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Concept of dielectric constant for nanosized systems
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The screening properties of dielectric nanocrystals are analyzed. General arguments confirmed by detailed
numerical calculations are presented. It is shown how macroscopic components of the electric field can still be
defined for sizes larger than a few Fermi wavelengths and can still be obtained from the bulk dielectric
function. The decrease of the average dielectric response with decreasing size is found to be due to the
breaking of polarizable bonds at the surface and is not due to the opening of the band gap induced by the
confinement.
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There is not yet a coherent understanding of dielec
screening in semiconductor nanostructures. Sev
calculations1–3 of the average dielectric constante in(R) have
been performed for nanocrystals which all conclude tha
decreases with radiusR of the spherical cluster. However, th
origin of this decrease is not understood. It is often attribu
to the opening of the gap which should lower the polariza
ity but it could as well be explained by a local reduction
the polarizability in the surface region. The relation betwe
e in(R) and the bulk wave-vector-dependent dielectric fun
tion e0(q) also remains unclear. Finally, nobody knows wh
the macroscopic approach of such problems really bre
down. It is desirable to answer these fundamental quest
for a variety of reasons: to obtain a simplified version ofab
initio approaches like the GW approximation f
quasiparticles4 or the Bethe-Salpeter equations for exciton5

and to calculate the quasiparticle and optical gap of quan
dots using semiempirical methods.6,7 We thus present result
concerning these problems. We combine two approaches~i!
general arguments based on von Laue’s theorem8 showing
that the macroscopic response is the bulk one a few Fe
wavelengths away from the boundary and~ii ! numerical cal-
culations on Si nanostructures using the tight binding~TB!
method which fully confirm the general conclusions. W
show that the decrease ofe in(R) is not due to the opening o
the gap but to a breaking of polarizable bonds at the surf
We also show that the bulk response functione0(q) provides
most of the needed information even for very small na
structures.

Let us start with the formalism of dielectric screenin
applied to nanosized systems in view of relating it to a m
roscopic formulation. We thus apply a bare perturbat
wb(r ) which induces a changedn(r ) in the electron density
so that the final~screened! potential energy is

w~r !5wb~r !1E v~r ,r 8!dn~r 8!dr 8, ~1!

where v5e2/ur2r 8u. Equation ~1! can be formally con-
densed asw5wb1vdn. To first orderdn can be expresse
as
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dn~r !5E p~r ,r 8!w~r 8!dr 8 ~dn5pw!, ~2!

where p is the polarizability function. Combining Eqs.~2!
and ~1! one getsw5(12vp)21wb . Usually (12vp)21 is
then identified with the inverse dielectric functione21(r ,r 8)
but it is not the correct approach in nanostructures in view
the surface polarization charges. We now follow, for i
stance, Ref. 9 in defining macroscopic quantities~written in
capital letters! as suitable averages of the microscopic qu
tities defined above. More specifically we write here

F~r !5E g~r2r 8! f ~r 8!dr 8, ~3!

whereg is a weighting function which suppresses the sho
period oscillations contained in the microscopic quant
f (r ). For a bulk periodic crystal, for instance, one could ta
the Fourier transformg(q) as constant within the first Bril-
louin zone, zero outside. We now consider that the bare
turbation is macroscopic~i.e., Wb5wb , corresponding to an
electric fieldEb) and want to express the macroscopic co
ponent of the screened field. Using the fact that Maxwe
equations remain invariant under the averaging procedure~3!
we can write

¹~E2Eb!524pedN, ~4!

wheredN is the macroscopic average ofdn. The main point
is now to relatedn and thusdN to the macroscopic potentia
or field. For this we combine Eqs.~1! and ~2! to get

w5Wb1vpw, ~5!

which can be averaged via Eq.~3! to give

W5Wb1 v̄pw, ~6!

where v̄ is the average ofv(r ,r 8) over r given by Eq.~3!.
From the difference between Eqs.~5! and ~6! we can write

w5W1dvpw, ~7!
©2003 The American Physical Society11-1
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wheredv5v2 v̄ is the short-range part of the Coulomb i
teraction. Equation~7! combined with Eq.~2! gives the de-
sired relation betweendn andW:

dn5p~12dvp!21W. ~8!

Equations~4! and~8! lead to a complete macroscopic fo
mulation of the problem, the influence of the microscop
fields being taken into account in Eq.~8!. To achieve the
connection with the macroscopic bulk equations we m
use of an important theorem due to von Laue.8 This one
states that the electron density recovers its bulk value at
tances from boundaries of the order of a few Fermi wa
lengthslF—i.e., typically the interatomic distance. In ou
case this means that the response function given by Eq.~8! is
the bulk one inside a nanocrystal as long as its character
size exceeds a fewlF . This seems to contradict the gener
belief that screening becomes less effective in nanocrys
due to the opening of the gap which increases the deno
nator in the polarization functionp. We shall see in the fol-
lowing that this conclusion is confirmed by numerical calc
lations and how it is possible to get an overall consist
picture of dielectric screening in these systems. Howe
before doing this it will prove of interest to solve Eqs.~4!
and~8! deep inside the nanocrystal where the response fu
tion is the bulk one. In this region we can thus find a solut
as a linear combination of the bulk solutions. Considerin
bare perturbation of the formEbqexp(iq•r ) the macroscopic
field is also of this form with amplitude given by

q•Eq5e0
21~q!q•Ebq . ~9!

Heree0
21(q) is the bulk inverse dielectric function given b

e0
21~q!512

4pe2

q2V
E

V
e2 iq•rp0~12dvp0!rr 8

21eiq•r8.

~10!

The expression corresponds to the standard bulk form
in reciprocal space but we shall see that Eq.~9! keeps its
validity even for small nanosystems.

Let us now present our numerical TB calculations.
discussed in Refs. 10 and 11 screening can be described
simple way from the following procedure:~i! calculate the
net atomic chargesNk by summing the electron populatio
of the various orbitals on a given atomk, ~ii ! by considering
only the diagonal on-site matrix elements of the electrost
potential, and~iii ! by taking the electrostatic potential on si
l due to an electron on sitek to bee2/Rkl if kÞ l whereRkl
is the interatomic distance and to the Coulomb intra-ato
term U if k5 l . This leads to a formalism fully similar to
Eqs.~1! and ~2! except that one deals with matrix equatio
of size N3N (N being the number of atoms! instead of
complex integral equations. The advantage is that they
be solved for fairly large nanostructures. The TB electro
structure itself is calculated using an atomic basis compo
of ones and threep orbitals for each silicon atom and ones
orbital for each hydrogen saturating the surface dang
bonds. We use the TB parametrization of Ref. 12 which
cludes interactions up to third nearest neighbors and th
11541
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center terms. It gives for bulk silicon a fairly accurate ba
structure and also leads to a fairly good value of the b
dielectric constante0(q→0)510.62.11 We have also verified
that TB calculations describe very well the screening
small silicon clusters by comparing our results to recentab
initio calculations.13 For example, Fig. 1 shows that there
an excellent agreement between the two methods to pre
the screened potential induced by a point charge at the ce
of a Si35H36 cluster. We see that the TB procedure provid
averages~over atomic volumes! which are close to the mi-
croscopic quantities. Note that we have also performed
culations for InAs nanostructures with the TB parameters
Ref. 14: they lead to the same conclusions as for Si.

We first consider the simplest case of Si thin layers w
~001!-oriented planes submitted to a bare electric fieldEb
constant in the direction parallel to the~100! planes and
which can be either constant or vary as sin(npz/d) in the
perpendicular directionz if d is the film thickness. In the TB
procedure we treat electric fields from the finite differenc
between neighboring potentials. Figure 2 gives the elec
field along the layer for a constant bare fieldEb inside but
vanishing abruptly between the terminating Si-H planes. T
most striking feature of these curves is that the local diel
tric constant defined asEb /E keeps its bulk value to a high
accuracy except between the last two planes. This confi
the general analysis developed before. Furthermore, on
same figure we have plotted what one would obtain
screening each Fourier component ofEb ~Heaviside func-
tion! by the bulke0(q). The agreement with the full calcu
lation is striking even near surfaces where, however, the
cillatory behavior depends on the nature of the bound
conditions. Again this is a proof that bulk screening app
priately describes the situation even for very small thic
nesses~five silicon planes!.

A second interesting view of the problem is provided
Fig. 3 which gives an average of the dielectric constant o
the layer thickness. For a constant field one observes
overall decrease with decreasing thickness. This is due to
surface contribution as can be judged from Fig. 2, the ma
effect being a decrease of the local dielectric constant fr
the bulk value to 1 over the last two planes. In the sa

FIG. 1. Ratio between the bare (wb) and the screened~w! elec-
trostatic potentials induced by a point charge placed at the cent
a Si35H36 cluster as a function of the distance to this charge~line, ab
initio calculations of Ref. 13; dots, present tight binding results!.
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figure 3 we have also drawn the average dielectric cons
for two sinusoidal bare electric fields sin(npz/d) with n51
and n52. Comparison with the corresponding bulke0(q)
with q5(0,0,p/d) or (0,0,2p/d) leads to exact agreemen
since for such perturbations the surface contribution alm
exactly cancels because theEb is zero on the Si surface
planes. This again represents a strong confirmation of
general analysis.

We now discuss briefly the dielectric response of sph

FIG. 2. Ratio between the bare electric fieldEb and the screened
oneE in Si layers submitted to a constant electric field@h, j, TB
results; lines, continuous model using the bulk dielectric cons
e0(q)]. In the TB procedure, the field is calculated at the middle
atomic neighboring planes by the finite difference of the potent
The results between the terminating Si-H planes (j) vanish be-
cause we considered a situation whereEb50 in these regions.
11541
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cal crystallites which we had already treated before but no
the same context.3,11,15The situation is more difficult to ana
lyze than the case of thin layers. However, it is possible
define a bare perturbation which can be used in common
the isolated cluster and for the bulk crystal. This consists i
charge1q on the central atom of the sphere and a neut
izing charge uniformly spread on the outer shell of silic
atoms. Figure 4 again compares the local dielectric const
obtained from the direct calculation and from the use of
bulk e0(q). Apart from some differences near the boundar
~center and surface! the results are again in close agreeme
Figure 5 gives the average dielectric constant versus
calculated from different TB approaches. All of them giv
comparable results close to those obtained from the b
dielectric functione0(q).

As mentioned above the basic reason for the predo
nance of bulk properties even at very small sizes comes f
von Laue’s theorem.8 To check this further we have calcu

nt
f
l.

FIG. 3. Average dielectric constant calculated in TB vs lay
thicknessd for a bare electric fieldEb which is either constant~1!
or is sinusoidal@3, sin(pz/d); *, sin(2pz/d)]. Lines: model using
the bulk dielectric constante0(q).

FIG. 4. Ratio between the bare electric fieldEb and the screened
oneE vs the distance to the center in a 2.5-nm Si spherical na
crystal. The bare field is due to a charge1q at the center and a
charge2q uniformly spread on the surface of the sphere@j, TB
results; lines, continuous model using the bulk dielectric cons
e0(q)].
1-3
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lated the ratio of the TB nearest-neighbor interatomic po
ization p(0,1) with respect to the bulk value at the center
nanostructures. We have done this for Si layers and fo
and InAs spherical nanocrystals that we have compare
the evolution of the gapEg since it is generally believed tha
p(0,1) should scale roughly like 1/Eg . Figure 6 strikingly
shows thatp(0,1)/pbulk(0,1) does not deviate at all from
while over the same range of sizesEg varies up to one orde
of magnitude. This is clear evidence of the validity of vo
Laue’s theorem and of the fact that bulk parameters are
pertinent even for very small nanocrystals. Interestingly,
nature of the gap—direct for InAs or indirect for Si—play
no role in the evolution of the polarization with size.

At this point it is interesting to comment on Fig. 5 aga
A quite similar trend was obtained in Ref. 2 from a sem
empirical pseudopotential calculation and use of the form
e in(R)511(2/p)*0

`e2(E)/EdE wheree2 is the imaginary
part corresponding to the absorption spectrum. For the b

*Electronic address: christophe.delerue@isen.fr
1R. Tsu and D. Babic, Appl. Phys. Lett.64, 1806~1994!.
2L.-W. Wang and A. Zunger, Phys. Rev. Lett.73, 1039~1994!.
3M. Lannoo, C. Delerue, and G. Allan, Phys. Rev. Lett.74, 3415

~1995!; G. Allan, C. Delerue, M. Lannoo, and E. Martin, Phy
Rev. B52, 11 982~1995!.

4L. Hedin and S. Lundquist, Solid State Phys.23, 1 ~1969!.
5G. Onida, L. Reining, R.W. Godby, R. Del Sole, and W. Andreo

Phys. Rev. Lett.75, 818 ~1995!.
6A. Franceschetti and A. Zunger, Phys. Rev. B62, 2614~2000!.
7E. Bakkers, Z. Hens, A. Zunger, A. Franceschetti, L. Kouwe

hoven, L. Gurevich, and D. Vanmaekelbergh, Nano Lett.1, 551
~2001!.

8M. von Laue, Ann. Phys.~Leipzig! 44, 1197 ~1914!; C. Kittel,
Quantum Theory of Solids~Wiley, New York, 1963!.

9L. Landau and E. Lifchitz,Electrodynamique des Milieux Cont
nus, 2nd ed.~Mir, Moscow, 1990!.

FIG. 5. Dielectric constant of Si spheres defined in differe
situations: average ofEb /E with a constant bare electric fieldEb

(3) or with Eb due to a charge1q at the center and2q at the
surface@triangles, TB calculations; line, continuous model using
bulk dielectric constante0(q)]; fit of the potential induced by
charge1q at the center, the radiusR considered as a paramet
~squares!.
11541
r-
f
Si
to

ill
e

-
la

lk

it is a standard result that this is equivalent to Eq.~10! in the
limit q→0 when neglecting local field effects@i.e., taking
e21(q,q)51/e(q,q)] which is known to introduce an erro
of order 15%. In our case it is then reasonable that it gi
results similar to Fig. 5 to within 15% as for the bulk. An
other interesting point is that the size dependence ofe in(R)
can be reproduced directly from the use of the bulk respo
function. Finally, a good representation ofe in(R) is obtained
by assuming that one recovers the bulk dielectric cons
within a sphere of radiusR with a linear decrease frome0 to
1 between spheres of radiusR andR1D.

In conclusion we have analyzed local dielectric screen
in nanostructures. General arguments as well as nume
TB calculations show that irrespective of the size one rec
ers locally the bulk dielectric function for the macroscop
component of the field except in a thin surface layer of
order of a few Fermi wavelengths. This provides a consist
interpretation of all their dielectric properties and shows t
the decrease of the average dielectric constant with siz
due to a breaking of the polarizable bonds at the surface
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