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The frequency-dependent conductivity �xx�!� of 2D electrons subjected to a transverse magnetic
field and smooth disorder is calculated. The interplay of Landau quantization and disorder scattering
gives rise to an oscillatory structure that survives in the high-temperature limit. The relation to recent
experiments on photoconductivity by Zudov et al. and Mani et al. is discussed.
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this leads to an extra contribution to the dc conductivity. 
tr;0=
s;0 � 1).
The magnetotransport properties of a high-mobility
2D electron gas (2DEG) in semiconductor heterostruc-
tures are of great importance from the point of view of
both fundamental physics and applications. Important
information about the dynamical and spectral properties
of the system is provided by its response to a microwave
field. Within the quasiclassical Boltzmann theory, the
dissipative ac conductivity �xx�!� � ���!� � ���!� of
a noninteracting 2DEG in a magnetic field B is given by
the Drude formula (we neglect spin for simplicity),

��D�
� �!� �

e2�0v2
F
tr;0

4�1� �!c � !�2
2
tr;0�

; (1)

where vF is the Fermi velocity, �0 � m=2� (with �h � 1)
the density of states (DOS), 
tr;0 the transport relaxa-
tion time at B � 0, !c � eB=mc the cyclotron frequency,
and m the electron effective mass. For a sufficiently clean
sample, !
tr;0 	 1, Eq. (1) predicts a sharp cyclotron
resonance (CR) peak at !c � !.

It has been shown by Ando [1,2] that the Landau
quantization of the orbital electron motion leads, in com-
bination with disorder, to the emergence of harmonics of
the CR at ! � n!c, n � 2; 3; . . . . Indeed, such a structure
was experimentally observed [3]. The analytical calcula-
tions of Ref. [1] were performed, however, only for fully
separated Landau levels with pointlike scatterers [4].

Very recently, great interest in the transport properties
of a 2DEG in a microwave field has been caused by
experiments on photoconductivity of exceptionally high-
mobility samples by Zudov et al. [5] and Mani et al. [6],
where oscillations controlled by the ratio !=!c were
observed. Remarkably, these oscillations persisted down
to B as low as 10 mT, an order of magnitude smaller than
the field at which the Shubnikov–de Haas oscillations
were damped. The experiments [5,6] triggered an out-
break of theoretical activity. Durst et al. [7] proposed (see
also Refs. [8,9]) that the oscillations are governed by the
following mechanism: an electron is excited by absorbing
a photon with energy ! close to n!c and is scattered by
disorder. In view of the oscillatory structure of the DOS,
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In fact, a very similar mechanism was proposed long ago
[10] for the case of a strong dc electric field.

While the proposal of Ref. [7] is very appealing, cal-
culations there involve a number of assumptions and
approximations. First, the consideration of Ref. [7] is
restricted to the case of white-noise disorder with 
tr;0 �

s;0, where 
s;0 is the single-particle relaxation time at
B � 0. On the other hand, the experiments are performed
on high-mobility samples with smooth disorder,

tr;0=
s;0 ’ 50. Second, Ref. [7] neglects all vertex correc-
tions and discards inelastic processes. As we argue below,
the inelastic relaxation is of central importance for the
magnitude of the photoconductivity.

The development of the full theory of the oscilla-
tory photoconductivity remains thus a challenging task,
which we postpone to a future work. In this Letter we
address the problem of the ac response of a 2DEG
with smooth disorder. On top of theoretical importance
and experimental relevance this problem possesses on its
own, it is closely related to the photoconductivity. Indeed,
the key ingredient of the photoconductivity mecha-
nism — absorption of a photon — is governed by the dis-
sipative ac conductivity �xx�!�. We will return to this
relation in the end of this Letter, where we discuss im-
plications of our results for the photoconductivity.

We consider a 2DEG subjected to magnetic field B and
a random potential U�r� characterized by a correlation
function hU�r�U�r0�i � W�jr� r0j� of a spatial range d.
The total and the transport relaxation rates induced by
disorder at B � 0 are given by
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where ~WW�q� is the Fourier transform of W�r�. While
we are mainly interested in the experimentally rele-
vant case of smooth disorder, when impurities are
separated from the 2DEG by a spacer of width d 	
k�1

F , with 
tr;0=
s;0 � �kFd�2 	 1, our results are valid
for arbitrary d (including short-range disorder with
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To calculate (the real part of) the conductivity, we use
the Kubo formula,

�xx�!� � �
e2

4�V

Z 1

�1

d"
!

�f" � f"�!�

� Tr v̂vx�GA
"�! � GR

"�!�v̂vx�GA
" � GR

" �; (2)

where f" is the Fermi distribution, GR;A are the retarded
and advanced Green functions, the bar denotes impurity
averaging, and V is the system area. We will treat disorder
within the self-consistent Born approximation (SCBA)
[2], which is justified provided the disorder correlation
length satisfies d � lB and d � vF
s;0, where lB �
�c=eB�1=2 is the magnetic length [11]. The Green function
in the Landau level (LL) representation, GR

n � �GA
n �

�, is
given by the SCBA equations [2,11],

GR
n �"� � �"�"n ��"�

�1; �" �
!c

2�
s;0

X
n

GR
n �"�; (3)

where "n � �n � 1
2�!c is the nth LL energy [Fig. 1(a)].

We will assume throughout the paper that !; !c � "F,
so that the relevant LL indices are large, n ’ "F=!c 	 1.
Further, we will concentrate on the regime of strongly
overlapping LLs, !c
s;0=� � 1; the opposite case will
be briefly discussed in the end. To evaluate the self-
energy in Eq. (3), we use the Poisson formula,

P
nFn �P

k

R
dxF�x� exp�2�ikx�. The k � 0 term yields then

the B � 0 result, ��0� � i=2
s;0, while the k � �1 contri-
butions provide the leading correction,

��1�
" � �i=2
s;0�� 1� 2� exp��2�i"=!c� �; (4)

with � � exp���=!c
s;0� serving as a small parameter
of the expansion. According to Eqs. (3) and (4), the
oscillatory correction to the DOS reads

���"�=�0 � �2� cos�2�"=!c�: (5)

The conductivity (2) is given diagrammatically by
an electronic bubble with a vertex correction, i.e., by a
sum of ladder diagrams, Figs. 1(b) and 1(c). We evaluate
first the bare bubble �b (which is sufficient for the
case of white-noise disorder). Making use of velocity
matrix elements in the LL representation, we get for
"F 	 !; !c:
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FIG. 1. (a) SCBA equation for the Green function; (b) the
dynamical conductivity with vertex correction (c).
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Using again the Poisson formula, we find
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(8)

For the case of smooth disorder we have to take into
account the vertex correction [Fig. 1(c)] while averaging
in Eq. (2). This is a nontrivial task since the disorder
mixes strongly the LLs, thus seriously complicating a
direct calculation in the LL representation. We choose
instead a different way, which is suggested by the quasi-
classical nature of the problem, "F
s;0 	 1. It is instruc-
tive to recall first how the vertex correction is calculated
at B � 0. The vertex function �RA

� �r1; r2� [the average of
GRv�GA with v� � �vx � ivy�=2] depends then on
r1 � r02 only, yielding �RA

� �p� in the Fourier space. In
the quasiclassical regime the momentum integrals are
dominated by the vicinity of the Fermi surface, reducing
�RA
� �p� to �RA

� ���, where � is the polar angle of velocity
on the Fermi surface. The equation for �RA

� ��� is then
easily solved, yielding �RA

� ��� � �vF=2�e�i�
tr;0=
s;0.
We are now going to generalize this quasiclassical

calculation onto the case of a finite B. In this situation
the vertex functions �RR�RA�

� �r1; r2� are, however, neither
gauge nor translationally invariant. We define a gauge and
translationally invariant vertex function by introducing a
phase factor induced by the vector potential A�r� on a
straight line connecting r1 and r2,

~�� RR�RA�
� �r� � exp

	
�i

e
c
A�R�r



�RR�RA�
� �r1; r2�; (9)

where r � r1 � r2 and R � �r1 � r2�=2. After the
Fourier transformation, r ! p [note that p has the mean-
ing of the kinematic rather than canonical momentum, in
view of the transformation (9)], we get then the following
equation for the dressed vertex:

~��RR�RA�
� �p� � p�=m � 4

X
n

��1�nGR
n�1�" � !�GR�A�

n �$�

�
Z d2p0

�2��2
~WW�p� p0�e�l2Bp02

� L1
n�2l2Bp02�~��RR�RA�

� �p0�; (10)

with p� � px � ipy=2. Using the asymptotic behavior of
the Laguerre polynomial L1

n�x� at n; x 	 1, one can show
that the following replacement is justified [12] in Eq. (10):

��1�ne�l2Bp02
L1

n�2l2Bp02� ! ��2l2Bp02 � 4n�: (11)

The sum over n in Eq. (10) is then dominated by a narrow
band of width �n=n � 1=$F
s;0 around the Fermi surface.
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Exploiting the SCBA condition d=vF
s;0 � 1, we finally reduce Eq. (10) to the form

~��RR�RA�
� ��� �

vF

2
e�i� � 2��0�

RR�RA�
�

Z d�0

2�
~WW
�
2kF sin

� � �0

2

�
~��RR�RA�
� ��0�:

Therefore, the inclusion of the vertex correction leads to a replacement of �RR�RA�
� in Eq. (6) by

�RR�RA�
�;tr � ���RR�RA�

� ��1 � �
�1
s;0 � 
�1

tr;0��
�1: (12)

Evaluating Eq. (6) with this substitution to first order in �, we get the following result for the ac conductivity at zero
temperature, T � 0:

��1�
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1� 2� cos�2�"F=!c�

	
2'2

�

'2
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2�!=!c
�

3'2
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'2
� � 1

sin2��!=!c�

'��!=!c


�
; (13)

where '� � 
tr;0�! � !c�. Let us stress that the single-particle time 
s;0 enters Eq. (13) only through the damping
factor �; everywhere else it has been replaced by the transport time 
tr;0 due to the vertex correction [13].

Since the correction in Eq. (13) oscillates with "F, it becomes damped at finite T by the factor X= sinhX with X �
2�2T=!c. If T is higher than the Dingle temperature TD � 1=2�
s;0, the temperature smearing becomes the dominant
damping factor. In ultraclean systems of the type used in the experiments [5,6] the Dingle temperature is as low as
TD � 100 mK, so that for characteristic measurement temperatures T � 1 K the first-order correction (13) will be
completely suppressed. We will show, however, that there exists a correction, oscillatory in !=!c, which is not affected
by the temperature. To obtain it, we have to extend our calculation to second order in �. Analyzing all arising terms, we
find that the required contribution is generated only by the expansion of �RA

�;tr, Eq. (12), with �RA
� given by Eq. (8), to

second order in �, ���1��
" ���1�

"�!�
2 ! 2�2 exp��2�i!=!c�. Note that there is no need to calculate �" to second order,

neither to take �RR
� into account, since the corresponding terms oscillate with ". We thus get the following result for the

leading quantum correction at T 	 TD:

��2�
� �!� � ��D�

� �!�

�
1� 2�2
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��'

2
� � 3�

�'2
� � 1�2
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!c

�
'��3'2

� � 1�

�'2
� � 1�2

sin
2�!
!c


�
: (14)
The regime which is most interesting theoretically and
relevant experimentally is that of long-range disorder,

tr;0=
s;0 	 1, and a classically strong magnetic field,
!c; ! 	 
�1

tr;0. In this situation j'�j 	 1 and Eq. (14)
acquires a remarkably simple form (Fig. 2),

��2�
� �!����D�

� �!��1�2e�2�=!c
s;0 cos�2�!=!c��: (15)

We turn now to the limit of separated LLs, when the LL
width 2� � 2�2!c=�
s;0�

1=2 [11] is small compared
to !c. This calculation can be done either by using
Eqs. (6) and (12) or directly in the LL representa-
FIG. 2. Magneto-oscillations of the dynamical conductiv-
ity for a system with smooth disorder, 
tr;0=
s;0 � 10. Solid
line: separated LLs, !c
s;0=� � 3:25; dashed line: overlap-
ping LLs, !c
s;0=� � 1. Inset: �xx for fixed !
s;0=2� � 1
as a function of !c.
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tion. We will only briefly present the main results (illus-
trated in Fig. 2); details will be presented elsewhere
[14]. The conductivity �xx�!� is nonzero only for ! in
intervals �M!c � 2�; M!c � 2�� with an integer M. At
the center of the M � 1 interval we find a CR peak
of height �xx�!�!c�� �e2�0v2

F=���
tr;0=
s;0 and width
��
s;0=
tr;0. All other peaks (M � 1) are much smaller
[in view of 
tr;0=
s;0 � �kFd�2 	 1]:

�xx�! � M!c� �
4e2�0v2

F�

3�!2
c


s;0


tr;0

M2 � 1

�M2 � 1�2
: (16)

In fact, the whole dependence �xx�!� can be described as
a Drude-type structure with a renormalized DOS, ��"� �
�0
s;0��

2 � �" � "n�
2�1=2 for j" � "nj � �, and the trans-

port time 
tr�"� � 
tr;0�0=��"�:

���!� �
e2v2

F

4!

Z d"�f" � f"�!���"�
�1
tr �"�!�

�
�2
tr �"�� 
�2

tr �"�!��=2��!�!c�
2 :

Finally, we discuss the relation to the photoconductiv-
ity oscillations. For this purpose, we present first a simple
way to understand the oscillatory structure in the ac
conductivity (15). Since 1

2 �xx�!�E2
! is the power absorbed

in a linearly polarized ac field E!, we have

�xx�!� � !2VjM�!�j2h��"���" � !�i"; (17)

where M�!� is the dipole matrix element, and h� � �i"
denotes the energy averaging with the corresponding
226802-3
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Fermi factors [see Eq. (2)]. Using Eq. (5) for the DOS
oscillations, we get h��"���" � !�i" ’ �2

0 � 1� 2�2 �
cos�2�!=!c� � at T 	 TD, reproducing the oscillatory
quantum correction in Eq. (15). In a similar way, we
now consider the photoconductivity. The concentration
of photoexcited electrons is n � ���!�=! �E2

!
in, where

in is the inelastic relaxation time, and we assumed that
the amplitude E! of the ac field is sufficiently weak. A
correction to the dc conductivity induced by these elec-
trons due to the energy dependence of the DOS can then
be estimated as

�ph � !�eE!lin�
2VjM�!�j2h��"��0�" � !�i"

��
�eE!lin�

2

!!c
��D�

xx �!�e�2�=!c
s;0 sin
2�!
!c

; (18)

where lin � vF�
tr;0
in�
1=2=!c
tr;0 is the inelastic length

and we used Eqs. (15) and (17). Note that the steady state
to linear order in the radiation power is reached only due
to inelastic processes, leading to �ph / 
in. We believe
that Eq. (18) describes the leading contribution to �ph

induced by the LL quantization in the limit 
in 	 
s;0.
Let us stress that this contribution comes from an oscil-
latory correction to the distribution function, as opposed
to the mechanism of Ref. [7], related to the effect of
microwaves on the collision integral.

Although Eq. (18) agrees with the experiment as far as
the period [5,6] and the phase [6] of the oscillations are
concerned, there is a considerable disagreement in the
damping of oscillations at low B. Specifically, our
consideration predicts a damping factor �2 � e�2�=!c
s;0

[same as in the ac conductivity, Eqs. (14) and (15)], so
that if the experimental data for the damping of the
photoconductivity oscillations are fitted to the form
e��=!c
ph , one should find 
ph=
s;0 �

1
2 . On the other hand,

the experiments yield much larger values, 
ph=
s;0 ’
13 ps=2:5 ps � 5:2 [5] and 
ph=
s;0 ’ 18 ps=11 ps ’ 1:6
[6]. In other words, the photoconductivity oscillations
are observed at such low fields that the contribution due
to the above mechanism should be completely suppressed.

This suggests that, at least at lower B, another mecha-
nism, not related directly to the LL quantization, might
govern the observed oscillatory photoconductivity. A
possible candidate is quasiclassical memory effects.
They have been shown to induce strong dc magnetoresis-
tance [15] and generate harmonics of the CR [16] in
models with smooth disorder and/or strong scatterers. It
is thus natural that the memory effects induce also qua-
siclassical oscillations in the photoconductivity; work in
this direction is in progress [14,17].

To summarize, we have studied the ac magnetocon-
ductivity �xx�!� of a 2DEG with smooth disorder char-
acteristic of high-quality semiconductor structures. The
interplay of Landau quantization and disorder induces a
contribution oscillating with !=!c (the CR harmonics).
The effect is suppressed both in the classical limit
226802-4
!c
s;0 ! 0 and in the clean limit !c
s;0 ! 1, and can
be best observed in the crossover range, !c
s;0 � 1. We
have discussed the relation to the recent experiments on
photoconductivity of ultraclean samples [5,6].
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