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A theory is presented of the quantum and transport lifetimes of the two-dimensional electron gas �2DEG� at
low temperature in a uniformly doped wurtzite group-III-nitride single heterostructure. In the calculation,
besides the well-known scattering mechanisms, we took into account the roughness-induced scatterings, viz.
misfit piezoelectric charges and misfit deformation potential. We proved that these exhibit important scattering
sources for the 2DEG in wurtzite group-III-nitride heterostructures, in particular, the piezoelectric charges and
alloy disorder dominate the transport and quantum lifetimes in a high-density regime �e.g., ns=2�1012–10
�1012 cm−2�. Further, it is found that because of uniform doping, the electron distribution may be remarkably
shifted far away from the key scattering sources, thus increasing the lifetimes. Our theory is able to provide a
good quantitative explanation of the recent experimental data about the 2DEG lifetimes in a background-doped
AlxGa1−xN/GaN heterostructure. The theory may reproduce not only the magnitude but also the nonmonotonic
�bell-shaped� dependencies on the carrier density of both the transport and quantum lifetimes as well as their
ratio, which could not be understood if starting merely from the scattering mechanisms known so far.
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I. INTRODUCTION

In the investigation of transport properties of a two-
dimensional electron gas �2DEG� one has recognized a clear
distinction between two characteristic relaxation times.1 The
most commonly encountered is the transport lifetime, �t. This
is defined as an average amount of the intercollision time
that an electron remains moving in a particular direction �ap-
plied electric field� in the presence of scattering.2 The trans-
port lifetime can be extracted from the low-field Hall
mobility.3 Another relaxation time is the quantum lifetime,
�q. This is an average amount of the time that an electron
remains in a particular momentum eigenstate in the presence
of scattering. The quantum lifetime can be related to
disorder-induced broadening of the Landau levels of an elec-
tron in a magnetic field,4 so that this can be extracted from
the envelope of the Shubnikov–de Haas oscillations.5,6

The transport and quantum lifetimes are important trans-
port parameters used to characterize the performance of
high-mobility transistor structures. The improvement of the
performance in modern nitride-based devices requires the in-
vestigation and identification of detrimental scattering
mechanisms. It was shown2,3,6–12 that one of the most effi-
cient ways to identify them is the study of the evolution of
the transport and quantum lifetimes as well as their ratio
versus the carrier density.

It is worth mentioning that the above functional depen-
dencies for a 2DEG are determined by some factors, princi-

pally, the electronic structure, i.e., its confining sources along
the growth direction, and its scattering sources in the in-
plane. The latter is specified by the experimental conditions,
e.g., the carrier density regime in use. For instance, the quan-
tum lifetime of the 2DEG measured6 at low �0.3 K� tempera-
ture in an AlxGa1−xN/GaN heterostructure exhibits an in-
creasing function of the density from ns=2�1011–2
�1012 cm−2. This experimental finding suggested6,10 that
charged dislocations may dominate the transport properties
of the 2DEG in the AlxGa1−xN/GaN sample at low densities.

However, Lorenzini et al.11 have just recently reported on
the experimental data about the 2DEG in an intentionally
undoped single heterostructure made from Al0.23Ga0.77N
�210 Å� /GaN �4.7 �m� at high electron densities �ns=2
�1012–10�1012 cm−2�. The authors observed the following
striking features. First, their transport mobility �and transport
lifetime� is much �one order of magnitude� higher than that
of a nearly equivalent modulation-doped sample from
Al0.25GA0.75N �300 Å� /GaN �0.4 �m� reported in Ref. 12.
There, the scattering by remote donors inside of the barrier
layer even at a high doping level of 1019 cm−3 was found not
to be responsible for the low mobility, since its individual
mobility is two orders higher than the measured one. Thus,
the large difference in transport lifetime of the two samples
studied in Refs. 11 and 12 still remains unclear.

Second, Lorenzini et al.11 found a discrepancy between
the experimental and theoretical values of the quantum life-
time and the lifetime ratio. The measured quantum lifetime
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shows a pronounced peak in the 2DEG density evolution.
This classical bell shape is in contradiction to the prediction
from the existing theory2 based on the traditional scattering
sources. In addition, although the measured ratio of the trans-
port to quantum lifetimes has a bell shape as expected from
the theory, its peak is, however, two times smaller than the
calculated one.

Recently it has been pointed out13–15 that in actual lattice-
mismatched heterostructures interface roughness gives rise to
strain fluctuations in both strained and relaxed epilayers.
These fluctuations in turn produce random fields: misfit pi-
ezoelectric and misfit deformation potentials acting on elec-
trons moving in the in-plane.14,15 These roughness-induced
scatterings are proven16,17 to be important mechanisms lim-
iting the transport lifetime. So, we will include them in the
calculation of the quantum lifetime in wurtzite nitride hetero-
structures.

Moreover, it should be kept in mind that any doping of the
sample affects the 2DEG not only as a scattering source in
the in-plane but also a confining source along the growth
direction. The modulation doping is intentionally at a high
level �NI�5�1018 cm−3� so that both the effects are to be
taken into account. Meanwhile, the background doping is at
a low level �NI�5�1016 cm−3�, so that this is normally in-
volved merely as a scattering source. Up to now, the confine-
ment effect connected with background doping has hardly
been examined. Therefore, a thorough study of this is of
obvious interest.

Thus, the goal of the present paper is to develop a theory
of the quantum and transport lifetimes of the 2DEG at low
temperature in a wurtzite group-III-nitride single heterostruc-
ture, taking adequate account of the above-quoted
roughness-induced scatterings and the confinement effect
arising from background uniform doping.

The paper is organized as follows. In Sec. II below, for
calculation of the electronic structure we derive the poten-
tials due to all possible confining sources. In Sec. III, we
supply the basic equations to calculate the transport and
quantum lifetimes due to different scattering mechanisms.
Section IV is devoted to numerical results and conclusions
with reference to recent experiments on the lifetimes at high
carrier densities. Finally, a summary is given in Sec. V.

II. 2DEG IN A UNIFORMLY DOPED WURTZITE NITRIDE
HETEROSTRUCTURE

A. Variational wave function for the 2DEG in a heterostructure
of finite depth

We will be dealing with wurtzite group-III-nitride single
heterostructures, e.g., an AlxGa1−xN/GaN sample, which is
composed of an AlxGa1−xN layer grown pseudomorphically
on a GaN layer. The crystal reference system is such that the
z axis is opposite to the growth direction �0001�, and z=0
defines the interface plane between the AlxGa1−xN barrier
�z�0� and the GaN well �z�0�. It is assumed that the
AlxGa1−xN layer be under tensile strain, while the GaN layer
be relaxed.

As usual,18,19 for the electrons confined in the channel we
assume a triangular quantum well �QW� located along the

growth direction. It was indicated20–23 that the potential bar-
rier height may play an important role in certain phenomena.
Therefore, we must in general adopt the realistic model of
finitely deep wells.

At low temperature, the 2DEG is assumed to primarily
occupy the lowest subband. It has been shown20–22 that for a
finitely deep triangular QW, this may be very well described
by a modified Fang-Howard wave function, proposed by
Ando,20

��z� = �A	1/2 exp�	z/2� , for z � 0,

Bk1/2�kz + c�exp�− kz/2� , for z � 0,
� �1�

in which A, B, c, k, and 	 are variational parameters to be
determined. Here k and 	 are half the wave numbers in the
well and the barrier, respectively. A, B, and c are dimension-
less parameters given in terms of k and 	 through the bound-
ary conditions at the interface plane z=0 and the normaliza-
tion. These read as21,22

A	1/2 = Bk1/2c ,

A	3/2/2 = Bk3/2�1 − c/2� ,

A2 + B2�c2 + 2c + 2� = 1. �2�

.
The wave function of the lowest subband is to minimize

the total energy per electron, which is determined by the
Hamiltonian:

H = T + Vtot�z� , �3�

where T is the kinetic energy and Vtot�z� is the effective
confining potential. The latter arises from all possible con-
fining sources located along the growth direction, viz. poten-
tial barrier, polarization charges on the interface, Hartree po-
tential created by ionized donors and 2DEG, and exchange-
correlation corrections,

Vtot�z� = Vb�z� + V
�z� + VH�z� + Vxc�z� . �4�

The last term allows for a many-body effect in the 2DEG,
which may be of some importance at high carrier densities.

B. Confining potentials in a uniformly doped
heterostructure

Thus, in order to determine the QW wave function of
interest, we have to specify the individual confining poten-
tials appearing in Eq. �4�.

First, the potential barrier of some finite height V0 located
at the interface plane z=0 yields

Vb�z� = V0��− z� , �5�

with ��z� as a unity step function. The barrier height is re-
lated to the conduction band offset between the AlxGa1−xN
and GaN layers.

It is well known24–26 that due to piezoelectric and sponta-
neous polarizations in strained nitride heterostructures there
exist positive bound charges localized on the interface. The
polarization charges create a normal uniform electric field,
given by
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V
�z� =
2�

L
e
�z� , �6�

with 
 as their total sheet density. Here L is the dielectric
constant of the sample, neglecting a small difference in its
values between the well and barrier layers with the use of an
average value.

It was found27 that the total density of polarization
charges is large �
 /e�1012 cm−2�, so their electric field is
strong ��106 V/cm�. This facilitates the electron transfer
from localized donor states or, in case of very strong fields,
possibly even from the valance band to the QW at the inter-
face. It was assumed28 that this enables a density of uninten-
tional ionized donors of 5�1016 cm−3 in the whole sample.

Next, we are dealing with the Hartree potential induced
by the ionized donors and the electron distribution in the
QW. This is determined according to Poisson’s equation22,29

d2

dz2VH�z� =
4�e2

L
�NI�z� − n�z�� , �7�

in which NI�z� is the bulk density of impurities �per unit
volume� varying along the growth direction, and n�z� the
electron density.

The sample is uniformly doped, either intentionally in
some space at a high doping level �e.g., NI�5�1018 cm−3�,
or unintentionally �background� in its whole space at a low
one �NI�5�1016 cm−3�. Accordingly, the sample is as-
sumed to be doped with a constant impurity density NI in a
region surrounding the 2DEG and spreading from −zb in the
barrier to zw in the well: zb�Lb and zw�Lw, with Lb and Lw
as their thicknesses, so

NI�z� = �NI , for − zb � z � zw,

0, elsewhere.
� �8�

The electron density distribution along the z axis is fixed
by the envelope wave function from Eq. �1�:

n�z� = ns���z��2, �9�

with ns as a sheet density of the 2DEG.
We solve Poisson’s equation �7� in combination with elec-

trostatic boundary conditions, especially the vanishing of the
electric field at infinity z→ ±�.29 As a result, we may arrive
at an analytic expression for the Hartree potential,

VH�z� =
4�e2

L �
− NIzb

2/2 − nsf�z� ,

NIz�z + 2zb�/2 − nsf�z� ,

NIz�z − 2zw�/2 − ns�g�z� − g�0� + f�0�� ,

− NIzw
2 /2 − ns�g�z� − g�0� + f�0�� ,

	
�10�

in which the z intervals are, respectively, such that z�−zb,
−zb�z�0, 0�z�zw, and z�zw.

The functions figuring in Eq. �10� are defined in terms of
the variational parameters entering the electron wave func-
tion, given by

f�z� = A2e	z

	
�11�

and

g�z� = B2e−kz
kz2 + 2�c + 2�z +
c2 + 4c + 6

k
� . �12�

It is readily seen from Eq. �10� that within the variational
approximation with the use of the wave function from Eq.
�1�, the Hartree potential may be separated into two parts:

VH�z� = VI�z� + Vs�z� . �13�

The first term is to be regarded as the impurity potential fixed
by the doping profile, viz. the impurity density NI and the
doping sizes zw, zb; while the second one as the 2DEG po-
tential fixed by the sheet electron density ns and their distri-
bution, i.e., the variational parameters.

At last, the exchange-correlation corrections allow for the
many-body effect in the 2DEG, given by30,31

Vxc�z� = − 0.611
e2

L

 3

4�
n�z��1/3

, �14�

with n�z� as the electron distribution from Eq. �9�.

C. Total energy per electron in the lowest subband

We now turn to the total energy per electron for the 2DEG
occupying the ground-state subband. The expectation value
of the Hamiltonian from Eqs. �3� and �4� reads as

E0�k,	� = �T + �Vb + �V
 + �VI + �Vs + �Vxc . �15�

Upon employing the above-derived analytic expressions for
the individual confining potentials, we easily estimate their
expectation values for an electron described by the wave
function from Eq. �1�. The average energies figuring in Eq.
�15� are supplied in the following.

For the kinetic energy, it holds

�T = −
�2

8mz
�A2	2 + B2k2�c2 − 2c − 2�� , �16�

where mz is the effective electron mass of GaN in the growth
direction.

For the potentials related to the barrier and polarization
charges located on the interface, we have

�Vb = V0A2 �17�

and

�V
 =
2�e


L

A2

	
+

B2

k
�c2 + 4c + 6�� . �18�

Next, the average potential due to charged impurities can
be written in terms of the dimensionless doping sizes, u
=kzw and v=	zb, by
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�VI = −
4�e2NI

L
�A2zb

2
 e−v

2
− h2�v� + vh1�v��

− B2zw
2 
12h4�u� + 6�c − u�h3�u� + c�c − 4u�h2�u�

− c2uh1�u� −
e−u

2
�u2 + 2�c + 1�u + c2 + 2c + 2��� ,

�19�

where we introduced an auxiliary function

hn�x� =
1

x2�1 − e−x�
l=0

n
xl

l!
� , �20�

with n=0,1 ,2 , . . . as an integer.
In the case of experimental interest,3,11,12 the doping sizes

are usually large enough so that u, v�1. Then, by adopting
the approximation hn�x��1/x2 for x�1, Eq. �19� is simpli-
fied to

�VI =
4�e2NI

L

A2

	
zb −

B2

k
zw�c2 + 4c + 6�� . �21�

Lastly, for the 2DEG and exchange-correlation potentials,
it holds

�Vs =
4�e2ns

L

 A4

2	
−

A2

	
+

B4

4k
�2c4 + 12c3 + 34c2 + 50c + 33��

�22�

and

�Vxc = − 0.611
e2

L
� 3

4�
ns�1/3
3

4
A8/3	1/3

+ �3

4
�11/3

B8/3k1/3e4c/3��11

3
,
4c

3
�� , �23�

with ��a ,x� as an incomplete Gamma function.32

D. Infinitely high potential barrier

To illustrate the effect of uniform doping on quantum con-
finement of the 2DEG, we examine a QW of infinite depth
�V0→��. In this limiting case, we have A=0, B=1/�2, c
=0, so that Eq. �21� is simplified to

�VI = −
12�e2

L

NIzw

k
. �24�

The centroid of the electron distribution along the growth
direction is known18 to be located at

z0 = 3/k , �25�

from which its size is accordingly estimated to be 2z0.
The total energy per electron is supplied by a modification

of Eq. �15�, where the average 2DEG energy �Vs is to be
replaced with its half.18,21,22 Moreover, for simplicity the
exchange-correlation corrections are omitted. Then, as a re-
sult of the minimization of the total energy per electron with
respect to the well wave vector k, we obtain

k = �48�mze
2

�2L

11

32
ns +

1

2




e
− NIzw��1/3

. �26�

This expression for k is clearly distinguished from the
earlier formula17,18 by the presence of the last term on the
right-hand side, NIzw, which is referred to as the doping ca-
pacity. It is observed from Eqs. �25� and �26� that the elec-
tron distribution is shaped not only by the densities of elec-
trons and polarization charges but also that of ionized
donors. Since the charged donors decrease the well wave
vector, they increase the centroid of the 2DEG and, hence, its
size. Therefore, the 2DEG is shifted in the direction from the
barrier to the well layers, i.e., far away from such scattering
sources that are located in the barrier or near the interface,
e.g., alloy disorder, surface roughness, misfit piezoelectric
charges, and misfit deformation potential. This means that a
uniform doping of the well layer can lead to a weakening of
scatterings, and an enhancement of the transport and quan-
tum lifetimes.

In the actual model of finitely deep QWs, the attractions
of the 2DEG by charged donors in the well and in the barrier
are counteracting, as seen from Eq. �21�. However, since the
former is usually much �more than one order� longer than the
latter,3,11,12 the 2DEG is shifted toward the well side, so the
lifetimes are raised as above.

III. LOW-TEMPERATURE TRANSPORT AND QUANTUM
LIFETIMES

A. Basic equations

In this section we are dealing with the transport properties
of the 2DEG at high density and low temperature in wurtzite
group-III-nitride heterostructures, e.g., made from
AlxGa1−xN/GaN. For this purpose, we gather basic equations
necessary for calculation of the relaxation times.

The electrons moving along the in-plane are scattered by
different disorder sources, which are normally characterized
by some random fields. Scattering by a Gaussian random
field is specified by its autocorrelation function in wave vec-
tor space ��U�q��2.18 Hereafter, U�q� is a 2D Fourier trans-
form of the unscreened potential weighted with the lowest-
subband wave function from Eq. �1�:

U�q� = �
−�

+�

dz���z��2U�q,z� . �27�

In a high-density regime �ns�1012 cm−2� the multiple
scattering effects are negligibly small,33 so that we may
adopt the linear transport theory as a good approximation.
The inverse transport and quantum lifetimes for low �zero�
temperature are then represented in terms of the autocorrela-
tion function for each disorder as follows:1,34,35

1

�t =
1

2��EF
�

0

2kF

dq
q2

�4kF
2 − q2�1/2

��U�q��2
2�q�

�28�

and
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1

�q =
1

2��EF
�

0

2kF

dq
2kF

2

�4kF
2 − q2�1/2

��U�q��2
2�q�

. �29�

Here q denotes the momentum transfer by a scattering event
in the interface plane, q= �q�=2kF sin�� /2� with � as an angle
of scattering. The Fermi wave number is fixed by the sheet
electron density: kF=�2�ns and EF=�2kF

2 /2m*, with m* as
the effective electron mass of GaN in this plane.

The dielectric function �q� entering Eqs. �28� and �29�
allows for the screening of the scattering potentials by the
2DEG. As usual, this is evaluated within the random phase
approximation18,22

�q� = 1 +
qs

q
FS�q/k��1 − G�q/k��, for q � 2kF, �30�

with qs=2m*e2 /L�2 as the inverse two-dimensional �2D�
Thomas-Fermi screening length. The screening form factor
FS�t� depends on the electron distribution, i.e., the envelope
wave function from Eq. �1�. For instance, it holds for the
limiting case of infinitely deep QWs,18

FS�t� =
3t2 + 9t + 8

8�t + 1�3 , �31�

with t=q /k as the dimensionless in-plane wave vector and k
the well wave vector. The local field corrections are due to
the many-body exchange effect in the in-plane, given by36

G�t� =
t

2�t2 + tF
2�1/2 , with tF = kF/k . �32�

Next, we outline the possible scattering mechanisms for
uniformly doped wurtzite group-III-nitride heterostructures
at very low temperature, namely the one studied in Ref. 11.
The sample was intentionally undoped, so that it is assumed
to be subjected to some uniform residual �background� dop-
ing. The phonon scattering is evidently negligibly weak. In
addition, we omit the scattering by charged dislocations
since with an inclusion of their interactions the dislocation
scattering is seemingly less important in limiting the mea-
sured relaxation times. Therefore, the electrons are expected
to experience the following scattering mechanisms: �i� back-
ground impurities �BI�, �ii� alloy disorder �AD�, �iii� surface
roughness �SR�, �iv� misfit piezoelectric charges �PE�, and
�v� misfit deformation potential �DP�. The overall �transport
or quantum� lifetime is then determined by the ones for in-
dividual disorders according to Matthiessen’s rule

1

�tot
=

1

�BI
+

1

�AD
+

1

�SR
+

1

�PE
+

1

�DP
. �33�

B. Autocorrelation functions for scattering mechanisms

1. Background impurity

As clearly seen from Eqs. �28� and �29�, in our calculation
of the relaxation times the autocorrelations functions in wave
vector space ��U�q��2 take a key role. Thus, we ought to
specify them for the above-mentioned scattering sources.

Some of them have already been derived in our previous
work16 for modulation-doped samples. So, in what follows
we will list them and give the modifications necessary for
uniformly doped systems.

We are now dealing with the scattering by background
impurities, assuming an infinitely deep triangular QW. This
seems to be a good approximation for the special case of
uniform doping, where the 2DEG is surrounded by the im-
purities. In accordance with experimental conditions,3,11,12,37

the doping regions in the well and barrier layers are to be
regarded as infinitely long.37 Moreover, the sample is sub-
jected to thermal treatment during epitaxial growth. There-
fore, one has to allow for high-temperature ionic
correlation38,39 because Coulomb interactions between the
charged impurities in diffusion tend to diminish the probabil-
ity for large fluctuations in their density. Consequently, the
correlation among impurities reduces the quantities averaged
over their configurations, e.g., their autocorrelation
function.40,41 This means that ionic correlation weakens the
impurity scattering, so that the respective individual lifetimes
can be increased significantly, e.g., up to one order of mag-
nitude as in the case of modulation doping.17

As a result, we may derive the autocorrelation function
for background doping of the whole sample in the following
form:17,41,42

��UBI�q��2c = �2�e2

L
�2 NI

2k3FBI
uns�q/k� , �34�

where �. . .c stands for the averaging over a correlated impu-
rity distribution, NI is their bulk density. Here, the form fac-
tor for unscreened background-impurity scattering is defined
by

FBI
uns�t� =

1

t2�t + tc�
�d1�t� − 12d2�t� − 4d3�t� + 6d4�t� + d5�t�

− d5�− t�� . �35�

The functions figuring in Eq. �35� are given by

d1�t� =
1

�t − 1�6 ,

d2�t� =
t

�t + 1�4�t − 1�3 ,

d3�t� =
t

�t + 1�2�t − 1�6
2 +
�t − 1�2

t + 1
� ,

d4�t� =
t

�t2 − 1�3
1 −
t2 − 1

4
+

�t2 − 1�2

8
� ,

d5�t� =
t

�t + 1�6
2 + t + �t + 1�2 +
3�t + 1�3

4
+

3�t + 1�4

8
� .

�36�

We introduced in Eq. �35� a dimensionless parameter
which quantifies the ionic correlation effect:
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tc =
2�e2nI

LkBT0

1

k
, �37�

with nI as the sheet impurity density, given by38 nI=NI
2/3, T0

as the freezing temperature for impurity diffusion �
�1000 K�, and kB the Boltzmann constant.

It should be stressed that the ionic correlation is of great
importance in the linear transport theory. Indeed, an inspec-
tion of Eqs. �34�–�36� reveals the following asymptotic be-
havior of the autocorrelation function for correlated impuri-
ties at q→0 �i.e., forward scattering �→0�: ��UBI�q��2c

�1/q2. This enables the integral for the quantum lifetime
given by Eq. �29� convergent since from Eq. �30�: �q�
�1/q. On the contrary, for random impurities �tc=0�:
��UBI�q��2r�1/q3, so the relevant integral is logarithmically
divergent �cf. the case of square QWs35,43�. Therefore, in the
previous theories of the quantum lifetime one has to claim
the multiple-scattering events43 or a scattering angle cutoff �c
as an empirical prescription.44

It is interesting to note that such a divergence was also
met in the calculation of the quantum lifetime due to charged
dislocations, so that one has to invoke a scattering angle
cutoff �c.

10 It is known6,43,45 that this cutoff is connected with
the multiple scattering events. The quantum lifetime thus ob-
tained turns out to drastically depend on the value of �c in
choice. On the other hand, the interactions between the dis-
locations are known to be important, e.g., these result in an
enhanced critical thickness of the strained layer in a lattice-
mismatched structure.46 From the above result for correlated
impurities, we argue that the quantum lifetime due to
charged dislocations might become convergent if their inter-
actions are included in the calculation. In other words, we
suggest that the interactions among dislocations can lead to a
remarkable reduction of scattering by them.

2. Alloy disorder

Next, we are concerned with scattering of the confined
electrons in the Ga channel by alloy disorder located in the
AlxGa1−xN barrier. Hereafter, we again work within the real-
istic model of finitely deep QWs. It is known27 that the struc-
ture under study has the Ga�Al�-faced polarity. Accordingly,
the alloy disorder must begin with the first �nearest to the
interface� layer composed of randomly arranged Ga and Al
atoms rather than the one of N atoms only.27,47 In other
words, the region of the alloy interaction spreads actually
from −Lb to −La, with Lb as the thickness of the barrier layer,
and La�3.3 Å as the distance from the first Ga�Al� layer to
the interface.23,27,47,48

Thus, the autocorrelation function for alloy scattering is
correctly provided by20,21

��UAD�q��2 = x�1 − x�ual
2 ��

−Lb

−La

dz�4�z� . �38�

Here, x is the Al content of the alloy layer, and ual is the alloy
potential assumed21 to be close to the conduction band offset
between AlN and GaN: ual��Ec�1�=2.03 eV. The volume
of a hexagonal unit cell is given by29 �=�3a2�x�c�x� /2, with
a�x� and c�x� as the lattice constants of the alloy.

By means of Eq. �1� for the lowest-subband wave func-
tion, the autocorrelation function in question is written in
terms of the barrier wave number 	 as follows:

��UAD�q��2 = x�1 − x�ual
2 �

A4	

2
�e−2	La − e−2	Lb� . �39�

Thus, different from the previous theory,17,21 the first term
in the square brackets on the right-hand side of Eq. �39� is
seen as less than unity. This leads to a remarkable reduction
of the alloy scattering in the case of Ga�Al�-faced polarity.
The effect is important, in particular, for high-mobility sys-
tems, where the alloy interaction is with the tail of the elec-
tron distribution in the barrier. It is to be noticed that to
explain a measured high individual mobility due to alloy
disorder, one has to recently claim the alloy potential as
smaller than the above-quoted conduction band offset: ual
=1.8 �Refs. 49 and 50� and 1.5 eV.51

3. Surface roughness

We turn to the treatment of 2DEG scattering mechanisms
which originate from interface roughness, namely surface
roughness, misfit piezoelectric charges, and misfit deforma-
tion potential. The first one is a traditional scattering source,
which is due to roughness-induced fluctuations in the posi-
tion of the potential barrier. The weighted scattering potential
in wave vector space is fixed by the value of the envelope
wave function at the interface plane, given by18

USR�q� = V0���0��2�q, �40�

where V0 is the potential barrier height, and �q denotes a
Fourier transform of the interface roughness profile.

As has been dramatically warned in Ref. 18, the use of the
local value of the variational wave function at a single point,
e.g., z=0, can lead to serious errors in the calculation of
surface roughness scattering. Therefore, in difference from
the earlier theory,52,53 we need to establish a formula for the
autocorrelation function of interest in terms of some integral
quantities involving the trial wave function on the whole z
axis.

For this purpose we adopt the following relationship,
valid for any bound electronic state:16,54

�
−�

+�

dz���z��2
�Vtot�z�

�z
= 0, �41�

which is exact and applicable for any value of the barrier
height V0. Thus by replacing the effective confining potential
with Eq. �4�, we may represent the local value of the wave
function via the expectation values of the electric fields cre-
ated by the individual confining sources,

V0���0��2 = �V
� + �VI� + �Vs� + �Vxc�  , �42�

with V�=�V�z� /�z.
Next, by putting Eq. �42� into Eq. �40�, we arrive at the

autocorrelation function for surface roughness:

��USR�q��2 = ��V
� + �VI� + �Vs� + �Vxc� �2���q�2 . �43�

Thus, we must evaluate the average electric fields appearing
in Eqs. �43�. The calculation is straightforward by means of
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the lowest-subband wave function from Eq. �1�. The result
reads as follows.

For polarization charges of sheet density 
,

�V
� =
4�e2

L




2e
�1 − 2A2� . �44�

For uniform doping of bulk impurity density NI,

�VI� =
4�e2

L
NI�A2v

	
�1 − vh0�v�� +

B2u2

k
�6h3�u�

+ 2�2c − u�h2�u� + c�c − 2u�h1�u� − c2uh0�u��� ,

�45�

which is, for large doping sizes, simplified to

�VI� =
4�e2

L
NI�A2zb − 2B2zw�c + 1�� . �46�

For the 2DEG distribution of sheet density ns,

�Vs� = −
4�e2

L

ns

2
�A4 − B4�c�c + 2� + 2�2� . �47�

Last, for exchange-correlation corrections,

�Vxc�  = − 0.611
e2

L
� 3

4�
ns�1/3�A8/3

4
	4/3 +

B8/3

3
k4/3

� 
�3

4
�8/3

e4c/3��8

3
,
4c

3
� − c11/3��2,

14

3
;
4c

3
��� ,

�48�

where ��a ,c ;x� is a confluent hypergeometric function.32

In the limiting case of infinitely deep QWs �V0→�� and
neglecting the exchange-correlation corrections, Eq. �43�
yields a simple autocorrelation function:

��USR�q��2 = �4�e2

L
�2�1

2
ns +

1

2




e
− NIzw�2

���q�2 .

�49�

It is clearly seen from Eq. �49� that the last term on the
right-hand side describes the effect from uniform doping on
surface roughness scattering. This weakens the scattering and
shows up in a quadratic dependence on the doping capacity,
i.e., the impurity density and the well doping size.

It follows from Eqs. �43� and �49� that surface roughness
scattering depends strongly on the interface profile. This is
well described by a power-law distribution,13,55 which can be
written in terms of the dimensionless in-plane wave vector
t=q /k, with k as the well wave vector, as follows:

���q�2 = ��2�2FSR
uns�q/k� , �50�

where � is a roughness amplitude and � is a correlation
length. The form factor for unscreened surface roughness
scattering is given by

FSR
uns�t� =

1

�1 + ��k�2t2/4n�n+1 , �51�

where n is an exponent fixing the falloff of the distribution at
large in-plane wave numbers. Thus, the interface profile is
specified by the falloff exponent n and the dimensionless
correlation length �k. For rather smooth interfaces, we will
take a large exponent n=4. The correlation length � is cho-
sen as an adjustable parameter for fitting to the experiment
under study.

4. Misfit piezoelectric charges

As already mentioned before, in lattice-mismatched epil-
ayered structures, surface roughness gives rise to strain fluc-
tuations in both strained and relaxed layers.13–15 In a wurtzite
nitride heterostructure made, e.g., from AlxGa1−xN/GaN
these induce fluctuating densities of piezoelectric charges,
viz. bulk charges inside of the strained and relaxed layers as
well as sheet charges on the interface.15 The charges create
relevant random electric fields and act as scattering sources
on the motion of electrons in the in-plane.17

The impact on the 2DEG from the piezoelectric field due
to charges in the well is found to be much stronger than that
due to charges in the barrier and on the interface.15 There-
fore, we may restrict the calculation to the scattering by
charges located inside of the well. Then, by means of the
lowest-subband wave function from Eq. �1� the autocorrela-
tion function for roughness-induced misfit piezoelectric
charges is supplied by17

��UPE�q��2 = 
�3/2���eQ��

L
�2

FPE
uns�q/k� , �52�

where �� is the lattice mismatch, and � denotes the aniso-
tropy ratio as a measure for the deviation of hexagonal sym-
metry of the wurtzite crystal from isotropy ���5�.

We introduced a material parameter characteristic of the
well, defined in terms of its elastic stiffness cij

w and piezo-
electric eij

w constants by

Q =
Cb

c33
b 
 e15

w

c44
w +

e31
w �c33

w + 2c13
w � − e33

w �c11
w + c12

w + c13
w �

Cw
� ,

�53�

where

C� = c33
� �c11

� + c12
� � − 2�c13

� �2, �54�

with �=w, b as the labels for the well and barrier layers,
respectively.

The form factor entering in Eq. �52� is characteristic of
the unscreened misfit piezoelectric scattering, given by

FPE
uns�t� = FSR

uns�t�
 A2a

2�t + a�
+

B2

2�t + 1�� 2

�t + 1�2 +
2c

t + 1
+ c2

+
2t

t + 1
� 6

�t + 1�2 +
4c

t + 1
+ c2���2

, �55�

where FSR
uns�t� is yielded by Eq. �51�, a=	 /k; A, B, and c are

the variational parameters of the wave function. In the lim-
iting case of V0→�, this is simplified to
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FPE
uns�t� =

FSR
uns�t�

�t + 1�6� 3t

t + 1
+

1

2
�2

. �56�

5. Misfit deformation potential

Further, strain fluctuations also induce nonuniform shifts
of the band edges. This implies that electrons in the conduc-
tion band and holes in the valence one must experience a
random perturbating potential. The roughness-induced misfit
deformation potentials exist in both the well and barrier lay-
ers and decays exponentially far away from the
interface.13,14,17 Since the 2DEG is located mainly in the
well, we can thus take into account the scattering merely in
this layer.

As a result, by means of the wave function from Eq. �1�
we may find the following autocorrelation function for the
unscreened misfit deformation potential17

��UDP�q��2 = 
�1/2����d��

2

Cb

c33
b

c11
w + c12

w + c13
w

Cw
�2

� k2FDP
uns�q/k� , �57�

where �d is the combined dilational component of the defor-
mation potential for the conduction band.56,57 As a lower
bound for this coupling constant, we may assume17 �d
=22.57 eV.

The form factor in Eq. �57� is defined by

FDP
uns�t� = FSR

uns�t�� B2t

t + 1
�2
 2

�t + 1�2 +
2c

t + 1
+ c2�2

, �58�

which for V0→� yields

FDP
uns�t� =

FSR
uns�t�
2

t2

�t + 1�4 . �59�

It is interesting to remark the following. First, as seen
from Eqs. �52� and �57�, the strength of misfit piezoelectric
and misfit deformation scatterings is specified by the differ-
ence in lattice constant and the interface roughness. As a
result, the relevant partial transport and quantum lifetimes
are found to quadratically decrease with an increase of the
lattice mismatch �� and the roughness amplitude �. Second,
as seen from Eqs. �55� and �58�, the form factors for these
scatterings are factorized into two parts: the first one is fixed
by the roughness profile FSR

uns�t�, so by the correlation length
�, while the second one is fixed by the features of the elec-
tron distribution and the scattering mechanism under consid-
eration.

To end this section, we conclude that within the realistic
model of finitely deep QWs described by the modified Fang-
Howard wave function from Eq. �1�, we have derived the
autocorrelation functions in an analytic form for the diverse
scattering mechanisms of interest. These are supplied by Eqs.
�34�, �39�, �43�, �52�, and �57� for background impurities,
alloy disorder, surface roughness, misfit piezoelectric
charges, and misfit deformation potential, respectively. In
difference from the earlier theories,2,17,19 our calculation of
the transport and quantum lifetimes properly involves the
effects from uniform doping and exchange-correlation cor-

rections through their effects on the quantum confinement.

IV. RESULTS AND CONCLUSIONS

A. Input parameters

In this section, we are trying to apply the preceding theory
to understand the transport properties of electrons in wurtzite
group-III-nitride heterostructures. In particular, we attempt to
explain the recent experimental data11 about the transport
and quantum lifetimes as well as their ratio of the low-
temperature high-density 2DEG in GaN as the conduction
channel in background-doped strained AlxGa1−xN/GaN het-
erojunctions.

For numerical results, we have to specify parameters ap-
pearing in the theory as input. The lattice constants, elastic
stiffness constants, piezoelectric constants, and dielectric
constants for AlN and GaN are taken from Refs. 27 and 58,
and listed in Table I in Ref. 17. The corresponding constants
for an AlxGa1−xN alloy are estimated within the virtual crys-
tal approximation.27 The effective electron masses of GaN
are for the growth direction mz=0.18 me

59 and for the in-
plane m*=0.228 me.

60

We are examining the key parameters to which the calcu-
lation of the quantum confinement, i.e., the electron distribu-
tion in AlxGa1−xN/GaN heterostructures, is sensitive. First,
the potential barrier height is normally assumed to be equal
to the conduction band offset between the AlxGa1−xN barrier
and the GaN well, V0=�Ec�x�, which depends on the Al
content x as48,61,62

�Ec�x� = 0.75�Eg�x� − Eg�0�� , �60�

where the band gap of AlxGa1−xN is measured to be27

Eg�x� = 6.13x + 3.42�1 − x� − x�1 − x� eV. �61�

Second, some recent experimental and theoretical
investigations28,63 suggested that the measured spontaneous
polarization charge density may be much smaller than the
previous theoretical estimates.25–27,64 Aiming at the explana-
tion of the experiment on the relaxation times, we adopt the
measured value of this charge density of AlN reported in
Ref. 63: 
sp�AlN�=−0.040 C/m2. Then, the total density of
sheet polarization charges is given as a function of the Al
content by


�x� = 0.011x − 2
a�x� − a�0�

a�0� 
e31�x� − e33�x�
c13�x�
c33�x��

�62�

�in units of C/m2�.

B. Quantum confinement effect due to uniform doping in
infinitely deep QWs

For an apparent illustration of the effect of uniform dop-
ing on the quantum confinement, we have calculated it in the
limiting case of infinitely deep QWs, ignoring provisionally
the penetration of the 2DEG into the barrier layer and their
exchange-correlation corrections. These are both included in
the subsequent calculation with reference to the experiment.
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In Fig. 1, we display the standard Fang-Howard wave
functions along the growth direction with and without uni-
form doping, by employing Eq. �26� for the well wave num-
ber. These are plotted for an AlxGa1−xN/GaN sample of x
=0.23, a total sheet polarization charge density 
 /e=6.93
�1012 cm−2, under a sheet carrier density ns=5
�1012 cm−2 and different doping capacities NIzw=1�1012,
2�1012, and 4�1012 cm−2.

The dependence of a scattering event on the momentum
transfer, or equivalently, its angular distribution is evidently
described completely by the form factor for the screened
scattering, defined by

Fscr�t� = Funs�t�/2�t� , �63�

where Funs�t� is the form factor for the relevant unscreened
scattering. The dielectric function is rewritten in terms of the
dimensionless variables t=q /k and ts=qs /k:

�t� = 1 +
ts

t
FS�t��1 − G�t��, for t � 2tF, �64�

where FS�t� and G�t� are, as before, given by Eqs. �31� and
�32�.

As seen from Eq. �51�, in the limiting case of interface
profiles with a very short �zero� correlation length one has
simply12 �FSR�t���=0=1, so that it holds for the form factor
for the screened surface roughness scattering from a
�-correlated interface,

�FSR
scr�t���=0 = 1/2�t� . �65�

This means that in this case the angular distribution of the
screened surface roughness scattering coincides with the one
of the screening.

The screened Fscr�t� and unscreened Funs�t� form factors
are plotted versus the dimensionless momentum transfer t in
units of 2tF �and scattering angle �� in Fig. 2 for various
scattering mechanisms. The unscreened form factors for
background impurities, surface roughness, misfit piezoelec-

tric charges, and misfit deformation potential are supplied by
Eqs. �35�, �51�, �56�, and �59�, respectively. The ionic corre-
lation effect is estimated at a doping level NI=5
�1016 cm−3, and the dimensionless correlation length is set
at �k=0,1 ,5.

In order to illustrate the influence from the doping-related
quantum confinement on the above-quoted scattering
sources, we calculate the relaxation times of the
Al0.23GaN0.77 �210 Å� /GaN �4.7 �m� heterojunction studied
in Ref. 11 in the limiting case of infinitely deep QWs. At x
=0.23 the lattice mismatch is �� =0.56%. The transport �t and
quantum �q lifetimes are depicted against the impurity den-
sity ranging from NI=1�1015–1�1016 cm−3 in Fig. 3,
where the sheet carrier density is set at ns=5�1012 cm−2, the
interface profile is with a roughness amplitude �=3 Å and
correlation length �=10 and 100 Å. The lifetime ratio �t /�q

due to impurity scattering is given in the inset in Fig. 3�a� as
a function of the doping level, while those due to roughness-
induced scatterings, viz. surface roughness, piezoelectric,
and deformation potentials, are shown in Fig. 4 as a function
of the correlation length.

From the lines thus obtained, we may draw the following
conclusions.

�i� As evidently seen from Fig. 1, because of uniform
doping with positive donors the centroid of the electron dis-
tribution is to be shifted toward the well side. The effect is
increased rather rapidly with the doping capacity, namely, the
shift is �z0=1.6, 3.9, and 14.0 Å for NIzw=1�1012, 2
�1012, and 4�1012 cm−2, respectively.

�ii� It follows from Fig. 2�a� that the ionic correlation
among charged impurities leads to a significant reduction of
their scattering. Consequently, the form factor for the
screened scattering by correlated impurities is found to be
more isotropic, i.e., not limited only at small angles �forward
scattering� as in the case of random impurities.

�iii� An examination of the dashed lines in Figs. 2�b�–2�d�
reveals that with a rise of the correlation length all un-
screened roughness-induced scatterings are remarkably re-
duced. The reduction at large angles is greater than at small
ones. For very short correlation length ��=0�, the surface
roughness scattering is isotropic, and the misfit deformation
potential one occurs in almost all angles except for ��0,
while the misfit piezoelectric one occurs mainly in narrower
angles ���� /3�.

�iv� As observed from Eqs. �28� and �29�, the effect of
screening on the relaxation times is described completely by
the quantity 1 /2�t�. In accordance with Eq. �65�, this is
shown as a function of the momentum transfer by the solid
line with label �k=0 in Fig. 2�b�. The screening effect is
seen to be anisotropic, especially very strong at small angles,
i.e., forward scattering. Therefore, the screened scattering is
reduced strongly at small angles, so that the peak in its an-
gular distribution is shifted toward large angles. Moreover, a
comparison of the solid lines in each of Figs. 2�b�–2�d� re-
veals that with increasing correlation length the peak in the
angular distribution of screened SR, PE, and DP scatterings
is shifted toward small angles, i.e., forward scattering as in
case of Coulomb scattering by random impurities.

�v� An inspection of Fig. 3�a� indicates that when raising
the doping level the relevant transport and quantum lifetimes

FIG. 1. Standard Fang-Howard wave function ��z� along the
growth direction in the presence �solid lines� and the absence
�dashed one� of uniform doping. The solid lines labeled a, b, and c
correspond to different doping capacities NIzw=1�1012, 2�1012,
and 4�1012 cm−2, respectively.
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are significantly decreased, which is clearly connected with
enhanced BI scattering. The lifetime ratio due to correlated
impurities is found to weakly depend on the doping level at
the used levels �BI

t /�BI
q �5–6. Thus, the lifetime ratio due to

correlated impurities is much smaller than that due to ran-
dom impurities �more than 100 in some cases�,1,10 which is
connected with the more isotropic angular distribution of
scattering by the former as quoted above.

�vi� Figures 3�b�–3�d� also reveal that the relaxation times
due to roughness-induced scatterings are increased when
raising the doping level, which is associated with an en-
hanced shift of the electron distribution far away from the
scattering sources located near the interface such as surface
roughness, misfit piezoelectric, and deformation potentials.

�vii� It follows from Fig. 4 that with a rise of the correla-
tion length the lifetime ratios due to roughness-induced scat-
terings are elevated, which is, as quoted above, associated
with the shift of their angular distribution toward small
angles. Consequently, these ratios can become much larger
than unity. For instance, for all SR, PE, and DP scatterings,
we observe at �=10 Å �t /�q�1; however, at �=200 Å,

�DP
t /�DP

q �15 and �SR
t /�SR

q ��PE
t /�PE

q �25. This result is dif-
ferent from the earlier argument1,65 that the transport and
quantum lifetimes due to surface roughness are the same.
Moreover, we find for ��400 Å, �SR

t /�SR
q ��PE

t /�PE
q . This

means that in difference from the earlier belief8 the value of
the lifetime ratio should not be used as a tool to recognize
the scattering mechanism.

C. Numerical results for finitely deep QWs and comparison
with experiment

To end this section, we are dealing with the observed data
about the electron density dependencies of the transport and
quantum lifetimes as well as their ratio in a biased
Al0.23Ga0.77N �210 Å� /GaN �4.7 �m� single heterostructure
reported in Ref. 11. The numerical self-consistent calculation
pointed out3,48,66 that the confining potential of such a system
is basically of a triangular QW shape, especially in the well
region, where the electrons are mainly concentrated, so that
we may adopt the modified Fang-Howard wave function to
describe approximately the 2DEG of interest. Therefore, we

FIG. 2. Screened Fscr�t� and unscreened Funs�t� form factors vs dimensionless momentum transfer t in units of 2tF �and scattering angle
�� for different scattering mechanisms in an infinitely deep QW: �a� background impurities �BI�, �b� surface roughness �SR�, �c� misfit
piezoelectric charges �PE�, and �d� misfit deformation potential �DP�. The solid and dashed lines refer to the screened and unscreened form
factors, respectively.
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may apply the foregoing theory to the sample under study.
For quantitative explanation, we have carried out the cal-

culation for the realistic sample, allowing for the effects from
both the finiteness of the potential barrier height and the
exchange-correlation corrections. At the Al content x=0.23,
the barrier height is V0=0.335 eV. The doping level is set at

NI=4.5�1015 cm−3. It was shown13,55 that the most impor-
tant component of the interface roughness is connected with
elastic strain relaxation in the channel layer, and its correla-
tion length is such that ��300 Å. So, the interface profile is
to be chosen with a roughness amplitude �=2.7 Å and a
correlation length �=265 Å.

In accordance with the estimation presented in Fig. 3�a�,
at the used doping level the scattering from correlated back-
ground impurities is very weak, yielding the lifetimes much
�two order of magnitude� larger than the measured ones, so it
is neglected. Further, the evaluation of the scattering by in-
dependent charged dislocations with a density of 7.8
�108 cm−2 supplied11,67 the transport lifetime at least three
times larger than the measured one. As mentioned before, the
scattering by interacting dislocations seems to be remarkably
weaker than that by the independent ones. Consequently, the
transport lifetime limited by interacting dislocations must be
at least one order of magnitude larger than the measured one.
This implies that in this case the dislocation scattering is so
weak that it may be ignored.

Thus, the individual and overall 2DEG transport and
quantum lifetimes and their ratio due to AD, SR, PE, and DP
scatterings are plotted versus the electron density varying
from ns=2�1012–10�1012 cm−2 in Figs. 5–7, where the
4.2 K measured data11 are also reproduced for comparison.

From the lines thus obtained, we may draw the following
conclusions.

FIG. 3. Transport �t and quantum �q lifetimes due to BI, SR, PE, and DP scatterings for the 2DEG in an Al0.23Ga0.77N/GaN hetero-
junction of an infinitely high potential barrier vs impurity density NI. The left-hand and right-hand axis refers to the transport and quantum
lifetimes, respectively.

FIG. 4. Transport-to-quantum-lifetime ratio �t /�q due to SR, PE,
and DP scatterings for the 2DEG in an Al0.23Ga0.77N/GaN hetero-
junction of an infinitely high potential barrier vs correlation length
�.
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�i� The relaxation times provided by our theory are found
to be in a good agreement with the experimental data11 on
the sample under study. The calculated transport lifetime al-
most coincides with the measured one in the carrier density
regime in use. The peaks of the theoretical and experimental
curves are found to be located at nearly the same density
ns=3.6�1012 cm−2 with a nearly equal height: �theor

t

=3.36 ps and �expt
t =3.25 ps. The situation with the quantum

lifetime is not as good as with the transport one. The theory
shows a peak of the quantum lifetime �theor

q =0.31 ps at ns
=8.6�1012 cm−2, which is somewhat larger than the ob-
served one, �expt

q =0.27 ps at ns=6�1012 cm−2.
It is to be recalled that the transport lifetime of the 2DEG

in the uniformly doped sample here is large compared to that
in the modulation-doped one addressed in Ref. 12. The why
is that in the former the electron distribution is shifted far
away from the interface, so the scattering weakened, whereas
in the latter is shifted in the opposite direction, so the scat-
tering strengthened.

�ii� As evidently seen from Fig. 7, the calculated ratio of
the total lifetimes can well reproduce the measured one, both

in the bell shape and the magnitude. The peaks of the theo-
retical and experimental curves are found to be located at the
same density ns=3�1012 cm−2 with a nearly equal height:
�theor

t /�theor
q =15.3 and �expt

t /�expt
q =14.6, while the peak pre-

dicted by the earlier theory2 is two times larger than that
measured.

�iii� An examination of Figs. 5 and 6 reveals that surface
roughness and misfit deformation potential scatterings are
less important in limiting the measured transport and quan-
tum lifetimes. These are both dominated by misfit piezoelec-
tric and alloy disorder scatterings. The former is responsible
for the increasing tendency at small carrier densities,
whereas the latter for the decreasing tendency at large den-
sities, so producing the peaks detected in the lifetime curves.
This bell shape is in sharp contrast to the concave shape of
the quantum lifetime predicted by the earlier theory2 based
only on the well-known scattering sources.

V. SUMMARY

To summarize, in the present paper we have developed a
comprehensive theory for the transport and quantum life-
times of the 2DEG at low temperature and high carrier den-
sity in uniformly doped wurtzite group-III-nitride hetero-
structures. Besides the traditional scattering sources, we
incorporated in the calculation the roughness-induced scat-
terings: misfit piezoelectric charges and misfit deformation
potential. Moreover, we included the quantum confinement
due to uniform doping.

The effect of uniform doping is twofold: a scattering
source for the 2DEG in the in-plane, but also a confining
source in the growth direction. At low doping levels the
former is found to be negligibly weak, while the latter is an
important factor, which via quantum confinement suppresses
the other scattering mechanisms.

The roughness-related scattering mechanisms such as sur-
face roughness, misfit piezoelectric, and deformation poten-

FIG. 5. Transport lifetime �t for an Al0.23Ga0.77N �210 Å� /GaN
�4.7 �m� sample vs sheet electron density ns. The 4.2 K experi-
mental data �Ref. 11� are marked by squares.

FIG. 6. Quantum lifetime �q for an Al0.23Ga0.77N �210 Å� /GaN
�4.7 �m� sample vs sheet electron density ns. The 4.2 K experi-
mental data �Ref. 11� are marked by squares.

FIG. 7. Transport-to-quantum-lifetime ratio �t /�q for an
Al0.23Ga0.77N �210 Å� /GaN �4.7 �m� sample vs sheet electron
density ns. The 4.2 K experimental data �Ref. 11� are marked by
squares.
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tials can be a short- or long-range process depending on the
correlation length of the interface profile, so that their life-
time ratios can become much larger than unity.

In contrast to the previous calculation starting merely
from the so-far known scattering sources, our theory turns
out to enable a satisfactory description of the recent experi-
mental data11 in a high 2DEG density regime about both the
relaxation times. The theory is found in a very good quanti-
tative agreement with the measured transport lifetime and
lifetime ratio, while the agreement with the measured quan-
tum lifetime is somewhat good.

The roughness-induced scatterings are found to be key
sources in determining the carrier density dependencies of
the transport and quantum lifetimes. In particular, misfit pi-
ezoelectric scattering is responsible for the increasing ten-
dency, whereas alloy disorder is responsible for the decreas-

ing one, and produces the bell shapes observed in the
lifetimes and their ratio.

The ionic correlation is proven to be important in the
linear transport theory for uniform doping scattering because
this warrants the convergence of the integral representing the
inverse quantum lifetime. As a result, this quantum lifetime
becomes nonvanishing, so that the lifetime ratio due to scat-
tering by correlated impurities is much smaller than that by
random ones. Furthermore, we suggest that the interactions
among dislocations might reduce significantly their scatter-
ing so that the divergence of the inverse quantum lifetime
due to charged dislocations is eliminated with an inclusion of
their interactions.

We also indicate that the value of the lifetime ratio should
not be used as a tool to recognize the scattering mechanism.
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