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A zero-one law for a class of random
walks and a converse to Gauss’
mean value theorem

By WiLLiAM A. VEECH*

1. Introduction

Let there be given a positive function, 6(-), on a bounded region Q = R”
such that for each ze€Q d(x) <d(x, 0Q), where d(z, 0Q) denotes the distance
to the boundary of Q. We associate to § a collection of balls B(x), 2¢€Q,
requiring for each « that B(x) have center « and radius 6(x). By our restriction
ond, B(x) = Q for every . A Lebesgue measurable function f on Q shall
be called -harmonic if for each xeQ fis integrable on B(x), and

m(B@)f@ = | fwmy

where m(-) is Lebesgue measure.

If f is a positive harmonic function on Q, then by the mean value theorem
for harmonic functions, f is é-harmonic for arbitrary é. (Without the posi-
tivity assumption on f it is necessary to assume d(z) < d(z, dQ), =< Q.) In
the present paper we shall give a collection of hypotheses on f, 8, and Q, in
the presence of which it is possible to prove that if f is 6-harmonic, then f is
harmonic. It is in this sense that we obtain a “converse” to Gauss’ mean
value theorem.

A familiar result from classical potential theory asserts that if Q is a
region which is regular for the Dirichlet problem and if f is a function which
is continuous on Q U 4Q, then if fis 6-harmonic on Q for some 8, f is harmoniec.
(cf. [7], and compare with [22].) The first nontrivial converse to the mean
value theorem was given by Feller [11]: If Q is the unit disc in the plane,
if 9(x) = d(», 0Q), and if fis a bounded -harmonic function on Q, then f is
harmonic. See [1] for a proof of Feller’s theorem.

There can be no converse to the mean value theorem which makes no
assumption on f or §. For a well-known example, let Q be any nonempty
region in R", and let L be a hyperplane passing through the interior of Q.
Define f to be 1 on one side of L N Q, —1 on the other side, and 0 on L N Q.
If 6 is any function such that 6(x) < min (d(z, L), d(z,5Q)), x¢ L, and
0(x) < d(x, 0Q), xe L, then f is -harmonic.
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There are at least two plausible explanations for the counterexample
just given. The first is that the f we have defined is not continuous. Indeed,
any f which is d-harmonic for every ¢ above will be continuous on Q N L¢,
and hence by Koebe’s theorem [22] it will be harmonic on QN L°. If in addition
f is continuous at every point of L, then f will be harmonic on Q. The
second explanation, which from our point of view is the more natural one,
is that any 6(-) satisfying the inequalities of the preceding paragraph must
tend to 0 as x — L, v ¢ L. Thus 6 cannot be bounded away from 0 on com-
pact subsets of Q. One consequence of Theorem 1 below is that if Q is a
bounded “Lipschitz domain”, and if 6 is bounded away from 0 on compact
subsets of Q, then every bounded, §-harmonic function on Q is harmonic. (It
is possible that this result remains true if L, = {y|lim,., inf 6(x) = 0} has
capacity 0, but we have thus far been unable to decide this. In the examples
above, L, 2 L N Q has positive capacity.) What follows is our main result:

THEOREM 1. Let Q be a bounded Lipschitz domain R*, n =1, and let
f be 6-harmonic on Q. A sufficient condition for f to be harmonic is that f
and 0 obey the growth restrictions (i) and (ii):

(i) There exists an harmonic function g on Q such that | f| < g.

(i) 0 is bounded away from 0 on every compact subset of Q.

A converse to the mean value theorem which lies between Feller’s
theorem and Theorem 1 has been given in [3]. There it is proved for Q with
differentiable boundary, f bounded, ¢ measurable, and for some constant
a >0, 6(x) = ad(x, 0Q), that if f is J-harmonic, f is harmonic. The same
theorem appears later in [13] with no restriction on 6Q but a stronger assump-
tion on 4; namely, 6(x) < Bd(x, 0Q) for some constant B < 1. In a private
communication S. Orey has informed me that in joint work with Heath this
latter assumption has been removed.

One of the reasons we are able to deal with d-harmonicity under the
rather weak hypothesis (ii) above is the following “minimal theorem” or
“density theorem” which may be of independent interest. In its statement
B, is the unit ball in R".

THEOREM 2. For each m there exists a fumction #,(8) >0, 0 < B =1,
with the following property: Given anm arbitrary Lebesgue measurable set
EZ B,, m(E)>0, there exists a point x € E such that m(EN Q) = 2.(8)m(Q),
8 = m(E)m(B,)™", for every ball Q such that x€ Q < B,.

In an earlier (2 dimensional) version of this paper we have given a density
theorem in the plane for squares which directly implies the density theorem
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for discs ([21], Theorem 2). If Lemma 9.1 of the present paper is true with
“balls” replaced by “cubes”, then our argument in Section 9 yields the
corresponding theorem for cubes. Richard Hunt has shown us an extension
and improvement of Theorem 2 of [21] which does contain the density
theorem for cubes, and which gives the best possible estimate ¢,(8) = C,8".
(Private communication.) Hunt’s result will appear elsewhere.

It may be possible to replace assumption (i) of Theorem 1 by the assump-
tion £ = 0. There is some evidence of this in the probabilistic Martin boundary
theory ([9], [15]) which can be taken over to the g-processes of Section 2.
It is possible to show, using Theorem 1, that the g-harmonic functions [6]
comprise a set of “harmonic measure” 1 in the boundary of the g-process.
The case f = 0 is in fact equivalent to the assertion that the exceptional set
is empty. Since our results in this direction are incomplete, they will not
be included here, but we do hope to have more to say on the matter at a
future time.

We begin our proof of Theorem 1 in Section 2 with the simple observa-
tion that it is, in a natural way, equivalent to a zero-one law for certain
random walks on Q. This sort of observation has been made before; see for
example [8, p. 442]. Sections 3-10 are devoted to proving the zero-one law.

2. The g processes

In the present section Q, unless otherwise specified, is an arbitrary
bounded region in R*. We begin by reducing Theorem 1 to the case in which
both f and é are Borel functions.

PROPOSITION 2.1. Let f be a nonnegative 6-harmonic function (0 arbi-
trary). There exist Borel functions f, and 0, such that f, =0, f, = f a.e.,
0 < 0, and f, 18 0-harmonic.

Proof. Define Q* = R"*' to be the set of pairs (x,0), x€Q, 0 <d =
d(x, 0Q). Q* is a Borel set, and we define F((x, 6)) on Q* as the average of f
over the ball of radius é centered at « (possibly F' = «). By Fatou’s lemma
liminf . ;). F(@', 6") = F((x, 6)), and therefore F' is Borel. There exists
a Borel set £ < Q, m(E) = m(Q) such that f|; is Borel. Define d(x) on £
by e(@) = sup {0 | F((z, 0)) = f(x)}. Then F((x,e@®))) = f(*), x<cE, by the
monotone convergence theorem, and by definition e(x) = d(x), € E. Now
the set {x € E'|e(x) > a} is the projection onto the x coordinate of the Borel
set {(x, 0) |0 >a}N{(x,d)|xe E and F((v,0)) =f(x)}. Thus, ¢(-) is Lebesgue
measurable (because analytic sets are Lebesgue measurable [5]), and there
is a Borel set E, & E such that m(E) = m(E) = m(Q), and ¢ |, is Borel.
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Now define 6, on Q by
e(x) xe kK,
0 =
@ = 14w, 09) veB,.
We have 6, = & everywhere, 4, is Borel, and if f,(x) = F((x, 6,(x))), f, is
Borel. By construction f, = f a.e. and f, is 6,-harmonic. (If F,isto f, as F
is to f, then F = F, everywhere.)

Remark 2.2. In the construction above if f < g for some positive har-
monic g, then f,(x) = F((z, 6,(®)) < g(x) for all x, and the same estimate
applies to f,. To apply Proposition 2.1 assume f, d, and g are as in the
statement of Theorem 1. Let h = f + g. Then 0 < h < 2¢, and & is also o-
harmonic. If %, and d, are as in Proposition 2.1, then &, <2g, also. Suppose
we are able to prove h, is harmonie. Then for each € Q, f(x) + g(x) = h(x),
which is the average of f+ g over B(x), is, since f+ g = h, a.e. also the
average of h, over B(x). But the latter is just A,(x) by the mean value
theorem, and therefore f(x) + g(x) = ho(x) for all x. Thus, f=h, — g is
harmonic.

In all that follows f and 6 are Borel functions which satisfy the hypotheses
(i) and (ii) of Theorem 1. Also, g is a positive harmonic function such that
|f1<gonQ. Using d(+) and g(-) we set up a kernel, P,, on Q x Q, defining

g(y) B
Py, v) = | s@m(B@) <P
0 Yy ¢ B(x) .

P, is a Borel function, and for each z€Q, P,(z, y)dy (dy = m(dy) = Lebesgue
measure) is a probability measure on Q. Kernels and related objects (“g-
harmonic functions”) of this sort have been studied by various authors; see
for example [6], [8, 9], [15], and [11]. Define X = Q¥, N={1,2, ...}, and
let x, «,, -+ be the coordinate functions on X. If v is a Borel probability
measure on Q, then we define for every n and A, ---, 4, & Q Borel the
measure ¢/(A) of the cylinder set A = {we X|z;(w)e A; 1 <j < n} to be
w@ = | | T00 P, 0 )v@s)da, - da,

j=

By the Kolmogorov extension theorem p! extends to a probability measure
on the o-algebra B = B(x,, x,, ---) generated by the coordinate functions.
In all that follows v will be a point mass at some point z, and so we write
s for pe.

Let JC = J((Q) be the cone of positive harmonic functions on Q, and let
7, €Q be any fixed point. We define 9N = 9I(,, to be the extreme points of
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the convex set {h € IJC | h(x,) = 1}. If I is given the topology of local uniform
convergence, 9l is a Borel set, and the representation theorem of R. S. Martin
[19] asserts that there exists a positive (unique) Borel measure » = \(g) on
91 such that for every x € Q

0@ = | menan .

Using a direct computation on cylinder sets together with a monotone class
argument [12], it is easy to prove that for each Ee®B, € Q, h— p(F) is
a Borel function on 91, and

@.1) o@wuE) = | h@ @) -

Let T be the left shift on X, Tw = (2,(®), %;(®), --+). Still another
computation on cylinder sets together with a monotone class argument shows
for each A e 3 that

@2) () = | Py, DAy -

Define P = P,, P (x,y) = S P"(x, 2)P,(z, y)dz, m=1,2,««.. Then
Q
(2.2) generalizes to

23 T4 = | PG, ey -

Define B, = {AecB|A = T'A}). B, is a o-field called the invariant o-field
[4], and (2.3) implies for A € B,

2.9 ) = | PP, v sy (nz1).

PROPOSITION 2.3. If x, z€Q, then pd and ! are mutually absolutely
continuous on B;.

Proof. Assume pf(A)=0. Our assumption (ii) on 6(-) implies {y| P, (=, y) >
0} 1 Q, and therefore by (2.4) #/(A) = 0 a.e. on Q. Then setting « = z,
n =1in (2.4) we see #2(4) = 0. Thus 2 is absolutely continuous on B, with
respect to ze.

Define A € B, to be the set
. f(x,,(co)) .
A={w|lim, "2 = F(w) exists} .
{ g(x.(®)) @) }

Note that F'is B, measurable on A. Since f/g is stationary for the kernel
P,, and uniformly bounded on Q, the process f(x,(®))/g(x.(®)) isa bounded



194 WILLIAM A. VEECH

martingale. Therefore, by the martingale theorem [10] #i(4) =1, vcQ.
Moreover, we have for all x the representation

1@ = 9| F)mdo) .

Applying (2.1) we see
@ = 9@ | Flo)pdo)
(2.5) =@ %x(dh){ﬂx Fl)pdo)}

_ ggm h(w){SX F(o) ;z;‘(da))}x(dh) .

Now suppose it is known for every he 9N that B, is g trivial. Then by
Proposition 2.3 there is for each s such that p}(4) =1, x<Q, a constant,
F,(h), such that F = F,(h) a.e. p!, all xz. Thus, (2.5) becomes

2.6) f@ = | h@Fmdh)

and f is harmonic. Therefore, Theorem 1 will be a consequence of

THEOREM 2.4. If Q is a bounded Lipschitz domain in R", n =1, then
B, is ek trivial for every h e IM(Q).

Again we assume Q is an arbitrary bounded region in R". If he9N(Q),
Brelot has shown % has a “pole” PecoQ with the following property [6,
Theorem 21 and §§ 10, 11]: For every € Q and ¢ > 0 there exists an open
set © 20Q — {P} and a superharmonic function 4, on Q such that h. = h
on ONQ, h.<h on Q, and h.(x) <ch(x). If we form the process h.(,)/h(&,)
for p!, &, = x,(w), it is a bounded supermartingale which converges a.e. to
a function H,(w) satisfying

ez 1D 2| H(o)mdo)
h(x) x
> p{w|&, €0 infinitely often} .
Since ¢ is arbitrary we see that for almost all sample paths for f! there is
at most one cluster point on 4Q, namely P. Compare the following proposi-
tion with [8], Theorem 5.1.

PROPOSITION 2.5. If h € ON(Q), almost every ! path converges to the pole
of h on 0Q. .

Proof. Let M = sup| |, x€Q, and let ¥ be the k™ coordinate of
xeR*. Each of the processes A(z;)™', (M + x)h(x)™, k=1,+-+,m, is a
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nonnegative martingale for !, hence convergent a.e. to a finite limit. If
lim,_.., h(x;)™* > 0, then for each k lim;...a® = lim; .. (z{"h(x;)~)h(x;) exists,
hence lim,..x; exists. If lim;.. A(z;)™* = 0, then lim, . d(x;, 0Q) = 0, and
therefore by the discussion preceding the proposition lim;..x; = P exists.
Thus, we have that almost every g! path is convergent. Next, notice that
by Harnack’s theorem there exists a dimensional constant L such that

E(l@wi — il @, +++, w;) = Lo(@,) .

Since lim z; existsin L'(z%), it must be that o(x;) converges to 0 in measure.
By our condition (ii) on 6 it must be that lim z; € 0Q a.e.. Using once more
the observation made preceding the proposition, we have lim z, = P, a.e.,
as claimed.

We remark that if g is an arbitrary positive harmonic function on Q,
then (2.1) and Proposition 2.5 imply convergence for ¢ paths. The distribu-
tion of limw, on 0Q is just the probability measure whose generalized
Poisson integral is g if, say, Q is a Lipschitz domain.

Definition 2.6. Let Q be a bounded region, and suppose PcoQ. A
positive harmonic function 4 on Q is said to be a kernel function at P if
lim,., h(x) = 0 for all ycoQ, y + P.

A simple modification of the argument in Proposition 2.5 shows that if
b is a kernel function at P, then g paths converge to P with probability 1.

It is proved in [16] that for a Lipschitz domain every k€91 is a kernel
function (at its pole). (As mentioned in [16] this is a consequence of the
uniform estimate (2.5) of [16] and the general theory of R. S. Martin.)
Theorem 2.4 will follow from

THEOREM 2.7. If Q is a bounded Lipschitz domain, and if h is a kernel
Sfunction at some Peo0Q, then B, is pk trivial.

Remark 2.8. Let & be as in Theorem 2.7, and suppose a oé-harmonic
function, A, satisfies 0 < h, < h. Then by the usual martingale argument
ho/h can be represented as the integral of a B, measurable function with
respect to #'. By Theorem 2.7 and the mutual absolute continuity on B,
there is constant ¢ such that %, = ckh. In other words, & is an extremal in
the cone of positive 6-harmonic functions. A special case of this fact is the
Hunt-Wheeden uniqueness theorem:

THEOREM 2.9 (R. Hunt and Wheeden [16]). Let Q be a bounded Lipschitz
domain in R*, and let h, and h, be kernel functions at a point PcoQ. Then
h, = ch, for some constant c.
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Proof. Apply Remark 2.8 for some 4§, say d(x) = (1/2)d(z, 0Q), and h =
hy + hse

3. An auxiliary function

Let G(x, y) be the Greens function for the open unit ball in R*, n = 2
fixed. If B,is the ball of radius p and G, the corresponding Greens function,
we have the relation G,(z, y) = 0~"2G(x/p, y/p) [14].

There exists a number 7, > 0, fixed in what follows such that a > b+ 1,
where

a = a(r) = minnmu,nungro Gz, y)
b = b(1/3) = max:lxlléro G(x, y)

lyllz1/3
a and b are also fixed.
Let A = B, be a measurable set. We define ®,,,(-) on B, to be the
Greens potential

|, Gotw, wmi@y) -

2

1

Paio() = =

40 0

By a change of variables we have

Par@ = L | Golo, ymidy)

1
o Ja
1\ 1 g Y
(3.1) - I, = G( o p)m(dy)
— Zx
= SAO G( o’ z)m(dz)
where A, ={y/plyecA}. If n =2, G(x, +) is locally L? for p < o, while
if »>2, G, -) is locally L? for p<mn/(n — 2). Let p =2 if n =2 and
p = (n—1)/(n— 2)if n>2. The dual (Holder) exponents are ¢ =2 if n=2
and ¢ = n — 1 if n > 2. Define

A, = SUPjs || G@, «) ],

where p is as above. A, < o because when n=2, G(x, y) <|log ||x—y|||+log 2,
and when n = 3, G(z,y) < ||l# — y|*™. Using (3.1), we find

(8.2 Pao(@) = A,m(Ag)"?

where ¢ is the dual exponent above.
Let o, be the volume of the unit ball in R". Then m(4,) = p™"m(4) =
o,m(A)/m(B,), and (3.2) can be rewritten as
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A) 1/q
3.3 @) < A,,a;/q<ﬂ—> )
( ) P 40( ) = m(Bp)

Let v, = A,0.% a constant which depends only upon n.
If A< B,,, then by (3.2) we have for ||z || = 0/3

m(A)
m(B,) )

Let 6, = bo,. 4, depends only upon n. If € B,,, then by the choice of 7,

m(A)
m(B,)

(3.5 > (b + 1o,

(3°4) QDA'.P(x) = bm(Ao) = bo,

Pao(@) = a0,
m(A)
m(B,)

=5, WA | 5 md)
" m(B,) " m(B,)

Fix any x € B,,, and suppose () is a probability measure on B, with
the property that

3.6) Pus®) = || Pus@M)

(¢ fixed). We will obtain a simple estimate for u = \(B,;). Using (3.2-3.6)

we find
AV m(d)
(i) L W
3.7 > 90(@)

> 5 mA) |, omA)
o nm(Bp) nm(Bp)

Let t = t(4) = m(A)/m(B,), and solve (3.7) for u to find

. >_ 9aT
3-8 w= ATV — 0,7

the right side being a positive function of 7, 0 < 7 < »}, which we denote
by % = u,(7).
4. Local behavior of the P, process

It will be convenient to restate Theorem 2 in a more directly applicable
form. (See § 9 for the proof of Theorem 2.) If E is a measurable subset of
B, we define the “minimal function” of £ by
m(E N Q)

m(Q)

where for each 2 b(x) denotes all balls in B, which contain #. Theorem 2

a(xy E) = ianeb(z)
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asserts that ||a|l. = #.(8), B = m(E)m(B,)™".
THEOREM 4.1. If E is a Lebesgue measurable subset of B,, define for
0<a=1
E,={zcE|a, E) = P.(\p)}

where B = m(E)m(B,)™. Then m(E)) = 1 — Mg .
Proof. Clear.
Remark 4.2. We think of a set such as K, as being the “core” of E.

Remark 4.3. If Bis any ball in R*, and if E = B is measurable, then
it makes sense to define a(x, E), x€ B. (Let b(x) be the balls in B which
contain z.) If E; = {a = ¢,(\3)}, then m(E) = (1 — M)m(E).

Remark 4.4. We fix g=1 and P(x,y) = P,(x, ). If O, 0,=Q are
Borel sets, and if ES O, istheset E = {xec0,| P, O,) > 0}, then F is a
Borel set. Here P(z, O,) = S P(x, y)dy. Indeed, the function x— P(z, O,
is Borel, and E is just the 1ntersect10n of two Borel sets. Curiously, if we
replace E by E, ={xc0,|B() N 0, @}, B(x) = ball of radius d(x) centered
at «, then it appears the best one can say is that E, is Lebesgue measurable
(an analytic set).

In preparation of Lemma 4.5, define B,(2) to be the ball of radius p
centered at z for some p<d(z, 0Q), and suppose A & B, ,(2), 7,as in Section 3,
is a Borel set. We define 7 = m(4)/m(B,(2)) and ¢ = d(p, 2) = sup 6(y),
Y € Bojs(?).

LEMMA 4.5. Let the notations and assumptions be as above. For every
% € B,,(2) we have

4.1) o |z, (@) e A, some m = 1} = u,(7)P.(8/2)

where B = m(A)/(m(B,)(© + 0)"), u, is as in Section 3, and P, is as in
Theorem 2.

Proof. Weregard B,(z) as a subset of the ball B= B,,,(?). Let A, & 4
be a Borel set such that if z € A4,, then a(x, 4) =®,(8/2) and m(4,) = (1/2)m(4).
A, exists by Theorem 4.1. By definition, if D is a ball in B which intersects
A,, then

(4.2) m(D N A) = .(8/2)m(D) .

In particular, if « € B, ,(2) is such that B(x) N 4, # @, then the one step
probability of travelling to A is at least ®,(8/2) = ®.(8/2%.(z). If x does
not have this property, define
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={yeB,(2)| Py, F) >0, F = A, U B,(2)7} .
Because lim,_., 2,.(®)€0Q a.e. t, and o < d(z, 02) by assumption, it must
be that z,(w)¢ B,(z) for some m > 1 with probability 1. It follows that
the stopping time
T(w) = inf {m = 1| z,(0) € G}
is finite a.e. g,. Define stopping times T, by T,.(®) = min(m, T(w)), and
let y.(w) be the process y,(®) = @7, (®). {¥.} is a martingale. In fact,
the transition probabilities for {,} are the same as those for {z,}, except on
G where the process stops. With this in mind we see that the process
In(®) = Psio(Ym(®@))

is a bounded martingale where @,., is the function defined in Section 3, with
the definition translated to B,(z). Let y.(w) = lim,_.¥.(®) (€ G with
probability 1), and let \,(-) be the distribution of y.. on G. We have

Pao@) = | PanWhu(dy)

and therefore by the previous section, MB,(2)) >u.(t). Now if y € B,5(2) N G,
then P(y, A,) > 0, and therefore, P(y, A) = ®,(8/2). We conclude from the
strong Markov property [18] that

#x{w I xT+1(w) € A} % @n(IB/z)un(T)
and the lemma is proved.

We continue to suppose A is a Borel set in B,,(z), 0 < d(z, 0Q). Let
A= A°NQ, and define for € B, (), y€Q, n=1,2, ...

Qu(x, y) = Plo, y)
Qa9 = | | IO P, w0ds - do,

where in the second formula 2, = , x,., = y. If g > 0 is harmoniec, there
are similarly defined quantities Q:(x, ¥). The integral

SA e Qi@ Yym(dy) = Ry(x, A)

gives the probability p{w |x.(®)e A for some n=>2}. By Harnack’s theorem
and the fact

I, Py(as, @50) = g(“”"“) II"., P(w;, @:..)

there exists a constant M = M, (r,), dependmg only upon the dimension (%)
and 7, such that
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(4.3) AilRAx, A) < R\(v, A) < MR,(z, A)

for v € B, () and A & B, ,(2). We have proved:

LEMMA 4.6. With notations as in Lemma 4.5 and (4.3) we have for
z€ B, ,(2) and A S B, ,(2) Borel

(4.4) plo |z, (w)e A for some m = 2} = ]—I‘IQD,,(,B/2)’M,,(T) .

Recall that 7 = m(A)/m(B,(2)), ¢ =supd(y), ye€B,x(2), and B =
m(4)m(B,)7 (o + o).

5. Regions of type (R, k, X, t)

Let Q, 6(-), and r, be as before. A region O = Q has type (R, k, %, t) if

(i) d(z,0Q) > RforallzeO

(i) 8(y) < T, yeBryle), 2€0

(iii) There exists a point w € O and for every z € O a sequence D,, --., D,
of balls, D; = Bg(z;), some z; €O, such that

(@) 2e€B,x(z), w=z2,

(b) m(BroR(zi) n BroR(z:f+1)) = tm(BR(O)) 1=j=k-1.

If O has type (R, %k, Z,t), we associate to it the number g =
tm(Bg)m(B,)™ (R + Z)™. Notice that if A; = B, (2;) N B, z(2+1) S B, z(2),
the number g; associated to A4; in Lemma 4.5 is at least as large as 8. Note
also that g3 is actually a function of ¢t and R/Z.

LEMMA 5.1. Let O have type (R, k, Z,t), and let we© be as in the
definition. If g is a positive harmonic function on Q, then for every x € ©

(5.1) o> | 5n() € B, p(w) for some m =1} = (ﬁson(,B/Z)un(t))k—l

where M is as in (4.4).

Proof. The proof is a simple induction based on the strong Markov
property and (4.4). If k=1, thereis nothing to prove. Let usassume (5.1)
is known for pairs ¢, @ which can be connected by balls D,, .-, D, as in
the definition. Given balls D,, «+-, D,,,, D, = By(2,), connecting = to w we
have by the induction hypothesis that

o | 2, (®) € B, n(2,), some m =1} = <]—:-{%(,8/2)%n(t))k_z .

Let T(®) = min {m|z,(®) € B, z(2,)}, and define T\(w) = min (I, T(»)). By
the strong Markov property and (4.4) we have for each !
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v |2, (w) € B, z(w), some m = 1}
= pi{w | Ty(w) = T(w) and @, ()€ B, z(w) some m = 1}

= ptfo | Tiw) = T} 2e.6/2u0) -

Letting I — o, the Lemma obtains.

Remark 5.2. It has been convenient but hardly necessary to use the
density theorem for Lemma 5.1. The reason the density theorem is un-
necessary is that it is obviously possible to calculate directly the core of a
region which is the intersection of two balls. Lemma 5.3 below contains the
important application of (4.4).

LEMMA 5.8. Let the notations and assumptions be as in Lemma 5.1.
If AZ B,xz(w) is a Borel set such that m(A) = sm(Bg), and if B’ =
sm(Bg)m(B,) (R + X)™, then forall x€0
piow |z, (w) e A, some m = 1}
= M H(u(O)Pu(8/2)) " Ua(8)Pu(B/2) -
Proof. Apply Lemma 5.1 and (4.4) together with the strong Markov
property as in the proof of Lemma 5.1.

Suppose F' is a Borel function on Q, 0 < FF <1, such that P,F = F.
That is, for all xeQ

(5.2)

F@) = | P Fwdy .

We wish to obtain a uniform bound (either an upper bound or a lower bound)
for F on any region O & Q of type (R, k, Z, ?).
Let w be the distinguished point in O, and define complementary sets

A; & B, z(w), i=1,2, by

A, = {ye B, z(w)| Fy) = 1/2}

A, = {ye B, z(w)| F(y) > 1/2}.
If ¢=1 or 2 is such that m(4;) = (1/2) m(B,z), the number s = s, associated
to A; in Lemma 5.8 is at least (1/2)rf. For the same set A; it is clear that
s = t/2, and therefore B’ = 2™g. It follows from (5.2), the fact g is a
function of ¢ and R/Z, and the preceding discussion that for all xe O
(5.3) pfo |z, () e A; for some m} = n(R/Z, k, t)

where 7 is some positive function on (R/Z, k, t) space.

Let us suppose it was ¢ = 1 in the above. Define T(w) on X to be the
least value of m, if any, such that xz,(®w) € A, and as usual define T)(w) =
min (!, T(w)). The process F,(w) = F(x; ) is a bounded martingale, [10],
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p. 300, and therefore for each m

F(x) =

ey

_Fu(@)pz(dw)

<In,+ 12,

2
—1-21,
2

where A\, = p{o| T,(w) = T(w)}. Letting m — o we see
(5.4) Fo)<1-— %n(R/Z, k t) (ze0).
Similarly, if m(4,) = (1/2)m(B,,z), we find
(5.5) . F(z) = —;-v(R/E, kt) (xe0).

Remark 5.4. The function 7(-) is uniformly bounded away from 0 on
any set of the form

{(RIZ, b, ) |RIEZ e,k < b, t = a)

where @, ¢ > 0 and b < . This remark will be useful in Section 6, where
in certain arguments a number of sets O occur having such simultaneous
bounds on the associated (R/Z, k, t).

6. Lipschitz domains

Let Q < R™, m = 2, be a bounded Lipschitz domain. This means by
definition that for each PedQ there is a local coordinate (z, ), zeR™,
t e R, a Lipschitz function b(z), z€ R™*, and a neighborhood U of P = (z,, t,)
such that

QNU={k1?|bkz) <t}nU.
As noted in Section 2, the results of [16] imply that if Q is Lipschitz, then
every g € 9(Q) is a kernel function at some PcoQ. We fix P and a kernel
function g at P. In all that follows g, refers to 2, when no confusion can
arise, and we recall that £, almost every sample path converges to P.
The following lemma is proved in Section 8.

LEMMA 6.1. There exists a function v(a) = v.(a) <0, 0<a<l, m =
dimension, with the following property: Given balls B, D,, D, such that

(a) D, & D, concentrically;

(b) r < ar,, r; =radius D;, 7 =1, 2;

(c) center B¢ D,
and a postive harmonic function g on B, then
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(6.1) SBM 9(x)dz = 7() SW g(z)dz

where A = D¢ N D,. Moreover, lim,., v(a) = 1.
Definition 6.2. If PeoQ is as above, we define for d > 0 an open set
S(d, P)
Sd,P) ={xeQ|d2< ||z — P|j<d}.
In what follows d will be assumed small enough to insure that S(d, P) & U,
where U is the neighborhood of P at the beginning of this section.

LEMMA 6.3. There ewists a number v >0 such that if x€Q and
[|& — P|| > d, then the p,(=p) probability that the first visit to B,(P) is
made in S(d, P) is at least 7.

Proof. Let 2’ € Q be such that o’ ¢ B,(P), but B(z') N B,(P) #+ @. Taking
v=1(1/2) in Lemma 6.1 we see that the conditional (z,.) probability of moving
in one step to S(d, P), given that one moves in one step to B,(P), is at least
v(1/2). Since the process visits B,(P) with g, probability 1, the distribution
of the first visit to B;(P) must assign mass at least v to S(d, P). The
lemma is proved.

LEMMA 6.4. Let d,, n =1, be a sequence of positive numbers decreasing
to 0, and let S=U,_ S(d., P). For any x€Q the p, process visits S
infinitely often with probability 1.

Proof. Let v(-) be as in Lemma 6.1, and let «, be a sequence decreasing
to 0 so rapidly that ~v(a,) > 1 — (1/2)". By choosing a subsequence of {d,}
and then renumbering, if necessary, we can assume d,/d,,, < «, for all n.
Define 7,(w) = inf {| z,(®) € B, (P)}. The requirement d,/d,,, < «, insures
that 7, = 7,., on a set whose measure is at most (1/2)". (Argue as in
Lemma 6.3 using 7(«,) instead of v(1/2).) Now fix n, I > 0, and let E(n, I)
be the set

B(n, 1) = {0] 24(®) < Tun(@) < -+ <Tpus(@) and
By (@) € S(darsy Py 0S5 1}

Obviously, f(E(n, ) < (1 — )", where 7 is as in Lemma 6.3. If we
choose 7, and ! so large that 2=™™ <& and (1 — 7)""* <e, then for all
n =mn, the set E(n, 1) U{®| T, i(®) = Tpyjn(®), some 0 <j <1 —1} has
measure at most 2¢. Thus, the set of @ such that 2z,(®) e S infinitely often
has measure at least 1 — 2¢, and since ¢ is arbitrary, the lemma follows.

Definition 6.5. [17]. A set A= Q is said to be thin at P if for every
xeQ and e > 0 there is a neighborhood V of P and a superharmonic fune-
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LEMMA 6.6. If A is a Borel set which is thin at P, then p, almost every
sample path visits A at most a finite number of times.

tion g, < g on Q such that g, = gon VN 4 and g,(x) < eg(x).

Proof. Use the argument following the statement of Theorem 2.4 with
O replaced by AN V.

Definition 6.7. Given ¢,d >0, ¢ < 1/2, define a set T(s,d) = Q by
T, d) ={v=(2,t)eQn UlxeS(d, P) and b(z) <t< bR + ed}. If M is
the Lipschitz constant for b at P, and if P = (2,, t,), then for all (z, t) € T(e, d)
we have

(6.2) t—b@) | = —2 M+ 1)z — 2] -
1 — 2¢&

This is because (z, t) € T(c, d) implies ||z — z,|| = (1/2 — e)(M + 1)7'd.

Remark 6.8. Suppose T is a subset of Q which is contained in a set S of
the form
(6.3) S={z1cQnNU|bkr <t< bR + c@)}
and suppose

cr  _

e |2 — 2|
Then by Lemma 5.4 of [16] there is a sequence gq,, g, - - - of nonnegative super-
harmonic functions on Q such that ¢, <g onQ, ¢, =k on Sn S@/2", P),
¢, is harmonic away from S n S(1/2*, P), and lim,_.q,(x) = 0 for all z ¢ P.
We will make use of this fact in the Lemma to follow.

lim

LEMMA 6.9. Let {¢,} and {d,} be sequences of positive numbers tending
t0 0. There ewists a sequence n, < m, < -+ such that T" = U,_, T(e,,, d.,)
s thin at P.

Proof. We may suppose T(e,, d,) is defined for all » and also that
S(d., P)N S@., P)= @, n#n'. Let T=U._ T(s,, d,). Then by (6.2) and
the fact ¢, — 0 we see that T is contained in a set Sasin (6.8). Let q,, q;, +++
be as in the discussion preceding this lemma. Fix xeQ. There exist
sequences m, and n, such that for each %

1\™ 1 1 \™e+?
G) 20> 5a>(3)
and ¢, (%), @m,+:(®) < (1/2)*. Define @i(y) =3 7, (¢n,(¥) + @m, (). If yeQ,
there is at most one term in the series defining @, which is not harmonic at
y. Since @,(x) < oo, it must be by Harnack’s theorem that Q, < « on Q,
and Q, is superharmonic on Q. Setting T’ = U;_, T(.,, d.,), we claim 7"
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is thin at P. For on each set T’ N Byp=(P) = T/ we have Q, = g, and
since Q,(y) — 0 for all y, T" is thin at P.

Combining Lemmas 6.6 and 6.9 we have

LEMMA 6.10. With notations as in Lemma 6.9, p, almost every sample
path visits T" at most a finite number of times.

LEMMA 6.11. Let the notations and assumptions be as in Lemmas 6.9-
6.10. Define W = U, (S(d., P) N T(e,, d.)). If xeQ, then p, almost every
sample path visits W infinitely often.

Proof. Apply Lemmas 6.4 and 6.10.

Our first application of Lemma 6.11 is to prove the g, sample sequences
do not converge tangentially to P. It is not true however that the conver-
gence is nontangential. Writing «,(w) = (z,(®), t.(w)) when z,e U, we let
A e B be the set

A= {w | hm,,wm = 0}

where as before P = (2,, t,). We will prove g,(A) = 0.
Given » and ¢ > 0, define a set A(n, ¢)e B by

.Mmaz{weAw%ﬁg%%<gkgn}.

Fixing z, there exists an n such that
(6.4) LA, €)) = (1 — e)p.(4) .
Now choose d = d(n, ¢) so small that if

Ad) = {weA||lx, — P||< d, some k< n}
then
(6.5) rA@) < <.

Next, let ¢, be a sequence of positive numbers such that D rer<oco. Associate
toeach¢, an n, and d = d, as in (6.4) and (6.5). Define F < Q as

F = U S, P) N T(dy, &) -

If w e A and if # is such that »,(w) € F, then for some % one of the following
two statements must be true:

@ n<mn and ||z, (@) — P|| < d,.

(i) n = n, and t, — b(z,) = €, |2, — 2 ||.
In other words for this @ there exists a k such that € A(d,) or @ ¢ A(n,, €,).
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Now by (6.4), (6.5), and our choice of ¢, the set of w € A which belong to
A(dy) U A(ny, €,)° for an infinite number of % has measure 0. On the other
hand, g, almost every sample path visits F infinitely often by Lemma 6.11.
We conclude that p,(A) = 0. We have proved

LEMMA 6.12. For each x€Q p, almost every sample path satisfies

lim sup,_...
S Py

7. Proof of Theorem 2.7

Let Q = R" be a bounded Lipschitz domain, and let g be a kernel func-
tion at PcodQ. We are to prove that if £ e 3B, then p,(E) = 0 or 1, where
Y. = 4.

We base our proof on the following familiar fact (see, e.g., [4]): For all
n E(Cg|®y, «--, x,) = &, (E), ©,=,(w) a.e., where 9, is the charac-
teristic function of E, and therefore by the martingale theorem

(7.1) lim, .. ¢, (B) = Xp()

a.e. Of course the right side of (7.1) is 0 or 1 a.e. g,.

Notations will be as in Section 6. Recall that M is the Lipschitz con-
stant for b in a neighborhood of P. If ¢, d >0 are sufficiently small, then
the open set O(e, d) will be a subset of Q N U, where O(e, d) is defined by

O, d) ={w= (2% |]lz— 2| <d and b(z) +ed <t <t,+ (M-+ 1)d}.

Notice that O(e, d) contains S(d, P) N T(e, d)°.

If ¢ and d are small, and if we O(e, d), say w = (2, t), then any w' € 0Q
such that ||w' — w|| = d(w, 6Q) will be of the form w' = (#, b(z')). We
claim d(w, 0Q) = ed/(M + 1). For if ||w — w'|| <ed/(M + 1), then in
particular ||z—2'||<ed/(M+1) and |b(R)—¢t|=[t—bE)|+|b()— b(z)| <
ed/(M + 1) + M||z — 2 || £ ed. This contradicts the definition of O(e, d).
Define R=R(e, d)=2"'ed (M +1)"'. By what has just been proved, d(w, 6Q) >
R for all w e O(e, d).

Next, define £ = Z(¢,d) = @M + 1)d. If xe0O(,d), == (2, ¢), then
d(z, 0Q) < |t — b()| < (2M + 1)d. Notice that R/X is a function of ¢ and M.
Next, we will choose values of k£ and ¢, depending only upon ¢ and M, such
that O(e, d) has type (R, &, Z, t).

The distinguished point w, € O(¢, d) will be taken to be w, = (2, t, +
(M + 8/4)d). Given weO(s,d), w= (zt), join w to w, by the following
rectilinear path, L= L(w, w,). The first portion of L is the vertical segment
connecting w to (2, t, + (M + 3/4)d) = w’. This segment lies in O, d) if
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€ < 3/4, as does the horizontal segment connecting w’ to w,. The length of
L is less than (2M + 1)d +d = 2(M + 1)d. Next, choose points x,, @,, - -, @,
successively on L with », = w and ||, — ;|| = »R (r, as in previous
sections), 1 <i<k—1, and z, = w, ||, — 2| < r,R. There is a di-
mensional constant t >0 such that m(B, () N B, x(®:1,)) = tm(B;) (of
course ¢ also depends on 7, whose definition depends only upon the dimen-
sion). In this construction & < 2(M + 1)d(r,R)™ = 4(M + 1)*(er,)™". Set k=
[4(M + 1)(er)™"] + 1, [-] = greatest integer function. Then % depends
only upon ¢ and M. Therefore, O, d) has type (R, &, 2, t) depending only
upon ¢, M and the dimension. Because of this we shall denote the function 7
of equations (5.4) and (5.5) by 7=7(¢, M). We have that if F is Borel on Q,
and if P F = F, 0 < F <1, then either

(7.2) nwz%maM)

for all € O(, d), or else

(7.3) H@él—%maM)

all x€O(e, d). We shall apply (7.2) and (7.3) to the function F(x) = p,(E)
(see 2.4).

For fixed ¢ it is clear the set of d for which (7.2) holds on O, d) is
closed, and the same is true for (7.3). Therefore, unless there is for a given
¢ a sequence d, — 0 such that both (7.2) and (7.8) hold on O¢e, d,), it will be
the case for all sufficiently small d, say d < d(¢), that the same one of (7.2)
or (7.3) holds on 9(¢, d). There are two cases to be considered.

(a) For every small ¢ there exists d = d(¢) as above. In this case
choose a sequence ¢, — 0 such that, say, (7.2) holds on O(e, d), d < d(sy).
Define

Vi = Ua<aep 0@, d) «

V. contains all (2, t) € Q in some neighborhood of P such that [t — b(2)| >
€ [|2 — 2,||. Therefore, by the discussion at the end of Section 6, for g,
almost all sample paths, x,(®), there exists a £ such that x, ¢ V, infinitely
often. For such a path we have by (7.1) and (7.2) 9 (w) = (1/2)7(¢,, M) >0,
so we E. Thus p,(E) = 1. Similarly, ¢,(E) = 0 in the case of (7.3).

(b) There exists a sequence ¢, — 0 and for every k a sequence d,, — 0
such that for every ! both (7.2) and (7.3) hold on O(e,, d;;). Define

O(er) = U, O, dy) -



208 WILLIAM A. VEECH

By (7.1) and the remark following (7.1) we see that g, almost every sample
path visits O(e,) at most a finite number of times. This being so, it is
possible to choose a sequence m, such that

k
4@ | £,©) € Ussm, ©cs, dy) for some m} < (£ .

Then if O = Ui O, dim,)s Y. almost every sample path visits O at most a
finite number of times. But by an earlier remark O contains

Ulc (S(dkmk, P) N T(ek’ dkmk)c) ’
and we have a contradiction to Lemma 6.11. The theorem is proved.

Remark 7.1. Suppose a Borel set A S O(¢, d) satisfies m(A4) =amo((e, d))
for some a > 0. It is not difficult to see there is a constant ¢, depending
only upon ¢, M, and the dimension, such that for some weO(,d)
m(A N B, z(w)) = cam(B, ). If O, d) has type (R, k, Z,t), then we can
use w for the distinguished point, changing the type in the worst case to
(R, 2k, Z, t). Thus by the results of Section 5 there is a number \ =
Ma, e, M) > 0 such that for every wze O(¢, d) the g, probability of ever
visiting A is at least \.

If d, is a sequence decreasing to 0, the event

E. ={w|z,(®) e U0, d,) infinitely often},

which is a %, set, has positive probability if ¢ is small, as one can see by a
modification of the case (b) argument above. Since g (E.) = 0or 1, it must
be that ¢, (E.) = 1 for all 2 and small e.

If A< Q is a Borel set, we define

m(A N 00, d))
m(O(0, d))

where 0(0, d) is O(¢, d) with ¢ = 0. If D,(A) >0, we say A has positive
upper density at P.
From the definition of ©(0, d),

00,d) ={(z, ) ||z — 2| < d, b(z) <t = (M + 1)d + &}

we see that

D (A) = lim sup,_,

d"m(B,-,) < m(0(0, d)) = 2M + 1)d"m(B,-,) -
The region ©(0, d) N O(¢, d)° has measure at most ed"m(B,_,), and therefore
m(O(e, d)) = (1 — eym(O(0, d)) .
Thus, if A4 is a set such that m(4 N 0(0, d)) = am(0(0, d)), and if ¢ < a,
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m(A N O, d)) = (@ — &m(0(0, d))
> (a — e)m(O(, d)) .
If ¢ < a/2, the number on the right in (7.4) is at least (a/2)m(O(, d)).

Suppose A is such that D,(A4) =2« >0. There exists a sequence d,—0
such that m(A N O(0, d,)) > am(O(0, d,)). We fix 0 < ¢ < a/2 small enough
that g (E.) = 1, where E. is associated to {d,}, as above.

By Remark 7.1 there is a number \ > 0 such that if x € O(e, d,), the g,
probability of visiting A starting from « is at least . In fact, the argu-
ments leading to Lemma 5.3 can be modified slightly to show the probability of
visiting A before leaving the ¢, neighborhood of O(e,d,), ¢,=(1/2) inf d(z,0Q),
2€0(e, d,), is at least N. Define stopping times 7, < 7, < --. as follows: 7,
is the time of the first visit to J O(e, d,). Given 7, +++, T,, T,i, >7, is the
time of the first visit to U,.. O, d), ., €0O(, d). If the d,’s decrease
rapidly, each event E, = {o|w.(®)e 4, some m, 7,(0) <m< 7, ,(0)}
will have probability at least n. Thus N, U;-, E, = E. has measure at
least ». Since E.eB,, p.(E,) = 1.

THEOREM 7.2. If A< Q is a Borel set which has positive upper density
at PeoQ, and if g is a kernel function at P, p almost every sample path
visits A infinitely often.

(7.4)

Remark 7.3. Of course Theorem 7.2 implies g, (E.) =1 for all ¢ > 0,
E., as above.

Boundary Values 7.4. We continue to suppose g, is p¢? for a kernel
function g at PedQ. Let & be a function on Q which satisfies Harnack’s
inequality, and suppose h(z,) converges for z, almost every sample path.
Theorem 2.7 implies the limit is constant, say lim Ai(x,) = ¢ a.e., and the
constant is the same for all starting points .

Given ¢ > 0, define

C.={(zt)|t>br) +ecllz—2|}nU.

We claim C, cannot contain a sequence «, such that limi(z,) = ¢, exists,
but ¢ +# ¢,. For there would exist by Harnack’s inequality an s > 0 such
that if A, = B,, (x,), r, = d(x,, 0Q), then |A(x) — c¢c| = (1/2) [¢ — ¢,| on A,,
n large. If A = U, A,, then A has positive upper density at P, and there-
fore must be visited by g, almost all sample paths. This is a contradiction,
and we have

THEOREM 7.5. Let h be a positive function obeying Harnack’s inequality,
and suppose lim, h(x,) exists a.e. tl, g a kernel function at P. Then h has
a nontangential boundary value at P.
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Remark 7.6. Theorem 7.5 is a generalization of Fatou’s theorem. For
let 2 be a positive harmonic function on Q. If f = 1 then h(x,) converges
p¢: a.e.. Thus, for (harmonic measure) almost all PeoQ, lim, k(x,) exists
a.e. !, g a kernel function at P. By Theorem 7.5 & has a nontangential
boundary value at almost all P = 6Q. (Harmonic measure.) (See [8] for a
probabilistic treatment of the boundary value problem for superharmonic
functions.)

Remark 7.7. Hunt and Wheeden [16] prove that nontangential boundary
values at almost all points of 0Q imply fine boundary values at almost all
points. Fine boundary values are obtained probabilistically by Doob [8]. It
would be interesting to have Theorem 7.5 for fine boundary values. What
is involved is a converse to Lemma 6.6.

Remark 7.8. Of course not the full strength of Harnack’s inequality is
needed in Theorem 7.5. Since there are no obvious applications, we see no
point in complicating the statement.

8. Proof of Lemma 6.1

This is the generalization from 2 to # dimensions of Lemma 6.1 of [21].
The proof in [21] was “elementary”, involving only the Poisson integral
formula, Fubini’s theorem, and plane geometry. For the general case we
found it necessary to use an argument which was not elementary (but which
did establish more; namely the phrase “function g on B” can be replaced by
“function g on BN D,’). The argument which appears below is elementary
and has been communicated to us by Richard Hunt. Hunt’s argument is
simpler than the one in [21], although it bears at least some spiritual re-
semblance to it.

First we note that the applications of Lemma 6.1 require only that it
be proved under the additional assumptions 0 < @ <1/2 and s€ B, where
s is the center of D,. (In the applications s€dQ and B is contained in Q.)
Also, the ratios of the integrals appearing in Lemma 6.1, as well as the
harmonicity of the integrands, are unaffected by translations and dilations.
For this reason we may suppose always that B is the unit ball, D, is the
ball of radius R > 0 centered at s = (S, 0, ---,0), S=max (1, R), and D,
is the ball of radius R centered at s, 0 < a« £1/2. If BN D, = @, then
(6.1) is true with 1 replacing v(«), and therefore we may suppose 0 < S—R =
S — aR < 1. Define D, to be the ball of radius R/8 centered at s =
(S— (8/49)R, 0, ---,0). Our assumptions imply D, & BN A = B D¢ N D,.

By the Poisson integral formula and the Fubini theorem it will be enough
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to produce v(«) with the desired properties for the functions P(z, ), z€ 0B,
where P(z,x) = (1 — ||z|®(]|z2 — «||™). To this end we consider separately
the cases ||z — s|| < 2R and ||z — s|| > 2R.

Case 1. ||z — s|| < 2R. Below C denotes a constant, possibly different
on different lines, but which in all instances depends only on the dimension.
Notice that S>1 implies 1 — (S — aR) < aR. If B ., is the ball of
radius S — @R (<Z1) centered at 0, then

SBOD P(z, 2)dx <\ P(z, x)dx — S P(z, x)dx

Bg—aR

®-1) 1—(S—aR) <CaR.

l,
< C(
Now D, & A implies

S Pz, v)dx = CR"P(z, §)
BNA

and since ||z —s||Z ||z —s| +|ls— 5| <3R, the right side of this
inequality is at least C(1 — || s'||). Finally, 0 < @ <1/2 and 0=S—aR=
1 combine to imply 1 — |[s'|| =1 — (S — (3/4)R) = R/4, and therefore

8.2) Sm P(z, v)dz = CR .

Together, (8.1) and (8.2) tell us v(a) = (1 + Ca)™".

Case 2. ||z — s||>2R. This assumption implies ||z — y || >R, y€ D,,
and thereforeforx, y € D,, |[z—2|| =38||z—y|. (|z—z|=Z|lz—yll + [ly—2] =
lz =yl + 2R <3|z — y||.) Therefore, if x€ BN D,
®-3) c-t=loll < pe g <o tolol

llz —s"[" lz — &[]
The measure of D, is C(aR)”, and 1 — (S — aR) < aR, and therefore by
(8.3)

S Pz, wyde < ¢ L= 8 = ak) (, py
EEXdR

=Cllz = ¢|™aR)".
On the other hand the mean value theorem together with (8.3) and the
earlier observation 1 — ||s'|| = R/4 tell us

(8.4)

S P(z, o)do = S Pz, x)ds
BNA Dy
(8.5) — CR"P(z, §)
> CR™ ||z — ¢ || -

Finally, (8.4) and (8.5) combine to give v(a) = (1 4+ Ca™*)™*, and the lemma
is proved.
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9. Proof of Theorem 2

We begin with the statement of a lemma whose proof will be deferred
until later.

LEMMA 9.1. For each integer m = 1 there exists an absolute constant
L = L, with the following property. If @, @, -+, Q. ts a collection of
balls contained in the unit ball of R*, with each containing O and if S =
a(U:;l Q:), then
9.1) S| = L,
where |+ | denotes (n — 1) dimensional surface area.

Proof of the Theorem. 9.2. Let EF = B, be measurable, and let &, 8 >0
be numbers such that m(E) > g and || a(-, E) ||.. < a. By the regularity of
Lebesgue measure and the monotonicity of a(x, F) in E, we may and shall
assume that E is compact and «a(xz, E) < a for every x e E. This being so
there exist balls @, -+, @, in B, whose union covers F, and such that
m(@; N E) <am(Q;), 1 =1=m.

If @ is a ball and A > 0 a real number, we use MQ to denote the con-
centric ball of radius MR, R = radius Q.

Let QF be one of @, ---, @, whose radius, R,, is maximal. If W, is
the union of the Q,’s which intersect (1/2)Q}, and if T, = (5/2)Q: (possibly
T.Z B,), then Qf =& W, < T,. Of the balls which remain, if any, let QF
have the maximal radius R,. We associate W, and T, to Q; as above, this
time using only balls which do not enter into the definition of W,. Continuing
in like fashion we exhaust the original collection of balls forming a sequence
(QFf, Riy W,, T)), i =1, «-+, 1, such that

(a) QF & T; concentrically and T; = (5/2)Q}

(b) 1/2)QFN(1/2)QF =@, t#J

() ES Uiy Wy, and W; & T, all 4.

Define 8; by g;m(T;) = m(E N W,), j =1, -+, l. Using the above properties
we have

B< T mENW;) = 34, Bym(T)
=5"3 ., Bjm(%Q;F> < 5"m(B,) max g; .

Setting w, = m(B,), it follows there is a j with g; > 5™w;'.

We now ignore all balls except those whose union forms W;, j as selected
above. A translation and dilation sends T; to B,, Q} to B,;;(0), E N W; to
a set which we again denote by E and which has measure at least 578, and
the balls comprising W; to a collection which we denote by Q,, ---, Q,. (new
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m) such that Q, = B;(0) and @Q;N (1/2)Q, # @, all j. Notice that
m(Q; N E) < am(Q;) remains in force. We have also

(9.2) m(Q;) = 20™w,, .

~ _ 1L
9.3) Radius Q; = 4, ¢ = "
(9-4) m(E N Q) < am(Q;) = aw, .

Fix any ¢ > 0, ¢ < /2, to be determined later, and let = be a partition of R”
into cubes with sides parallel to the axes and side length ¢/n"*. Each cube
has diameter ¢, and so if x€ Q;, d(z, 0Q;) = ¢, the cube containing x will be
contained in Q,;. Define f =1 — ¢/6. We let Qf for each j be the ball con-
centric with Q; and of radius f9;, ¢; = radius Q;. If x € @}, then d(x, 0Q;) =
(1 —7);, =1 — f)d =¢, and the cube of 7 containing « will be contained
in Q;. Define E, = En (U}, Q). If C, ---,C, are the cubes of = which
are contained in one of the Q,’s, then by the observation above, E, & U:-,C..
It follows there exists C; such that m(E, N C;) = (m(E,)/®,)m(C;), or if Q;
is the ball containing C;,

9.5) m(E,N Q) = (-2) m(B) .
W, \n

Next, define E, = E N E¢. By definition,
E, = (U7 Q) N (N7 (Q))) -

If xe E,, let ©=1(x) be the smallest subscript such that e Q;. This func-
tion is measurable, as is the following ¢(-, -) on E, X B,:

m(Q:;)™" yeQF, 1= 1i(x)
0 yeQr i=1i@).
Since m(Q;) = f"m(Q;), we see that
SE SB (@, y)dody = frm(E,) -

Therefore, there exists y € B, such that

q@, y) = {

9.6) |, a@ s = LB
Eqy @

n

Now m(Q;) = 6"w, for all 7, and therefore ¢(z, y) < 0 "w;'. Using (9.6)
we see that a portion of E, measuring at least f"0"m(E,) is covered by balls
which contain y. Let E; be the portion of E, so covered. We have

9.7 m(Es) = fromm(E,) .

Discarding balls which do not contain y and renumbering, we have a collec-
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tion @, «-+, @, of balls containing y and covering E; and also satisfying
(9.3)-(9.4) above.

If ¥ is a measurable subset of 3Q}, the volume of the set I, <= (Q¥)°N Q;
consisting of all points which project radially onto ¥ is, since radius QF =
f9;, at most

m(E) = B =S 5
n

where %, is the radial projection of ¥ onto the concentric sphere of radius 1.
Since [X| = 07! |%,| we have
9;(1 — ")
m(E,) < _J—an_—l__[ Z
=271 - NZ]
because f = 1/2 (recall that ¢ < 4/2).
Now the measure of E* is bounded by the measure of

(U;'n=1 Qa) N (ﬂ}"=1 (Q;k)c) .

Every point of this latter set is contained in a radial segment connecting a

point x in some 0QF, xcd(Ur, QF), to 9Q;. Therefore by (9.8) and the
fact 1 — f=¢/o

(9.8)

m(E¥) < 2”—1§| S|

where S = (U7, @F). By Lemma 9.1 and (9.7) we have
m(E,) = f_na_nm(Eo*)

_S_ 22n—1Ln% .

(9.9)

If m(E) = 1/2)m(E) = (1/2)57"8, then by (9.5)

1/6\"1
o, 2 (£ ) L5
"7 w, \n?/ 2 R

or

(9.10) a=ANe"g

A, a dimensional constant. If m(E,) = (1/2)m(E) = (1/2)57"8, then (9.9)
tells us

(9.11) B ANe

for a dimensional constant A,. New set ¢ = a*, u = (n + 1)™, assuming
this number is less than 6/2 = (A/4)8. Then (9.10) and (9.11) coalesce into an
estimate

(9.12) a = AR,
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If the ¢ chosen above is larger than §/2, then a = (1/40)"*'. It follows that
C, > 0 can be chosen depending only on the dimension so that in all cases
a > C,m(E)*, Theorem 2 is proved, assuming Lemma 9.1.

Remark 9.3 Our first argument for Theorem 2 yielded the exponent
(n+1)?, but after seeing the aforementioned argument of Hunt’s we realized
it is more efficient, at the first stage, to consider the balls which intersect
(1/2)Q;, ete., instead of those which intersect Q.

9.4. Proof of Lemma 9.1. Let B< R" be a ball, and wedB. If lisa
unit normal vector at w, and if v is a unit vector such that |(v, )| = 1/n'"?,
there is a dimensional constant ¢ > 0 such that if w + tvedB, t # 0, then
|t| = er, r = radius B.

Let S, Q, +-+, @, be as in the statement of Lemma 9.1. For each
x e B,_, we consider those values of £ =0 such that (»,t) = we SN dQ; and
if J(w) is the unit normal at w in 0@Q;, [(, 1) | = 1/n'* I, = n'" standard
basis vector. Let N(x) be the cardinality of the set so defined. By consider-
ing the various coordinate planes x; = 0 in like manner we see that if A is
a bound for the integral of N over B,_,, then 2n** A is a bound for | S|.

Let ¢ be as above. We order the points above x entering into N(x) as
(2, 1), (@, t), =+, (&, t), with ¢ >t > - >t If jis odd, 7 <k —1,
there exists @, and ¢} such that (x, ¢;) and (x, ¢) €0Q, with ¢; >t =¢t,,, >
t;.,. By definition of ¢, and the fact Q, has radius at least (1/2)(|[« [[* + ¢3)'*,

t; — ties >-§— max (|| ||, ;) -

Simple computation shows the number of solutions with ¢; = ||x|| is bounded
by dlog (1/||x]|l), d a dimensional constant. The number with ¢; < [[a | is
bounded by 2/c. Thus, the integral of N has a finite upper bound, and as
remarked above, Lemma 9.1 is proved.

10. Remarks

If n=1, say Q= (0, 1), we have that every harmonic function is linear,
hence bounded. Thus, only g processes for g = 1 need be considered. It is
easy to see the p, probability of convergence to0is 1 — x, and to 1 is x.
It is possible to give a direct proof in this case of Theorem 7.2. (That is, if
A has positive upper density at 1, then =, visits 4 infinitely often with pro-
bability 1, given that it converges to 1.) We omit the details. However,
this result does imply Theorem 1 for n = 1.

RICE UNIVERSITY, HOUSTON, TEXAS
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