects are observed for other types of disturbances such as
shock waves. In fact, the global temperature gradient model
was sufficient to explain the changes in the structure of a normal
shock wave travelling in a discharge tube [6].

Sound reflection from a boundary separating two uniform
media with different temperatures has been investigated in the

past for two limiting cases: when the length of the non-uniform
zone, �, separating the two uniform media, is significantly
smaller or larger than the sound wavelength, λ. The first
case of � � λ is described by the two-layer approximation
(see, for example [12]) and the opposite limit, � � λ, is a
case of a weak non-uniformity that provides an infinitesimally
small reflection coefficient that can be neglected in most cases.
The intermediate situation of � ≈ λ has not been studied
systematically although several specific aspects of the problem
were discussed in [13]. For a typical glow discharge in air
at pressures above 50 Torr and discharge current densities of
∼10 mA cm−2, the length of the temperature gradient region
is several centimetres [14, 15]; thus in the acoustic wave
interaction with glow discharge plasma, � ≈ λ. This paper
presents the results of an analytical and numerical study of
sound wave propagation through a non-uniform gas for an
arbitrary value of �/λ.

2. Reflection of sound by a non-uniform medium

A one-dimensional equation describing propagation of an
acoustic wave in non-uniform medium,

∂2u

∂t2
= a2

0(x)
∂2u

∂x2
, (1)
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where a0(x) is the speed of sound distribution in the
undisturbed medium and u(x, t) is the local mass velocity,
is known(see, for example, [16]). The equation was obtained
by linearizing Euler’s equations with respect to the parameter
disturbance amplitude and therefore is applicable only for
weak acoustic waves. In certain applications, such as
mitigation of aircraft noise, modelling of sound with waves
of infinitesimally small amplitudes may be insufficient. An
alternative approach that allows for accounting of linear
and higher-degree terms and that could be used to obtain
propagation equations for stronger waves is described in the
appendix.

For practical applications, the amount of energy that is
reflected by a barrier is of interest. Explicit reflection and
transmission coefficients are also required for theoretical and
numerical evaluation of the plasma barrier efficiency and
optimization. To evaluate the reflection coefficient for a
plasma barrier characterized by a temperature distribution
a0(x), we note that equation (1) is identical to the one-
dimensional Schrödinger’s equation that describes the motion
of the quantum particle in a potential field [17]:

d2�0

dξ 2
+

1

A2
0

�0 = 0. (2)

Here the mass velocity amplitude �0(ξ) is defined as
u(ξ, τ ) = �0(ξ)eiτ where ξ = k0x and τ = ω0t are
the dimensionless coordinate and time, respectively, and
A0(ξ) = (a0(ξ/k0)/A) is the normalized speed of sound
(lim A0(ξ)

ξ→−∞
= 1). A = lim a0(x)

x→−∞
. If the circular frequency

of the wave is ω0 with a corresponding wavelength of λ0, than
A = (ω0/k0) where k0 = (2π/λ0) is the wave number.

A solution to equation (2) can be obtained using the
JWKB approximation [17]. For example, Hect and Mayer
[18] developed an iteration scheme, which converges well for
arbitrary ‘smooth’ functions A2

0(ξ), i.e. for mild temperature
gradients. This restriction is not applicable to plasma barriers
that are characterized by intermediate and sharp gradients. The
problem however may be simplified if we restrict our interest
to the scattering coefficients.

Following the JWKB approach and introducing variables
ϕ(ξ) and ω(ξ) defined as �0(ξ) = g−1/2(ξ)ϕ(ξ) and ω(ξ) =∫ ξ

ξ0
g(ξ

′
)dξ

′
where g(ξ) is a certain function and ξ0 is an

arbitrary constant, equation (2) may be rewritten as

d2ϕ

dω2
+ (1 + ε)ϕ = 0, (3)

where

ε =
1
A2

0
− g2

g2
− g−1/2 d2(g1/2)

dω2

=
1
A2

0
− g2

g2
+ g−3/2 d2(g−1/2)

dξ 2
.

The reflection coefficient then, in the JWKB limits, is
expressed in terms of the following integrals [16]:

µ =
∫ ω

0
ε(ω′)dω′,

K0 = i

∫ x ′+iy ′

x ′−iy ′
g(z)dz, y ′ > 0, (4)

where x ′ ± iy ′ are the closest to the real axis roots of
equation g(z) = 0. Using the connection between ω(z) and
g(z) : (dω/dz) = g(z), the first of the two integrals can be
approximated with

µ ≈ −1

4

∫
L

1

A0(ξ)

[
dA0(ξ)

dξ

]2

dξ. (5)

Here the integration is performed over the length of the gradient
zone, L. Reflection coefficient K0 does not depend on x

′
. This

coordinate defines only the position of the potential barrier
[17]. The value of y ′ is affected by the maximum value of the
function (1/A0(ξ)) and the magnitude of its derivative at the
location of the function maximum. In summary, the reflection
coefficient is determined not so much by the specific shape of
the potential barrier, but by its characteristic length and height,
which are expressed by integrals µ and K0 .The reflection
coefficient is not therefore as sensitive to the actual shape of
temperature profile T (ξ) as to the ratio of (Tmax/T (−∞)) (or
(Tmin/T (−∞))) and the length of the gradient zone.

The above consideration leads to the following algorithm
for the approximation of the reflection coefficient. A solution
for Schrödinger’s equation (2) is known for the potential (or,
in sound propagation terms, temperature) barrier that is given
by

T

T0
= B2(1 + e−αξ )

1 + B2e−αξ
= B2(1 + e−βx)

1 + B2e−βx
, (6)

where α and B are arbitrary constants and β = k0α. For this
distribution, the reflection coefficient is [16]

R =
{

sh
[

π
α

(
1 − 1

B

)]
sh

[
π
α

(
1 + 1

B

)]
}2

. (7)

Here the speed of sound changes by a factor of B over
the domain −∞ < ξ < ∞, while (1/β) represents the
characteristic length of the temperature gradient region. It
follows from (7) that the reflected wave vanishes in a uniform
medium or at very mild temperature gradients (i.e. R → 0 as
B → 0 or α → 0). When α → ∞, the temperature profile is
a step-function, and R = ((B − 1)/(B + 1))2.

This result was first obtained by Strutt [12].
To calculate the best approximation for the reflection

coefficient, the actual temperature profile should be
appropriately approximated by distribution (6). The fitting
requirement here is the match of the scattering integrals (4)
for the experimental temperature distribution and the model
function (6), respectively. Specifically, the algorithm is (1)
integrals µ and Ko are calculated for the actual distribution;
next, by evaluating model distribution (6), (2) the values of B
and β are obtained that would result in the same values of µ

and Ko as those calculated for the actual distribution and (3) the
sound reflection coefficient is then calculated using equation
(7). Note that the best-fit model function obtained according
to this criterion may locally be noticeably different from the
actual distribution.

Using the JWKB approximation, a condition for the
‘smoothness’ of the potential barrier required for the reflection
coefficient to be infinitesimally small can be obtained [17]:

1

4π

a0(x)

A

∣∣∣∣∣�λ

( da0
dx

)
da0
dx

− �λa0(x)

a0(x)

∣∣∣∣∣ � 1, (8)
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Figure 1. Reflection coefficient versus SPL. Temperature distributions are given by equation (23) with B = 2. Wave frequency is 1 kHz.
Solid circles are the numerical solutions to the Euler’s equations; solid lines represent analytical solutions given by (22).

where �λ is the change of the value over the acoustic
wavelength. For a typical glow discharge in air at pressures
of tens of Torr, the characteristic length of the temperature
gradient region is of the order of several centimetres [14]. For
this length of the barrier, sound reflection is small for acoustic
wave frequencies ν0 � 10 kHz, whereas for ν0 � 1 kHz, the
two-layer approximation (with a stepwise temperature jump) is
sufficient to evaluate the magnitude of the reflection coefficient.

3. Numerical approach

The propagation of the sound wave through a gas with non-
uniform temperature distribution was studied also by solving
Euler’s equations numerically. A second-order accurate
finite-difference scheme with a two-step predictor–corrector
discretization was used [19]. The calculation domain consisted
of two regions with uniform gas properties but with different
temperatures separated by a third region where the temperature
was changing between these two values as an arbitrary function
of x. In the absence of the wave, the pressure was uniform
throughout the domain. The sound wave was introduced as
part of the initial conditions at a certain distance upstream
of the temperature gradient zone as a sinusoidal variation
in pressure, with the corresponding variation in temperature,
density and mass velocity superimposed on the uniform gas.
The frequency, amplitude and the length (number of cycles)
of the initial sound wave were parameters of the problem. An
average number of 5712 nodes were used although this number
varied slightly as the relative length of the temperature gradient
zone was varied.

4. Results

Numerically calculated reflection coefficients for a 1 kHz
acoustic wave are compared in figure 1 with those given by
equation (7), at various sound pressure levels (SPL) for a
range of temperature gradients. The temperature profiles were
modelled by (6) using a fixed value of B = 2 while varying
β. The analytical and numerical solutions agree in figure 1
for the entire range of parameter β in the linear wave domain
(SPL < 160 dB) but they tend to diverge at higher amplitudes

of the wave. Figure 2 helps explain the smaller values of the
numerically calculated reflection coefficients at higher SPL.
This figure shows the dependence of the reflection coefficient
on sound frequency for a linear wave (SPL = 150 dB). For
a given β, the higher the sound frequency is, the lower is
the reflection coefficient. As the SPL are increased and the
wave becomes non-linear (SPL < 160 dB in figure 1), the
single-tone wave pattern is distorted and high frequency tones
are introduced. These higher frequency components of the
non-linear waves in figure 1 are not reflected as efficiently
as the base frequency is, thus reducing the total reflected
energy of the wave and thus the overall reflection coefficient.
Figure 3 compares the numerically and analytically calculated
reflection coefficients for a linear wave at various temperature
ratios between the two uniform gas regions. The reflection
coefficient is a strong function of the temperature ratio and
the temperature gradient length. As much as 25% of the
incoming wave can be reflected if B > 3 (the temperature ratio
is nine) at relatively mild (β ∼ 1 cm−1) gradients. As follows
from figures 1–3, the numerical and analytical solutions agree
well for a wide range of parameters ω, B and β. A slight
disagreement observed at lower frequencies for mild gradients
(for β smaller than 0.8 cm−1 in figure 2) can be attributed to
the numerical dissipation in the computational results.

Figure 4 represents the reflection coefficients for a sound
wave propagating through the boundary between air and glow
discharge plasma, calculated for the plasma parameters of a
recent experiment [11] where the attenuation of acoustic waves
by a glow discharge plasma in air at a gas pressure of 80 Torr
and discharge current densities between 10 and 50 mAcm−1

was studied. Since the gas temperature was not measured in
the experiment, the ‘actual’ temperature profiles are calculated
numerically using a model developed in [14]. The calculated
profiles (shown with symbols in figure 5) were used to compute
scattering integrals K0 and µ, (4). The model temperature
profiles that have the same values of K0 and µ as the actual
distributions are shown with a darker line in figure 5. The
corresponding reflection coefficients are denoted similarly in
figure 4. The symbols in figure 4 represent the reflection
coefficients calculated numerically using actual temperature
profiles.
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Figure 2. Reflection coefficient versus wave frequency, for B = 2. Notation is the same as in figure 1.
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Figure 3. Reflection coefficient versus temperature ratio for the wave frequency 1 kHz. Notation is same as in figure 1.

The scattering integrals approach is compared in figures 4
and 5 to an approximation of the actual temperature
distributions with model function (6) using the conventional
least-square technique. Parameter B was considered known
since it represents the temperature ratio on the boundaries, and
only β was evaluated. The model temperature profiles and
related reflection coefficients are shown with a lighter line in
figures 4 and 5. While the least-square approximation seems
to provide a better fit for the actual temperature distributions,
the resultant reflection coefficients are not as accurate as those
obtained using the scattering integrals algorithm.

It may be observed from figure 4 that the increase in
the reflection coefficient due to higher gas temperatures in
the plasma (with higher discharge currents) overcomes the
decrease in the reflection coefficient due to the expansion

of the temperature gradient zone. Overall, the calculations
demonstrate that the plasma can significantly reflect acoustic
waves for frequencies below 10 kHz. Note that the present
analysis is one-dimensional and hence the acoustic wave is
incident upon the plasma boundary at zero incidence angle.
We also note that the depth of the plasma region, or distance
between two plasma boundaries in an experiment, should
be comparable to the wavelength, i.e. of the order of ten
centimetres, for significant sound reflection. Implementation
of such a device may present certain technical challenges.
Attenuation of a 13.5 kHz spherical acoustic wave by a glow
discharge plasma in air at a gas pressure of 80 Torr and
discharge current densities between 10 and 50 mA cm−2 was
studied in a recent experiment [11]. The one-dimensional
model presented here falls short in explaining the 10 dB
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Figure 4. Coefficient of sound reflection from the gas-plasma boundary versus wave frequency, for different gas pressures, p, and discharge
current densities, j , for temperature profiles that are shown in figure 5. Markers—numerical solution, dark and light lines—solutions given
by equation (8) for the scattering integrals and least-square approximations, respectively.
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Figure 5. Gas temperature profiles in the gas–plasma boundary. Solid markers are numerical solutions for ‘actual’ temperature profiles
calculated using the approach developed in [14]. The lines are model profiles given by equation (7). Parameters B and β are found using the
fitting procedure based on the scattering integrals approach (darker lines) and by the least square method (lighter lines).

attenuation demonstrated in that experiment; however it
provides sufficient evidence to suggest that the thermal
gradient effect is a dominant mechanism in the attenuation
of sound by a near-atmospheric glow discharge in air. The
reflection coefficient increases with the angle of incidence, and,
since the index of refraction of the cold air is greater than that
for hot air, the angle of total internal refraction should exist.
Therefore, the experimentally observed strong attenuation is
most probably due to three-dimensional temperature gradient
effects.

Appendix A. A solution for propagation of weak and
strong acoustic waves in a non-uniform medium

The objective of this section is to develop an approach that
governs propagation of an acoustic wave in an ideal gas where
the pressure is constant throughout while the temperature and
density distributions are non-uniform. Thermal conductivity
and viscosity are not taken into account. In a non-uniform
gas, the entropy is different at different locations. Here we
consider the entropy constant on each particle path although the
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entropy on different particle paths may have different values.
With these approximations, the propagation of a wave in the
non-uniform medium is described by Euler’s equations:

∂ρ

∂t
+ ∇ · (ρ 	u) = 0,

∂ 	u
∂t

+ (	u · −→∇ )	u +
1

ρ
∇p = 0, (A.1)

Ds

Dt
= 0.

Here ρ, −→u , p, s are the density, mass velocity, pressure and
entropy of the gas, respectively.

Considering a one-dimensional case, we choose positive
direction of the x-axis coinciding with mass velocity, −→u .
We choose mass velocity as an independent variable and
make use of the following relations known for uniform media
that could be proved valid for a non-uniform medium under
consideration:

∂ρ

∂u
= ±ρ

a
, (A.2)

∂a

∂u
= ±γ − 1

2
. (A.3)

Introducing functions �(x, t) and F(x, t) which satisfy

a(u, x, t) = �(x, t) ± γ − 1

2
u (A.4)

and
a(u, x, t) = F(x, t)ρ

γ−1
2 (u, x, t) (A.5)

and, using equations (A.3) and (A.4) that lead to

∂k�

∂uk
≡ 0

∂kF

∂uk
≡ 0 (k = 0, 1, 2 . . . , )

the conservation equations can be reduced to

∂u

∂t
± (a ± u)

∂u

∂x
= ∓ 2

γ − 1

{
∂�

∂t
+ u

∂�

∂x

}
,

∂�

∂t
+ u

∂�

∂x
= ±a

∂�

∂x
∓ a2

γ
F

∂F

∂x
, (A.6)

∂F

∂t
+ u

∂F

∂x
= 0.

Since �(x, t) and F(x, t) do not depend on u directly,
linearization of equations of (A.6) should be done using a

variational approach. A zero-order approximation (at u = 0) is
�|u=0 = a0(x): F | u=0 = a

γ

0 (x). Representing the unknowns
as

� = a0(x) + δ�(x, t),

F = a
γ

0 (x) + δF (x, t),
(A.7)

where δ�, δF are small perturbations, substituting (A.7)
with (A.6) and neglecting higher-order terms one can obtain,
consecutively accounting for linear, quadratic and higher-order
terms, equation (1) for linear waves as well as equations for
non-linear waves.
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