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Quantum Oscillations of Electrons and of Composite Fermions in Two Dimensions:
Beyond the Luttinger Expansion
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Quantum oscillation phenomena, in conventional two-dimensional electron systems and in the
fractional quantum Hall effect, are usually treated in the Lifshitz-Kosevich formalism. This is
justified in three dimensions by Luttinger's expansion, in the paramet¢iu. We show that in
two dimensions this expansion breaks down, and we derive a new expression, exact in the limit
where rainbow graphs dominate the self-energy. Application of our results to the fractional quantum
Hall effect near half-filling shows very strong deviations from Lifshitz-Kosevich behavior. We expect
that such deviations will be important in any strongly interacting two-dimensional electronic system.
[S0031-9007(98)05770-6]

PACS numbers: 71.10.Pm, 73.40.Hm

Quantum oscillation (QO) phenomena (in which Lan- 1 - we )

dau quantization causes all thermodynamic and transport E Trlin(g )1 ~ <7> ’ (2)
properties of conductors to oscillate withiB, whereB is
the sample induction) for four decades have been among 32
the most powerful tools in solid state physics [1,2] in two Zosc ~ <&> i 3)
and three dimensions. The recent composite fermion (CF) 3 e
theory [3,4] of the fractional quantum Hall effect (FQHE) = _ = =

: o - : o and also ®(2) + B !'Tr(EG)=0 at least to
predicts similar oscillations in/b, whereb = B — By, ~0(w./p)’). Thus wriing Q = Qg + Qu., we

and B, = 2n./e is the mean “statistical field” coming h that the leadi ilat tribut ¢
from double fluxons attached to the CF's. Intense ex—O""Ve a5/2 € eat ng dqsu atory contribution up to
perimental interest in FQHE systems near half-filling [5] ((wc/u)”7) is contained in

has given strong evidence for the CF theory (e.g., from

Shubnikov—de Haas QO experiments [6,7], analogous () ~ —1Tr[ln G 1 ()]
oscillations in acoustic absorption [8], and compressibil- B

ity [9]). The oscillations have been fit using Lifshitz- -1 . =,

Kosevich (LK) formulas [1,10], usually with an impurity -5 Z Inliwn — €pnr, + 2(iwm, €on.)],
scattering Dingle temperature (sometimes assumed energy fom 0k, (5)

dependent), and an “effective mags”. The CF cyclotron
frequency wcr = eb/m* increases rapidly withb near  ith
b = 0 (i.e., near half-filling), because of strong infrared
divergent gauge interactions [11—14]. 2k2
The LK formulas (and generalizations of them, in- €onk. = €5+ <” + 3)5‘“0 t5, ~ 6
corporating low energy fluctuations [15,16]) rely funda-
mentally on an expansion of thescillatory partof the where u is defined as the zero of the energy,labels
thermodynamic potentidd (B), in powers ofw./u (where  the Landau levels, and is a spin index. Equation (5),
w. = eB/m, andu is an upper cutoff, equal to the chemi- which contains th@onoscillatoryself-energy2, provides
cal potential in the simplest models), given by Luttingerthe fundamental justification for extracting thero field,
[17]. He wrote the one-particle self-energy [18[%€) =  many-body interaction-renormalized band structure from
3 + 2o (B), where, . contained all contributions oscil- QO experiments [1].
lating in1/B (and analogously the fermionic Green’s func-  In this paper we show that (a) Luttinger's expansion
tion G = G + G.). Expanding the functionaf)(X) fails in any interacting 2D electronic system; however,
aroundQ (3 = 3) in powers ofS., one finds [17] (b) an alternative expansion can be found under certain
. ) ) circumstances (see below), in which now the full self-
Q=—TnG ' —3G]+ ®3) + 0(3%.), (1) energy (including the highly singul&,.) must be used.
B (c) This new expansion can give results sharply different
whereB = 1/kpT. In three dimensions, from the previous ones [1,10,15-17].
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To show the practical importance of these results, we a

) b)
will apply them to CF’s; however, they are relevant in
principle to any 2D electronic system [19]. &
(i) Failure of Luttinger's expansior—We first repeat
the analysis which yields Egs. (2) and (3), but now in two
dimensions. We shall find quite generally that

o)
éTr[InGI] ~ (“’7) ) # ) Q
I 0 - = N PR e

Thus the term~0(22,.) is as important as the “leading”

0osc

term, and the whole expansion must be reexamined. 9 ®)
Equation (7) is easily verified. To justify (8) we first m\\
repeat, in two dimensions, Luttinger’s three-dimensional

calculation of the graph in Fig. 1(a); we then extend the
argument to higher graphs. The graph in Fig. 1(a) has theIG. 1. The Feynman graphs discussed in the text. The self-

real-space form energy graphs include (a) the Hartree-Fock term, (b) the lowest
order “RPA” term, (c) a self-consistent “rainbow graph” sum

o 3 I,y / of such terms. In (d) we have the lowest order (second-order)
2p(F) = | &rV(FE = 1) contribution to Q, and (e) shows the lowest (fourth-order)

. ) , “crossed graph” contributions t& and ().
X [g(0) — Pog(r — re'*"],  (9)

whereP,,. is the exchange operatap,(r, r') is a gauge- (ii) Alternative expansions—There are two cases for
dependent phase factor [17], api) = g(r) + gosc(r),  which a simple alternative to (5) can be found o, .
where The first is where vertex corrections to the
usual Schwinger-Dyson—Nambu-Eliashberg self-energy
g(r) = f_dfM(r,t), (10)  [Fig. 1(c)] can be neglected. Théh= A2 [ GD, where
¢ G andD are given self-consistently in terms &f, thus
summing over all “rainbow graphs.” The relevant skele-
gore(r) = jgc dtM(r.1), (1) ton graph®, [Fig. 1(d)] then exactly cancel8 ! TI[SG]
Lo in (1), and Q = O + QO is given, to all orders in
. t
M = < ), (12) @/ Y
2sinwrt -1
Q=—TnG "] (14)
Fop(r,t) = e P
47 sinh(Bw.1/2) _ -1 S Wlion — evn — S(iwm )], (15)

X ex;{ _:)C cot%(’gz)ct r2>:|. (13) P v

The crucial difference from (5) (apart from the suppres-

The contourC encircles the negative real axis counter-sion ofk.) is that> now includesS... Deviations from
clockwise, the contour€’; likewise encircle the points (15) arise from “crossed” graphs [Fig. 1(e)], and there
T, = 27wil/Bw.,withl = *1,x2,.... The 3D function are many physical cases in which these are unimportant.
F3p(r, 1) differs from (13) by the factof2 Br)~1/2 x In the case of composite fermions the corrections from
exd —z2/2Bt], wherez is the third dimension, perpen- crossed “gauge fluctuation” graphs are not small, but at
dicular tor [cf. Ref. [16], Eq. (A.16)]. It is this differ- low energy their main effect both in zero field [20] and in
ence which yields (8), instead of (3), upon integrating oveffinite field [14] is simply to renormalize the vertices in the
¢ in (10) and (11). rainbow graph sum, without changing the functional form

Consider now graph 1(b), assuming that the internabf 3. Thus, this approximation actually works well even
boson line represents either (i) a phonon or a conventionddeyond the “Migdal limit” in which crossed graphs are
“Fermi liquid” electronic fluctuation or (i) a singular small. The difference between[frG 'Jand T{inG ']
gauge fluctuation [11-14]. Using the known results fordepends crucially on how big 5. /2; even though for-
2 for these cases [14], one easily verifies (7) and (8mally this is ~O(w./u) for all 2D systems, its actual
again. In fact, thescaling property(8) of X../> as a value, for a giverw./u, varies enormously between dif-
function of w./u depends only on the dimensionality of ferent systems.
the graph (as well as the presence of at least one internal The second case is of more academic interest; it arises
fermion line [17]), and is true of all higher graphs. when we may write() in terms of a set of “statistical
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quasiparticle” (SQP) energies [24]., as We now consider the new result (15) in more detail.
—1 (i) Suppressing the sum over spins, we rewrite (15) as an
Q= 5 Zln[l + ePlumen)] (16)  integral,
where theeg,, are conventionally defined by a Landau
expansion, areeal, and arq]ot equal to the e_nergiegw Q= m“’c f — nys(x) tan [¢(x,n)], (17)
defined from the one-particle Green function By, — n=0

Re3,,(E,,) = 0. The problem with (16) is that it relies

on the usual assumption that switching on interactions, invhere ¢ (x,n) = ImG/ReG. The prefactorg= is the

a system already in Landau level states, does not reclassifiandau level degeneracy. Defining= nw,. — ,u, the

the energy levels. This is definitely not true for CF’s, oncePoisson sum formula is used to separate the oscillatory
the gauge interactions are switched on. | components of),

o= | —nfu{ [ aetar o e]—zZ CU [ demgte x>sm(m>] (18)
0 e

mo,

where in the oscillatory (i.ek > 0) terms in the Poissorj M —27Tm Z( 1 f ()
sum we have extended the limits of teentegral to+o 27 !
and integrated by parts.

As noted above, the important difference from previous > Re[ 92 (x) ex;{zmk [x — Skx) + '“]ﬂ
expressions for() here is the inclusion of oscillatory JB
terms inG; in Fig. 2 we show the effect of this oscillatory m (% dx ED
structure inG, for the particular case of CF excitations. T o ] dff — np(x)IMG(e, x)

(iif) Magnetization oscillations—The classic dHVA 21)

effect is in the magnetization oscillations; recently ex-
periments have succeeded in seeing thessrgle layer At first glance the first termM; resembles the results

systems [22]. Taking the derivative 6%, we get of Fowler and Prange [15] and Engelsberg and Simpson
30 [16]; however, it now involves th&ull 2 (including 2. ).
My = —— = M| + M,, (19) The second termM, is formally of the same order in
9B w./p as My, and quite new. Typically the term in
M, = —2mu Z( l)kj’ _nf(x) % donjinat(_est, and we shall see below that in two
Dow. & dimensions it can be much larger thaf.

xRe[exp(zsz[x—E(x)Jr,u])] (20) ———————————————

—

5 T = .36K"|

T = 9K |

ImG(0,x)
log(Amplitude M¢ Bw /4mu)

—I ST —‘ —— 5 10 15 20 25 30
s 4 1/b (# filled L.L.)
e(wCF) FIG. 3. A numerical evaluation of (A), where A is the

amplitude of the dHVA oscillations iM, as a function ofl /B
FIG. 2. Plot of the quasiparticle spectral function Gt0, x) for various fixed temperatures, for a system of CF quasiparticles
at zero temperature for the case of composite fermions @ith (we assume an unscreened Coulomb interaction, and use the
calculated to second order in the gauge coupling). The soligecond-order result foE derived earlier [14]. We assume a
line shows the result using the fuff (including all oscillatory  chemical potential of 180 K, and a coupling constant=
terms), whereas the dashed line uses only the nonoscillgtory 0.8. The dashed lines show (M), and the solid lines show
Note the presence of a gap, as well as an isolated pole, in tHa(4; + A,), whereA; andA, are the amplitudes of oscillations
full spectral function. These results are fgyT = 0. of M; andM,.
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Equations (19)—(21) are valid for any two-dimensionalself-energy for composite fermions interacting with gauge
charged system for which the full self-energy (includingfluctuations was previously calculated [13,14]. Here we
oscillatory contributions) can be written down. assume unscreened Coulomb interactions (i.e., the dynami-

(iv) Application to the composite fermion system. cal exponent[4,11-14]is= 2). For numerical work itis
We now wish to demonstrate on a particular example thatonvenient to use a Matsubara sum oX¢r) evaluated at
the deviations from orthodox behavior can be rather largex = iw; = iw(21 + 1)/8; writing IMX(iw;) = £(iw)),

We choose the CF gauge theory, for which the osciIIat?rywe have

fliw)) = 2K2|:%|n<%> + % i(—l)k/ Z ex _27Tk/w’">ln<wl * wm>co<277k/’u>:|, (22)

k'=1 ®,>0 WCF WCF WCF

where the couplings, is usually slightly less than one [4] B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev4R
[14]. In QO experiments one examinesAm, in LK 7312 (1993). _

theory In(A) should be a linear function of /B (the [5] See the review of R. L. Willett, Adv. Phyd6, 447 (1997).
shows (for the example of CF fermions) the importance t/lanc;hsar;\zn?, oMigsgfy??rn’ Car;d ‘;S Kllegﬁer’ ';hyS'BReV'
of M,, as well as the considerable nonlinearity shown ett. 73, (1994); P.T. Coleridget al.,, Phys. Rev.
o . s 52, R11603 (1995).

in Dingle plots (which we also find in the mass plots,

h h h N thi | . I[7] D.R. Leadleyet al., Phys. Rev. B3, 2057 (1996).
not shown here). Thus, in this example a conventional|g) g | willett et al., Phys. Rev. Lett71, 3846 (1993).

analysis of QO phenomena, using either the LK formula (9] j p_ Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev.
or its generalizations [15,16], clearly fails. We do not B 50, 1760 (1994).

believe this example to be untypical (in fact, if we choose[10] I. M. Lifshitz and A. M. Kosevich, Sov. Phys. JETP 636
screenedshort-range interactions between the CF's [4, (1956).

13,14], with dynamical exponent = 3, we get much [11] A. Stern and B. . Halperin, Phys. Rev.32, 5890 (1995).
worse deviations). We thus believe that where strondl2] Y.B. Kim, X.G. Wen, P.A. Lee, and P.C.E. Stamp,
violations of conventional behavior are observed [19] or __ Phys. Rev. B51, 10779 (1995).

where interaction effects are known to be strong [22], ond!3] S: Curnoe and P. C.E. Stamp, J. Phys. Condens. Matter
should reanalyze the data using the results herein. In trﬁ4] 5890 (1996).

context of the FQHE near half-filling, fits of QO results to iw(;u(ng?)and P.C.E. Stamp, Int. J. Mod. Phys1B

LK theory should clearly be treated with caution. _ [15] M. Fowler and R. E. Prange, Physits315 (1965).
In summary, we have shown that the LK formalism[16] 5. Engelsberg and G. Simpson, Phys. Rev2,B1657

(or its many-body generalizations [15,16]) for describing ~ (1970); A. Wasserman and M. Springford, Adv. Phys,
quantum oscillationsreaks downn two dimensions. To 471 (1996).

remedy this, we have derived new results that can be aft7] J. M. Luttinger, Phys. Rev121, 1251 (1961).

plied when crossed diagrams may be neglected. We hay&8] It is sometimes objected that the self-energy, not being
applied these results to a problem of current interest [5],  gauge invariant, should not be used in formulas for
i.e., composite fermions interacting with gauge fluctua-  Physical quantities like) or M (which are). We simply
tions (believed to give a good description of the fractional ~ Note here that the gauge dependenceXofs irrelevant
quantum Hall states, at least near half-filling). The re- g the formulas in tr“s pa||oer hsmce lometegrates .overh
sults show radical departures from LK behavior. Such » moreover, typically only the pole structure in the

. . . Green function is relevant, and this is also gauge invariant
departures should also exist in other strongly interacting (cf. Stern and Halperin [11]).

two-dlmensmnal.e_qutror)lc systems, whether or not the3{19] Problems with the fitting of LK theory to two-dimensional
behave as Fermi liquids in zero field. QO phenomena have been noted on several occasions
P.C.E.S. thanks G. Martinez, I. D. Vagner, and P. Wy- (see, e.g., E. Balthest al., Z. Phys. B99, 163 (1996),
der, for hospitality and support in Grenoble, as well as the  for a recent example). Explanations of this have centered
CIAR and NSERC of Canada. S.C. acknowledges sup- recently on the possible breakdown of Fermi liquid theory

port from the Feinberg Graduate School of the Weizmann  (FLT) in two dimensions. We stress that the strong

Institute. deviations from orthodox behavior we discuss here exist
even in the absence of a breakdown of FLT
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