
ARTICLE IN PRESS

Physica B 405 (2010) 3022–3025
Contents lists available at ScienceDirect
Physica B
0921-45

doi:10.1

� Corr

E-m

makaro
journal homepage: www.elsevier.com/locate/physb
Anderson localization in bi-layer array with compositional disorder:
Conventional photonic crystals versus metamaterials
F.M. Izrailev a, N.M. Makarov b,�, E.J. Torres-Herrera a

a Instituto de Fı́sica, Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
b Instituto de Ciencias, Universidad Autónoma de Puebla, Privada 17 Norte No. 3417, Col. San Miguel Hueyotlipan, Puebla 72050, Mexico
a r t i c l e i n f o

Keywords:

Anderson localization

Photonic crystals

Metamaterials
26/$ - see front matter & 2010 Elsevier B.V. A

016/j.physb.2010.01.027

esponding author.

ail addresses: izrailev@sirio.ifuap.buap.mx (F.

v@siu.buap.mx (N.M. Makarov).
a b s t r a c t

The localization length has been derived for one-dimensional bi-layered structures with random

perturbations in the refractive indices for each type of layers. Main attention is paid to the comparison

between conventional materials and those consisting of mixed right-hand and left-hand materials. It is

shown that the localization length is described by the universal expression for both cases. The analytical

results are confirmed by numerical simulations.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In many fields of fundamental and applied physics much
attention is paid to the wave propagation and electron transport
in one-dimensional periodic structures with elementary cells
consisting of two components (see, e.g. Ref. [1] and references
therein). For example, it could be two optical or electromagnetic
materials, or the pair of quantum wells and barriers in electronics.
The interest to such bi-layer structures is due to various
applications for which one needs to know how to create materials,
metamaterials, or semiconductor superlattices with given trans-
mission properties.

One of the important problems that still remains open is the
role of a disorder that cannot be avoided in experimental devices
due to fluctuations of the width of layers or due to variations
of the medium parameters, such as the dielectric constant, the
magnetic permeability, or the barrier hight for electrons. In spite
of remarkable progress in this field, the majority of studies of the
wave (electron) propagation through random structures are based
on various numerical methods, with an additional assumption of
rapidly decaying correlations [2–13]. As for the analytical results,
they are mainly obtained either for systems with a white-noise
disorder [14], or for the patterns with correlated disorder,
however, with delta-like potential wells [15] or barriers [16,17].

In this paper we derive the unique analytical expression for the
localization length Lloc that is valid for a discrete bi-layer
structures with weakly disordered refractive indices of both basic
slabs. In contrast with the general approach, see Ref. [18], here we
ll rights reserved.
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are interested in a particular problem of comparison of conven-
tional photonic crystals with metamaterials.
2. Model

We consider the propagation of an electromagnetic wave of
frequency o through an infinite array (stack) of two alternating
a and b layers (slabs). Every kind of slabs is, respectively, specified
by the dielectric permittivity ea;b, magnetic permeability ma;b,

refractive index na;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiea;bma;b

p
, impedance Za;b ¼ ma;b=na;b and

wave number ka;b ¼ona;b=c. We address two cases when a slabs

contain conventional right-handed (RH) optic material, while
b layers are composed of either RH or left-handed (LH) material.
The combination of RH–RH slabs is called homogeneous stack
whereas the array of RH–LH layers is called mixed stack. Following
Ref. [11], a disorder is incorporated via the dielectric constants
only (compositional disorder), so that

ma ¼ 1; naðnÞ ¼ 1þZaðnÞ; ð1aÞ

mb ¼ 71; nbðnÞ ¼ 7 ½1þZbðnÞ�: ð1bÞ

Here integer n enumerates the elementary ðabÞ cells. The upper
sign is related to RH material while the lower one is associated

with LH media. Every alternating slab has the constant width da or

db, respectively.
Without disorder, Za;bðnÞ ¼ 0, all layers are perfectly matched

(Za ¼ Zb) and the stack is equivalent to the homogeneous medium
with the refractive index n,

k¼on=c; n ¼ jda7dbj=ðdaþdbÞ; ð2Þ

with no gaps in the linear spectrum. Remarkably, in the ideal mixed
stack (ea ¼ ma ¼ 1, eb ¼ mb ¼�1, Za ¼ Zb ¼ 1) with equal slab widths,
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the phase velocity c=n diverges. Therefore, our consideration is
meaningful only when two layers have different widths daadb.

The random sequences ZaðnÞ and ZbðnÞ are statistically
homogeneous with the zero mean, /Za;bðnÞS¼ 0, and binary
correlation functions defined by

/ZaðnÞZaðn
0ÞS¼ s2

a Kaðn�n0Þ; ð3aÞ

/ZbðnÞZbðn
0ÞS¼ s2

b Kbðn�n0Þ; ð3bÞ

/ZaðnÞZbðn
0ÞS¼ s2

ab Kabðn�n0Þ: ð3cÞ

The average / � � �S is performed over the whole array or due to the
ensemble averaging, that is assumed to be the same. The auto-
correlators KaðrÞ and KbðrÞ as well as the inter-correlator KabðrÞ are
normalized to one: Kað0Þ ¼ Kbð0Þ ¼ Kabð0Þ ¼ 1. The variances s2

a and
s2

b are obviously positive, however, the term s2
ab can be of arbitrary

value. We assume the disorder to be weak, ðka;bda;bsa;bÞ
2
51, that

allows us to develop a proper perturbation theory. In this case all
transport properties are entirely determined by the randomness
power spectra KaðkÞ, KbðkÞ, and KabðkÞ, defined by the relations

KðkÞ ¼
X1

r ¼ �1

KðrÞexpð�ikrÞ ¼ 1þ2
X1
r ¼ 1

KðrÞcosðkrÞ: ð4Þ

By definition (3), all the correlators KaðrÞ, KbðrÞ and KabðrÞ are real
and even functions of the difference r¼ n�n0 between cell indices.
Because of this fact and due to their positive normalization, the
corresponding Fourier transforms KaðkÞ, KbðkÞ and KabðkÞ are real,
even and non-negative functions of the dimensionless lengthwise
wave number k.

Within every a or b layer, the electric field of the wave obeys
the 1D Helmholtz equation with two boundary conditions at the
interfaces between neighboring slabs,

d2

dx2
þk2

a;b

� �
ca;bðxÞ ¼ 0; ð5aÞ

caðxiÞ ¼cbðxiÞ; m�1
a c0aðxiÞ ¼ m�1

b c0bðxiÞ: ð5bÞ

The x-axis is directed along the array of bi-layers, and x¼ xi stands
for the interface coordinate.
3. Hamiltonian map approach [15–17]

The solution to Eq. (5) can be presented as the recurrent
relations for the wave function can ¼ Qn and its derivative
ðc=oÞc0an ¼ Pn at the two opposite edges of the n th elementary
ða; bÞ cell,

Qnþ1 ¼ AnQnþBnPn; Pnþ1 ¼�CnQnþDnPn: ð6Þ

The factors An, Bn, Cn, Dn read

An ¼ cos ~jacos ~jb�Z�1
a Zbsin ~jasin ~jb; ð7aÞ

Bn ¼ Zasin ~jacos ~jbþZbcos ~jasin ~jb; ð7bÞ

Cn ¼ Z�1
a sin ~jacos ~jbþZ�1

b cos ~jasin ~jb; ð7cÞ

Dn ¼ cos ~jacos ~jb�ZaZ�1
b sin ~jasin ~jb: ð7dÞ

They depend on the cell index n due to the random refractive
indices (1), which enter the impedances Za;b, as well as due to the
phase shifts

~ja;bðnÞ ¼ja;b½1þZa;bðnÞ�;

ja ¼oda=c; jb ¼ 7odb=c: ð8Þ

It is noteworthy to emphasize that the recurrent relations (6) can
be treated as the Hamiltonian map of trajectories in the phase
space ðQ ; PÞwith discrete time n for a linear oscillator subjected to
time-depended parametric force.

Without disorder Za;bðnÞ ¼ 0, factors (7) do not depend on the
time n. Therefore, the trajectory Qn;Pn creates a circle in the phase
space ðQ ; PÞ that is an image of the unperturbed motion,

Qnþ1 ¼QncosgþPnsing;

Pnþ1 ¼�QnsingþPncosg: ð9Þ

The unperturbed phase shift g over a single elementary ðabÞ cell is
defined as

g¼jaþjb ¼oðda7dbÞ=c ð10Þ

that gives g¼ kðdaþdbÞ due to Eq. (2). Having the circle, it is
suitable to pass to action-angle variables Rn and yn via the standard
transformation

Qn ¼ Rncosyn; Pn ¼ Rnsinyn: ð11Þ

By direct substitution of Eq. (11) into map (9), one can reveal that
for the unperturbed trajectory the radius Rn is conserved, while its
phase yn changes by the Bloch phase g in one step of time n,

Rnþ1 ¼ Rn; ynþ1 ¼ yn�g: ð12Þ

Evidently, a weak random perturbation results in a small
distortion of circle (12) that can be evaluated in the following
way. First, in the initial map (6) we expand factors (7) up to the
second order in the perturbation parameters Za;bðnÞ51 entering
the impedances Za;bðnÞ and phase shifts ~ja;bðnÞ. After getting the
perturbed map for Qn and Pn, we pass to action-angle variables
Rn and yn with the use of Eq. (11). All these quite cumbersome
calculations allow us to derive the perturbed map for the radius Rn

and angle yn keeping linear and quadratic terms in the perturbation:

R2
nþ1=R2

n ¼ 1þZaðnÞVaðynÞþZbðnÞVbðynÞþZ2
aðnÞWaþZ2

bðnÞWbþZaðnÞZbðnÞWab;

ð13aÞ

ynþ1�ynþg¼ ZaðnÞUaðynÞþZbðnÞUbðynÞ: ð13bÞ

Here the functions standing with random variables Za;bðnÞ are
described by the expressions:

VaðynÞ ¼ �2sinjasinð2yn�jaÞ; ð14aÞ

VbðynÞ ¼ �2sinjbsinð2yn�g�jaÞ; ð14bÞ

Wa ¼ 2sin2ja; Wb ¼ 2sin2jb; ð14cÞ

Wab ¼ 4sinjasinjbcosg; ð14dÞ

UaðynÞ ¼ �sinjacosð2yn�jaÞ; ð14eÞ

UbðynÞ ¼ �sinjbcosð2yn�g�jaÞ: ð14fÞ

Note that in Eqs. (14) we keep only the terms that contribute to the
localization length Lloc in the first non-vanishing order of approx-
imation. Since in Eq. (13a) the factors Va;b containing yn are always
multiplied by Za;bðnÞ, only linear terms in these perturbation
parameters are needed in the complementing recurrent relation
(13b) for the angle yn. Relations (13) constitute the complete set of
equations in order to derive the localization length of the system
under consideration.
4. Localization length

We define the localization length Lloc via the Lyapunov
exponent l [19,20],

daþdb

Lloc
� l¼

1

2
ln

Rnþ1

Rn

� �2
* +

: ð15Þ
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Fig. 1. Lyapunov exponent versus frequency. Top: RH–RH (circles) and RH–LH

(triangles) media for sa � sb � 0:006, da ¼ 0:6, db ¼ 0:4, c¼ 1 and the length of

sequence is N ¼ 106. Bottom: the same for sa �sb � 0:3 and the N¼ 100. Smooth

curve depicts Eq. (20).
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The average /abS is performed over the disorder parameters
Za;bðnÞ, and the average ab is carried out over the random phase
yn. Now we substitute the recurrent relation (13a) into definition
(15) and expand the logarithm within the quadratic approxima-
tion in the perturbation parameters. Then we perform the
averaging over both the disorder and rapid phase assuming
the distribution of yn to be homogenous within the first order of
approximation. After some algebra we arrive at the final
expression for the Lyapunov exponent:

l¼ 1
2 s

2
aKað2gÞsin2jaþ

1
2s

2
bKbð2gÞsin2jbþs

2
abKabð2gÞsinjasinjbcosg:

ð16Þ

Note that Eq. (16) is expectedly symmetric with respect to the
permutation of slab indices a2b.

In accordance with Eq. (16) the Lyapunov exponent l (the
inverse localization length L�1

loc ) consists of three terms. The first
two terms are contributed, respectively, by the correlations
between solely a or solely b slabs. Therefore, these terms contain
the auto-correlators Kað2gÞ or Kbð2gÞ. The third term emerges
due to the inter-correlations between two, a and b, disorders. It
includes the inter-correlator Kabð2gÞ.

Eq. (16) manifests that the only difference for the homo-
geneous RH–RH and mixed RH–LH stacks is due to the sign in
the phase shift jb. This affects the value (10) of the Bloch phase g
and the sign at the third inter-correlation term. One can also see
that the Lyapunov exponent typically obeys the conventional

frequency dependence

lpL�1
locpo2 when o-0: ð17Þ

However, specific correlations in the potential, taken into account
in Eq. (16), may result in a quite unusual o� dependence, see
[18].

The Lyapunov exponent lðoÞ exhibits the Fabry–Perot reso-

nances associated with multiple reflections inside a or b slabs
from the interfaces. As is known, they appear when the width da;b

of corresponding a or b layer equals to an integer multiple of half
of the wavelength 2pc=o inside the layer,

o=c¼ sap=da or o=c¼ sbp=db; sa;b ¼ 1;2;3; . . . : ð18Þ

At the resonances the factor sinja or sinjb in Eq. (16) vanishes,
resulting in the resonance increase of the localization length Lloc

and consequently, in suppression of the localization. In the special
case when the ratio of slab widths da and db turns out to be a
rational number, da=db ¼ sa=sb, some resonances from different
types of layers coincide and give rise to the divergence of the
localization length LlocðoÞ. Remarkably, the Fabry–Perot reso-
nance is quite broad because it is caused by vanishing of smooth
trigonometric functions [21].

Of special interest are long-range correlations leading to the
divergence or significant decrease of the localization length LlocðoÞ
in the controlled frequency window. This effect is similar to that
found in more simple 1D models with correlated disorder. In our
model this effect is due to a possibility to have the vanishing
values of all Fourier transforms, Ka ¼Kb ¼Kab ¼ 0, in some
intervals of frequency o. For example, one can artificially
construct an array of random bi-layers with such power spectra
that abruptly vanish within a prescribed interval of o, resulting in
the divergence of the localization length [15,22,16,17]. On the
contrary, with the use of specific correlations one can decrease the
localization length, and significantly enhance the localization [23].

Finally, let us consider the particular case of the white-noise
disorders for a and b slabs,

s2
ab ¼ 0; KaðkÞ ¼KbðkÞ ¼ 1: ð19Þ

Here, the Lyapunov exponent and the inverse localization length
turn out to be exactly the same for both homogeneous RH–RH and
mixed RH–LH stack structures,

l¼
daþdb

Lloc
¼

1

2
ðs2

asin2jaþs
2
bsin2jbÞ: ð20Þ

The numerical results shown in Fig. 1 are obtained with the use of
Eqs. (6), without any approximation. In the higher panel one can
see that for a very long sample and weak disorder the analytical
expression (20) perfectly corresponds to the data, apart from
fluctuations. For each case only one realization of the disorder was
used. The fluctuations can be smoothed out by an additional
ensemble averaging. In order to see whether our predictions can
be used in experiment, we also show in the lower panel the data
for a very short sample and very strong disorder. As one can
see, the analytical result is also valid for small frequencies, and
gives the qualitatively correct Lyapunov exponent for large values
of o.

The more detailed comparison for oðdaþdbÞ=c51 and
oðdaþdbÞ=cb1 also shows a nice correspondence. In this respect,
a very unusual result obtained in Ref. [11], namely, l�o6, seems
to be entirely related to a specific case of equal widths, da ¼ db.
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