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Concept of dielectric constant for nanosized systems
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The screening properties of dielectric nanocrystals are analyzed. General arguments confirmed by detailed
numerical calculations are presented. It is shown how macroscopic components of the electric field can still be
defined for sizes larger than a few Fermi wavelengths and can still be obtained from the bulk dielectric
function. The decrease of the average dielectric response with decreasing size is found to be due to the
breaking of polarizable bonds at the surface and is not due to the opening of the band gap induced by the
confinement.
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There is not yet a coherent understanding of dielectric
screening in  semiconductor nanostructures.  Several 5n(r)=j p(r,r)w(r")dr’  (én=pw), ()
calculation$™ of the average dielectric constan(R) have
been performed for nanocrystals which all conclude that itvhere p is the polarizability function. Combining Eq$2)
decreases with radil®of the spherical cluster. However, the and (1) one getsw=(1—vp) w,. Usually (1-vp) ! is
origin of this decrease is not understood. It is often attributedhen identified with the inverse dielectric functien(r,r")
to the opening of the gap which should lower the polarizabil-but it is not the correct approach in nanostructures in view of
ity but it could as well be explained by a local reduction of the surface polarization charges. We now follow, for in-
the polarizability in the surface region. The relation betweerstance, Ref. 9 in defining macroscopic quantiti@sitten in
ein(R) and the bulk wave-vector-dependent dielectric func-capital letters as suitable averages of the microscopic quan-
tion €y(q) also remains unclear. Finally, nobody knows whentities defined above. More specifically we write here
the macroscopic approach of such problems really breaks
down. It is desirable to answer these fundamental questions
for a variety of reasons: to obtain a simplified versiorabf F(r):f g(r—r")f(r’)dr’, ©)
initio approaches like the GW approximation for
quasiparticlebor the Bethe-Salpeter equations for excifons whereg is a weighting function which suppresses the short-
and to calculate the quasiparticle and optical gap of quanturperiod oscillations contained in the microscopic quantity
dots using semiempirical metho®i§We thus present results f(r). For a bulk periodic crystal, for instance, one could take
concerning these problems. We combine two approadches: the Fourier transforng(q) as constant within the first Bril-
general arguments based on von Laue’s thebrelowing  louin zone, zero outside. We now consider that the bare per-
that the macroscopic response is the bulk one a few Fernturbation is macroscopig.e., W,=w,,, corresponding to an
wavelengths away from the boundary &jiidl numerical cal-  electric fieldE,) and want to express the macroscopic com-
culations on Si nanostructures using the tight bindilg) ponent of the screened field. Using the fact that Maxwell's
method which fully confirm the general conclusions. Weequations remain invariant under the averaging proce@ire
show that the decrease gf(R) is not due to the opening of we can write
the gap but to a breaking of polarizable bonds at the surface.

We also show that the bulk response functegfq) provides V(E—Ep) =—4medN, (4)
most of the needed information even for very small nano-
structures. wheredN is the macroscopic average &f. The main point

Let us start with the formalism of dielectric screening is now to relatesn and thussN to the macroscopic potential
applied to nanosized systems in view of relating it to a macor field. For this we combine Eq$l) and(2) to get
roscopic formulation. We thus apply a bare perturbation
wy(r) which induces a changén(r) in the electron density w=Wy+vpw, (5)

so that the finalscreenefpotential energy is ) ) )
which can be averaged via E() to give

w(r)=wb(r)+f v(r,r')on(r’)dr’, 1) W=W,+0pw, 6)

wherev is the average o (r,r') overr given by Eq.(3).
where v=e?/|r—r’|. Equation (1) can be formally con- From the difference between Eq8§) and(6) we can write

densed asv=wy+v én. To first ordersn can be expressed
as w=W+ Svpw, (7
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where suv=v —v is the short-range part of the Coulomb in- 3.0
teraction. Equatiorf7) combined with Eq(2) gives the de-
sired relation betweedn andW: 25 | F™
sn=p(1—dvp) tW. (8 ,
£ 20} ot
Equationg4) and(8) lead to a complete macroscopic for- 3 /
mulation of the problem, the influence of the microscopic
fields being taken into account in E¢B). To achieve the 18I .L
connection with the macroscopic bulk equations we make Y
use of an important theorem due to von L&u€his one 10 L : : : : e .
states that the electron density recovers its bulk value at dis- 0 2 4 6 8 10 12
tances from boundaries of the order of a few Fermi wave- r(a.u.)

lengths A —i.e., typically the interatomic distance. In our .
9 1€, yp y FIG. 1. Ratio between the barevf) and the screene@v) elec-

case this me"?‘”s. that the response function gl_ven byaEes . trostatic potentials induced by a point charge placed at the center of
the bulk one inside a nanocrystal as long as its characteristic

. . . a SksHsg Cluster as a function of the distance to this chdie, ab
size exceeds a fewF' This seems to Contr_adlqt the general "nitio calculations of Ref. 13; dots, present tight binding results
belief that screening becomes less effective in nanocrystals

due to the apening of the gap which Increases the denomEenter terms. It gives for bulk silicon a fairly accurate band

In?/f/ci)r: |r:hthtetﬁiolarliatllor; fg?Ct'O%fm’ th?" r?e;w;ith(la foll- structure and also leads to a fairly good value of the bulk
owing that this conciusion IS o e€d by numerical CaiCu- o o otric constanéy(q— 0)=10.62 We have also verified

'3“0”5 and .hOW iF is possi_ble to get an overall CorISiSter'Ehat TB calculations describe very well the screening in
picture Of. d|ele§:tr!c screening m_these systems. HoweverSma” silicon clusters by comparing our results to recamnt
before doing this it will prove of interest to solve Ed8) iy calculationst? For example, Fig. 1 shows that there is
a_md(ﬁ) deep inside the n.anocr.ystal where the response fl.mcén excellent agreement between the two methods to predict
tion is the bulk one. In this region we can thus find a solutlonthe screened potential induced by a point charge at the center

as a linear combination of the bulk solutions. Considering a5 a SicHgs Cluster. We see that the TB procedure provides
bare perturbation of the forfi,,exp(q-r) the macroscopic averaggs{g?/er atomic volumeswhich are close to the mi-

field is also of this form with amplitude given by croscopic quantities. Note that we have also performed cal-
q-Eq= €5 Y(q)g- Epg- (9) culation's for InAs nanostructures with t_he TB param.eters of
Ref. 14: they lead to the same conclusions as for Si.
Here e, *(q) is the bulk inverse dielectric function given by We first consider the simplest case of Si thin layers with
(00YD-oriented planes submitted to a bare electric fiEld
PN 4me iger ~1_iq-r' constant in the direction parallel to thH&00 planes and
€ (=1~ Y Jve Po(1—dupo), €. which can be either constant or vary as singd) in the
(10) perpendicular directior if d is the film thickness. In the TB
procedure we treat electric fields from the finite differences
The expression corresponds to the standard bulk formulbetween neighboring potentials. Figure 2 gives the electric
in reciprocal space but we shall see that E9). keeps its field along the layer for a constant bare fidlg inside but
validity even for small nanosystems. vanishing abruptly between the terminating Si-H planes. The
Let us now present our numerical TB calculations. Asmost striking feature of these curves is that the local dielec-
discussed in Refs. 10 and 11 screening can be described intréc constant defined as,/E keeps its bulk value to a high
simple way from the following proceduréi) calculate the accuracy except between the last two planes. This confirms
net atomic chargebl, by summing the electron population the general analysis developed before. Furthermore, on the
of the various orbitals on a given atdm(ii) by considering same figure we have plotted what one would obtain by
only the diagonal on-site matrix elements of the electrostaticcreening each Fourier component Bf (Heaviside func-
potential, andjii) by taking the electrostatic potential on site tion) by the bulkey(q). The agreement with the full calcu-
| due to an electron on siteto bee?/Ry, if k#1 whereR,, lation is striking even near surfaces where, however, the os-
is the interatomic distance and to the Coulomb intra-atomicillatory behavior depends on the nature of the boundary
term U if k=I. This leads to a formalism fully similar to conditions. Again this is a proof that bulk screening appro-
Egs.(1) and(2) except that one deals with matrix equations priately describes the situation even for very small thick-
of size NXN (N being the number of atomsnstead of nessegfive silicon planes
complex integral equations. The advantage is that they can A second interesting view of the problem is provided by
be solved for fairly large nanostructures. The TB electronid-ig. 3 which gives an average of the dielectric constant over
structure itself is calculated using an atomic basis composetthe layer thickness. For a constant field one observes an
of ones and threep orbitals for each silicon atom and ose overall decrease with decreasing thickness. This is due to the
orbital for each hydrogen saturating the surface danglingurface contribution as can be judged from Fig. 2, the major
bonds. We use the TB parametrization of Ref. 12 which in-effect being a decrease of the local dielectric constant from
cludes interactions up to third nearest neighbors and threte bulk value to 1 over the last two planes. In the same

2

115411-2



CONCEPT OF DIELECTRIC CONSTANT FR. ..

PHYSICAL REVIEW B68, 115411 (2003

12 o — 12 . . . . .
Ao bl BB B BB BB B A 11
01 5 o
= 10
3]
8 E 9
S 6 8 8¢
i % al
4 r i
% 6
oL 21 Si planes a 5¢
4 L
0 lm—— ‘ : ‘ L 3 . . . . .
-1.5 -1 -0.5 0 0.5 1 1.5
" 0 0.5 1 1.5 2 25 3
Position z (nm) )
Width (nm)
12 ou ' T FIG. 3. Average dielectric constant calculated in TB vs layer
10} gL | thicknessd for a bare electric fieldE, which is either constaritt)
m] o or is sinusoidal X, sin(zz/d); *, sin(27z/d)]. Lines: model using
8l the bulk dielectric constardy(q).
o
g 6 cal crystallites which we had already treated before but not in
Al B o the same conteXt'**The situation is more difficult to ana-
. lyze than the case of thin layers. However, it is possible to
5 | 11 Si planes define a bare perturbation which can be used in common for
the isolated cluster and for the bulk crystal. This consists in a
0 =— : : : : : — charge+q on the central atom of the sphere and a neutral-
-0.8 06 -0.4 '0-2” 0 02 04 06 08 izing charge uniformly spread on the outer shell of silicon
Position z (nm) atoms. Figure 4 again compares the local dielectric constants
» obtained from the direct calculation and from the use of the
1

10: /

bulk e5(q). Apart from some differences near the boundaries
(center and surfagehe results are again in close agreement.
Figure 5 gives the average dielectric constant versus size
calculated from different TB approaches. All of them give
comparable results close to those obtained from the bulk

% 6 / dielectric functioneqy(q).

/o D\ As mentioned above the basic reason for the predomi-
ar \ nance of bulk properties even at very small sizes comes form
5| / 5 Si planes \\ von Laue’s theorerf.To check this further we have calcu-

0 —= : : : ' ‘ - 18
-04 -03 02 -01 0 01 02 03 04 16|
Position z (nm)
14
FIG. 2. Ratio between the bare electric fiélgand the screened 12 |
oneE in Si layers submitted to a constant electric figld, B, TB w 10 |
results; lines, continuous model using the bulk dielectric constant &
€0(q)]. In the TB procedure, the field is calculated at the middle of w8y
atomic neighboring planes by the finite difference of the potential. 6
The results between the terminating Si-H planil) (vanish be- 4}
cause we considered a situation whEge=0 in these regions. ol
. . . 0 L L L L L L
figure 3 we have also drawn the average dielectric constant 0 02 04 06 08 1 12 14

for two sinusoidal bare electric fields smfz/d) with n=1
and n=2. Comparison with the corresponding butk(q)
with q=(0,07/d) or (0,0,27/d) leads to exact agreement kG, 4. Ratio between the bare electric fiélgand the screened
since for such perturbations the surface contribution almosgne E vs the distance to the center in a 2.5-nm Si spherical nano-
exactly cancels because tiig, is zero on the Si surface crystal. The bare field is due to a chargey at the center and a
planes. This again represents a strong confirmation of owharge—q uniformly spread on the surface of the sphiii, TB
general analysis. results; lines, continuous model using the bulk dielectric constant
We now discuss briefly the dielectric response of spheri<y(q)].

Distance (nm)
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FIG. 5. Dielectric constant of Si spheres defined in different FIG. 6. Ratio of the nearest-neighbor interatomic polarization
situations: average dE,/E with a constant bare electric field, p(0,1) and of the bulk valugy,,(0,1) at the center of Si layers
(X) or with E, due to a chargerq at the center and-q at the  (squarel Si spheregcircles, and InAs sphereftriangles vs size

surface[triangles, TB calculations; line, continuous model using thecompared to the ratio of the nanostructure gap and the bulk value.
bulk dielectric constantey(q)]; fit of the potential induced by

charge+q at the center, the radiuR considered as a parameter _ . L . .
(Squgre}sq P it is a standard result that this is equivalent to Ef) in the

limit g—0 when neglecting local field effecfs.e., taking

lated the ratio of the TB nearest-neighbor interatomic polar<~1(q,q) =1/e(qg,q)] which is known to introduce an error
ization p(0,1) with respect to the bulk value at the center ofof order 15%. In our case it is then reasonable that it gives
nanostructures. We have done this for Si layers and for Siesults similar to Fig. 5 to within 15% as for the bulk. An-
and InAs spherical nanocrystals that we have compared tother interesting point is that the size dependence, ¢R)
the evolution of the gaf, since it is generally believed that can be reproduced directly from the use of the bulk response
p(0,1) should scale roughly like Bf. Figure 6 strikingly  function. Finally, a good representation f(R) is obtained
shows thatp(0,1)/ppu(0,1) does not deviate at all from 1 by assuming that one recovers the bulk dielectric constant
while over the same range of sizEg varies up to one order within a sphere of radiuR with a linear decrease frowy, to
of magnitude. This is clear evidence of the validity of von 1 between spheres of radisandR+A.
Laue’s theorem and of the fact that bulk parameters are still In conclusion we have analyzed local dielectric screening
pertinent even for very small nanocrystals. Interestingly, thén nanostructures. General arguments as well as numerical
nature of the gap—direct for InAs or indirect for Si—plays TB calculations show that irrespective of the size one recov-
no role in the evolution of the polarization with size. ers locally the bulk dielectric function for the macroscopic

At this point it is interesting to comment on Fig. 5 again. component of the field except in a thin surface layer of the
A quite similar trend was obtained in Ref. 2 from a semi-order of a few Fermi wavelengths. This provides a consistent
empirical pseudopotential calculation and use of the formuldnterpretation of all their dielectric properties and shows that
en(R)=1+(2/7)[,€,(E)/EJE where e, is the imaginary the decrease of the average dielectric constant with size is
part corresponding to the absorption spectrum. For the bullue to a breaking of the polarizable bonds at the surface.
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