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Analysis of the transmission spectrum of Cantor dielectric multilayers for obliquely incident plane wave
shows that the main bandgap shifts towards higher frequencies, substantially retaining its shape, as the
incidence angle increases for both s- and p-polarization of the impinging wave. For suitable refractive
index values of the two constituent materials a range of frequencies can be found where transmission
of the incident wave is almost completely forbidden at any angle of incidence. This omnidirectional band-
gap can be found also for lossy media. In this case the stop-band widens as the tangent loss increases,
while the depth of the stop-band does not change significantly. Comparison with the periodic quarter-
wave stack shows that the Cantor multilayer exhibits a narrower omnidirectional bandgap with trans-
missivity values that are about one order of magnitude lower.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

One dimensional periodic dielectric multilayers for which
transmission of both p- and s-polarized light is forbidden for all
incident angles and for a fairly wide range of wavelengths have
been widely analyzed. In particular, it has been showed that when
a plane electromagnetic wave propagates in a 1D periodic struc-
ture obliquely to the layer interfaces, the relative position of the
bandgap is shifted towards higher frequencies while its width
increases with the angle of incidence. As a result, if the refractive
index values of the two dielectrics constituting the unit cell are
properly chosen, a frequency band can be found where the incident
wave is almost completely forbidden to propagate at any angle of
incidence [1–4].

On the other hand, dielectric Cantor fractal multilayers have
been extensively analyzed in the literature [5–8], but it has not
been showed whether such systems can exhibit omnidirectional
bandgap.

In this paper, we analyze the transmission properties of triadic
Cantor multilayers for oblique incidence and show the existence of
an omnidirectional bandgap for both polarization states, if suitable
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refractive index values of the two materials, which the fractal mul-
tilayer consists of, are considered.

Moreover, we compare the omnidirectional bandgap character-
istics of Cantor and periodic multilayers with the same (or closest
to the same) number of layers, and the same refractive indexes of
the two dielectric constituents.

The paper is organized as follows. In Section 2 Cantor multilay-
ers are introduced. Their omnidirectional bandgap features are dis-
cussed in Section 3. Comparison between Cantor and periodic
multilayers is reported in Section 4. Conclusions follow under Sec-
tion 5.

2. Triadic Cantor multilayers

A triadic Cantor multilayer is a one dimensional structure with
fractal morphology [9,10]. Generally, a fractal set can be obtained
starting from a basic structure (initiator) and repeating ad infinitum
a specific operation (generator) on smaller and smaller scales. Halt-
ing the generating process after a finite number of steps (stages of
growth of the fractal) gives a prefractal which can be an appropri-
ate model for physically realizable objects. Anyway, it is in the
common use to adopt the term fractal for both prefractal and frac-
tal sets. Henceforth we will conform to this terminology. In the
case of the triadic Cantor construction the initiator is a segment
and the generator consists in removing the dimension
1=R ðR > 1Þ from the central part of all segments in the set. The
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Fig. 2. Transmissivity spectrum of a triadic Cantor multilayer ðna ¼ 4:6;nb ¼ 2:3;
M ¼ 3;nin ¼ nout ¼ 1Þ as a function of the normalized frequency and of the angle of
incidence (in degree) for an s-polarized incident planewave.
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fractal at the stage of growth M is obtained by excising the dimen-
sion 1=R from the central part of all segments in the fractal at the
stage M � 1. In the following we will confine to the case R ¼ 3. The
first four Cantor fractal stages are shown in Fig. 1. At the M-th stage
of growth, the fractal set consists of 2M segments separated by
2M � 1 gaps.

All segments have the same length LM:

LM ¼ L=3M ð1Þ

where L is the length of the initiator, while the length of the gaps
depends on the stage at which they are created. The length ‘m of
the 2m�1 gaps created at the m–th stage ðm ¼ 1; . . . ;MÞ is:

‘m ¼ L=3m: ð2Þ

Cantor multilayers can be constructed by properly reformulat-
ing the procedure described above. At the generic M-th stage the
multilayer is a succession of N ¼ 2Mþ1 � 1 alternating, homoge-
neous layers of two dielectric materials with refractive indexes
na and nb, where layers na correspond to the segments of the Can-
tor set and layers nb correspond to the gaps. Eqs. (1) and (2) give
the optical length of the layers na and nb, respectively. In this
way, starting from the leftmost layer and progressively numbering
the layers, their characteristics are as follows: odd layers (layer
number, say, q) have refractive index na and thickness

d qð Þ ¼ da ¼
L

na3M ; q odd ð3Þ

while even layers have refractive index nb and thickness

d qð Þ ¼ 3p�1 nada

nb
; q even ð4Þ

where p is the multiplicity of 2 in the prime factorization of q.
Consider a Cantor multilayer at the stage of growth M sitting

between two semi-infinite dielectric media with refractive index
nin and nout , and let a monochromatic planewave impinge on the
multilayer with an angle hin with respect to the longitudinal axis
of the structure. The transmission coefficient of the multilayer
can be computed using the method of the characteristic matrixes
along with the Snell’s law at each interface [11]. Some papers [5–
10] dealt with the analysis of transmission properties of Cantor
multilayers for normal incidence. In this case the transmissivity
of the multilayer exhibits several transparency/opacity windows.
The deepest bandgap is bounded by two narrow transmission
peaks and it is centered at:

f0 ¼
c

4nada
; ð5Þ

c being the speed of light in vacuo.
stage 0

stage 1

stage 2

stage 3

Fig. 1. Triadic Cantor fractal set at different stages of growth.
3. Omnidirectional bandgap

As an example, we choose na ¼ 4:6 and nb ¼ 2:3 as has been
used in several papers [12–15]. Anyway, in this Section we also ex-
plain how the omnidirectional bandgap properties change with the
indexes. Here and henceforth the stage of growth and the outer
media are chosen to be M ¼ 3 (number of layers N ¼ 15), and
nin ¼ nout ¼ 1, respectively. Note that there is no total reflection
at any interface since nin < minfna;nbg. Figs. 2 and 3 show the
maps of the computed transmissivities for s- and p-polarization,
respectively, as a function of both the normalized frequency f=f0

and the angle of incidence. Like periodic dielectric multilayers
[1–4], the transmissivity spectrum slightly shifts towards higher
frequencies as the angle of incidence increases almost without
changing its shape, regardless of the polarization. These figures
show the existence of a range of frequency where transmission is
forbidden (e.g., transmissivity less than 0.1) at any angle of inci-
dence (omnidirectional bandgap) for both polarization states. To
illustrate this to a greater extent Figs. 4 and 5 show the transmis-
sivity spectrum at the angles of incidence hin ¼ 0� (solid line) and
hin ¼ 85� (dotted line) for s- and p-polarization, respectively. The
omnidirectional bandgap is the grey-highlighted area.
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Fig. 3. Same as Fig. 2 but for a p-polarized planewave.



0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
10

−8

10
−6

10
−4

10
−2

10 0

f/f0

tr
an

sm
is

si
vi

ty

Fig. 4. Transmissivity spectra from Fig. 2 for angle of incidence hin ¼ 0� (solid line)
and hin ¼ 85� (dotted line) as a function of the normalized frequency. The
omnidirectional bandgap (transmissivity less than 0.1) is the grey-highlighted
band.
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Fig. 5. Transmissivity spectra from Fig. 3 for angle of incidence hin ¼ 0� (solid line)
and hin ¼ 85� (dotted line) as a function of the normalized frequency. The
omnidirectional bandgap (transmissivity less than 0.1) is the grey-highlighted
band.
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Fig. 6. Relative bandwidth of the omnidirectional bandgap as a function of the
refractive index of the constituent media na for s-polarized planewave incidence.
Lines are drawn for nb ¼ 1:8;1:9;2:1;2:3 and 2:5.
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Fig. 7. Same as Fig. 6 but for p-polarized planewave incidence.
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Fig. 8. Depth Tc of the stop-band as a function of the angle of incidence for
tan d ¼ 10�6 (solid line) and tan d ¼ 10�2 (dotted line). s-polarized planewave
incidence. ea ¼ n2

að1� | tan dÞ and eb ¼ n2
bð1� | tan dÞ with na ¼ 4:6 and nb ¼ 2:3.
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The omnidirectional bandgap does not exists for any choice of
the refractive indexes of the constituent media. That is illustrated
in Figs. 6 and 7 where the relative width of the omnidirectional
bandgap is plotted as a function of the refractive index na for var-
ious values of nb. In particular, the figures show that, if the refrac-
tive index of one medium is assigned a value, say na, there is a
threshold in the refractive index of the other medium, nb. More-
over, the omnidirectional bandgap has a bandwidth that widens
as na increases for both states of polarization.

As a further analysis, the existence of the omnidirectional band-
gap has been investigated for dissipative media. As an example we
use permittivities ea ¼ n2

að1� | tan dÞ and eb ¼ n2
bð1� | tan dÞ, with

value of loss tangent tan d ranging from 10�6 up to 10�2, and
na ¼ 4:6 and nb ¼ 2:3.

In Fig. 8 the value Tc of the depth of the stop-band is plotted as a
function of the angle of incidence for a tan d ¼ 10�6 (solid line) and
tan d ¼ 10�2 (dotted line). The figure shows that the depth of the
stop-band is almost independent on the material dissipation.
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In Fig. 9 the maximum transmissivity of the peak delimiting the
right end of the stop-band is plotted as a function of the loss tan-
gent for various values of the angle of incidence, hin ¼ 0�;
30�;60�;85�. For sake of brevity, only results for the right peak
and s-polarization are reported since a similar behavior has been
found for the left peak and p-polarization. In the Fig. 9 it can be
seen that as long as tan d 6 10�4 the transmissivity of the peak
for any angle of incidence keeps higher than 0.1 that is the value
below which we consider the wave transmission forbidden.
Increasing tan d the maximum value of the right peak delimiting
the stop-band becomes less than 0:1 at grazing angle of incidence
resulting in an increment in the bandwidth of the omnidirectional
bandgap. That is illustrated in Fig. 10 where the relative bandwidth
of the omnidirectional bandgap is reported as a function of the loss
tangent. It can be clearly seen that, for tan d P 10�4, the width of
the omnidirectional bandgap begins to increase slightly because
the maximum transmissivity of the peaks delimiting the stop-band
becomes <0.1 at lower and lower angles of incidence. When the
loss tangent is higher than 10�3 the peaks have transmissivity
<0.1 already at normal incidence resulting in a steep increment
in the omnidirectional bandwidth.
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Fig. 9. Transmissivity of the right peak delimiting the stop-band as a function of the
loss tangent for various values of the angle of incidence (hin ¼ 0�;30� ;60�;85�) and
s-polarization. ea ¼ n2

að1� | tan dÞ and eb ¼ n2
bð1� | tan dÞ with na ¼ 4:6 and

nb ¼ 2:3.

10−6 10−5 10−4 10−3 10−2
0

0.1

0.2

0.3

0.4

tanδ

re
la

tiv
e 

ba
nd

w
id

th

Fig. 10. Relative bandwidth of the omnidirectional bandgap as a function of the loss
tangent for s-polarized planewave incidence. ea ¼ n2

að1� | tan dÞ and eb ¼ n2
bð1� |

tan dÞ with na ¼ 4:6 and nb ¼ 2:3.
4. Comparison between Cantor and periodic omnidirectional
bandgap

In order to draw a fair comparison between Cantor and periodic
multilayers we consider a periodic multilayer with eight elemen-
tary cells, each consisting of two dielectric layers. Therefore, the
number of layers in the analyzed Cantor and periodic structures
are as close to the same as possible. The periodic stack has the
same refractive indexes na and nb as the Cantor multilayers, and
it is also hosted in air. The thicknesses of the two layers in the ele-
mentary cell are la ¼ c=ð4naf0Þ and lb ¼ c=ð4nbf0Þ, meaning that the
elementary cell is half a wave thick at the frequency f0. For sake of
brevity we show the results only for s-polarized wave.

As an example, let’s compare the transmissivity spectra of the
Cantor and periodic multilayer using na ¼ 4:6 and nb ¼ 2:3. The
spectra as a function of the normalized frequency are plotted in
Fig. 11a for hin ¼ 0�, and in Fig. 11b for hin ¼ 85�. As it can be seen,
the Cantor multilayer exhibits a transmissivity spectrum almost
one order of magnitude lower than the one of the periodic
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Fig. 11. Transmissivity spectra of Cantor multilayer (solid line) and of periodic
multilayer (dotted line) as a function of the normalized frequency. Constituent
materials of both structures are na ¼ 4:6 and nb ¼ 2:3. s-polarized planewave
incidence. (a) hin ¼ 0� . (b) hin ¼ 85� .
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multilayer in the central frequency range of the main bandgap. The
Cantor multilayer bandgap also turns out to be narrower than the
bandgap of the periodic structure. These features have been ob-
served for all the analyzed cases also for p-polarization, suggesting
that a Cantor multilayer can be used to obtain an omnidirectional
bandgap with lower transmissivity and narrower bandwidth than
the periodic quarter-wave stack.

5. Conclusions

Transmissivity features of Cantor multilayers have been ana-
lyzed for either s-polarized and p-polarized obliquely incident
planewave. It has been showed that the main bandgap shifts to-
wards higher frequencies as the incidence angle increases. Further-
more, it has been showed that for both polarization states, if the
media constituting the multilayer have suitable refractive index
values, the structure exhibits an omnidirectional bandgap. For a
given value of the refractive index of the less dense medium, the
width of the omindirectional bandgap widens when the refractive
index of the other medium is increased.

The width of the omnidirectional bandgaps has been calculated
also for lossy media. The main effect of the material dissipation is
to decrease the maximum value of the peaks delimiting the stop-
band and, consequently, to broaden the bandgap, while its depth
does not change significantly.

Finally, we have drawn a comparison with periodic quarter-
wave stacks showing that Cantor multilayers exhibit a narrower
omnidirectional bandgap but with transmissivity values that are
about one order of magnitude lower.
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