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ON CERTAIN THEOREMS OF MEAN VALUE FOR ANALYTIC
FUNCTIONS OF A COMPLEX VARIABLE

By D. R. Curriss

On account of the fundamental importance of the theorems of mean value
for real functions of a real variable an investigation of the validity of the
corresponding formulas for analytic functions of a complex variable may prove
of interest, even if the results obtained are of no great value in themselves.

Darboux has established theorems closely analogous to those expressed
by the formulas :

(1) F(@) = f(@) = (@ —a) flLa+0 (% —a)]
®  [rwewa-= Slate@—a) [$ @iy

but with the essential difference that in the second members of the above
equations there appears a factor A whose absolute value is less than1.* So far
as I have been able to ascertain, no investigation of (1), (2), and allied formulas
for real functions of a real variable has been published which considers their
validity without change of form when z, y, 6 and a take on complex values,
and fand ¢ are analytic functions of their arguments.

We may regard (1) and (2) as equations defining 6 as an implicit func-
tion of . When fand ¢ are real functions of a real variable subject to certain
restrictions, at least one of the branches of this implicit function takes on a real
value between 0 and 1 for each value of x in a given interval. The question
arises whether equations (1) and (2) have still a solution 6 of which at least
one branch is always to be found in a certain limited region, when fand ¢ are
functions of a complex variable analytic in a region 23 which contains the point
a. We shall prove that there exists a neighborhood of « within which formulas
(1) and (2), as well as others similar to these, remain true. In the case of
real functions of a real variable something can be said as to the extent of this

(10—3l<4)

* Journal de Mathématiques, ser. 8, vol. 2 (1876), pp. 291, 294. Cf. Stolz, Differential-
und Integralrechnung, part II, pp. 92-95. A recent publication by Brunn — Beziehungen des
Du Bois-Reymondschen Mittelwertsatzes zur Ovaltheorie—gives some interesting theorems
which are not, however, entirely in terms of functions of a complex variable.

(118)
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region; in the present paper, where only analytic functions of a complex
variable are considered, no positive results of this kind have been obtained.

1. The Mean Value Theorem for Derivatives. The following
theorem corresponds to formula (1) :

THEOREM I.  Let a be an interior point of a region B throughout which
JS(2) s analytic.  Then there exists a neighborhood A of a such that for any
value of z in A the equation

F(0,2) =f(2) —y(a) — (z =) fl[a+ 6 (z—a)] =0
is satisfied by a value of 0 which verifies the inequality

|6 — 3| < 3.

To prove this theorem we expand F'(6, z) in a series proceeding accord-
ing to powers of z — a. We thus obtain a development

3" P09 =3[ - Gen @G- ok

which converges for all values of 2z within a circle C whose center is a, pro-
vided 0 satisfies the inequality |6 — | < 3-

If (2) has the form az + B, the above theorem is evidently true since
F (0, ) then vanishes identically. In all other cases, at least one of the suc-
cessive derivatives of f(z), beginning with the second, will not vanish at a.
Accordingly we have

SI(@ =f"(@) = - = foD (@) =0, f"(a) # 0.
We now make use of an auxiliary function ® (6, 2), defined as follows :
F(o, =
(6, 2) = (z—a)z" z # a,

(4) i grn—1

For this function we have
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where "_\1/ l is the real solution, lying between 0 and 1, of the equation
n

6"_1=-1—-

n

Accordingly, by a well known existence theorem for implicit functions,* there
is a neighborhood A of a such that for each point z of A the equation

®(6,2) =0

has a solution @ interior to the circle defined by the inequality

[0 — 3| < 3.

But for z # a, F(6, z) vanishes in the same points as ® (6, z), while F(6, a)
is identically zero. Our theorem is thus establishcd.

This method of demonstration also shows that, if we except the case
where f(z) has the form az 4+ B, each branch of the implicit function 6 is
analytic wnen z is in the neighborhood of «, and approaches one of the

(n — 1)th roots of % when z approaches a.

2. Restrictions on Theorem I, and a Related Theorem. It
should be noted carefully that we have proved only the existence of a region 4
in which the above theorem holds,—nothing has been said as to its size. In
fact the determination of such a region for a given function and a given point
a is usually a difficult problem. We can easily construct elementary functions
such that, no matter how small |b — a| may be, when b has once been fixed
there is no value of 0 for which F(6, b) vanishes, and again functions for which
no value of 0 satisfying the equation F'(0, b) = 0 lies inside the circle defined
by the inequality

|0 — %] < 3.
The function €, where
Z2—a
c: 2m ?_a )

* For a clear statement of this theorem and references see Encyclopddie der mathe-
matischen Wissenschaften, II B 1, p. 108.
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is an example of the former sort, while an illustration under the latter case is
furnished by the polynomial

z —a m

b—a 'Y) ’

where m is an integer greater than 3, and y is the solution

. ™
of the equation
('Y — l)m — ,Ym'

For this function, 6 = y is the only solution of the equation #(6, b) =0, and
we have

™
— 3 = =13,
7= 3| =4eot "z 4
A closely related question is involved in the discussion of the equation

(%) F(b, 2, 2) = f(2) —f(z) — (11— 2) f'[;a+ 60 (5 — 2)] = 0,

where both 2, and 2, are variable. If f(«) # 0, we can make use of an auxil-

iary function defined by the equations

F (6, 2, z)
(1 —2)*

PO, z,2) =3 —0) ().
This function vanishes at the point (3, @, @) and is analytic in the neighbor-
hood of that point, while

(6) D0, 2 ,2) =

21 F %

0
ﬁfb(é, a, a) #0.

We can therefore state the following theorem :

TueoreM II.  Let a be an interior point of a region B throughout which
S(2) is analytic, while f"(a) + 0. Then there exists a neighborhood A of «
such that for all values of 2 and z, in A the equation

(5) S(@) =fa) — (—2)f[a+0 (1 —2)] =0

has a solution 6 satisfying the inequality

|6 — 3| < 3.
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If f"(a) = 0, the auxiliary function ® defined by (6) cannot be used, and
in fact the above theorem may be false. For example, if f(z) = 2™, where m is
an integer greater than 3, it is possible to find points 2, 2; in every neigh-
borhood of the origin such that all solutions of (5) satisfy the relation

16— 3] = 4.

2ix
We have this result when z; = e m z,, since the only solution of (5) is then
1
0= — ="
1—em

3. Formulas Involving Integrals. As a preliminary to the de-
velopment of theorems more general than the preceding, we shall now consider
the equation

(1) Fi(6, 2) Eﬁf(w, 2) $(w, z) dw — f(a, z)f

+6(z—a)
d(w, z) dw = 0,

which is analogous to the formula of Bonnet’s theorem.* The functions
f(w, z), ¢(w, z) will be taken as analytic functions of both w and 2z for all
values of those variables satisfying inequalities

|z —a) <h, [w —a| <k,

while f(a, z) will be supposed not identically zero in the region defined by
the former of the above inequalities.
For the functions f(w, z), ¢(w, z) we have developments

f(w, 2) = mz iaw(w —a)*(z — a)’,

nw=0 v=0
¢ (w, 2) =z Z B.(w—a)(z— a)".
n=0 v=0

By substituting these developments in (7), we obtain for #,(6, z) the ex-
pansion

(8) Fy (6, 7) =i Py 1(6) (2 — a)+,

A=0

* Journal de Mathématiques, vol. 14 (1849), p. 249.
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where
A 1 A—u "
(9)  Piia(9) EZ w+ 1 Z [Z Ao By —p A —p—o — ‘9“+I“Oo:3u.¢\—y—v]‘
n=0 o=0"p=0

For any value 6 = 6;, and for any positive real number 4, there exists a
positive real number /7 such that the series (8) converges throughout the
region defined by the inequalities

|6 — 6,| < &, |z —a| < H.

The following theorem can now be established :

Turorem IIL.  Let f(w, 2) and ¢(w, z) be analytic functions of both w
and z throughout a region defined by inequalities

|z —a| <&, |lw —al <k,

and let \, be the least value of N for which the polynomial P, ,(8) does not
vanish identically. Then if T is any region in the 6-plane of which a root 6,
of the equation Py ,(6) = 0 is an interior poiht, there exists a neighborhood
A of the point z = a such that the equation (7) is satisfied by a value of 8 in
T for every value of z in A.

The auxiliary function to be used here is obvious. If 6, is not a multiple
root of P 4,(6) = 0, so that

0
30 £y 11(0) # 0,

we use the same existence theorem for implicit functions as in the proof of
theorem I. 1In the case of a multiple root we avail ourselves of the more
general existence theorem which may be found, for example, in Picard’s
Traité d’analyse, vol. 2 (2d. edit.), p. 261.

From theorem IIT we can deduce formulas which correspond to familiar
theorems of mean value. In the one which follows, an analogue of Bonnet’s
theorem, it is interesting to note that as z approaches «, 8 approaches a point
on the unit circle instead of a point in its interior as in theorems I, II, and V.

TueoreM 1V. Let f(z) and ¢(2) be analytic throughout a region B of
which a is an interior point.  Then there exists a neighborkood A of a such
that for any value of z in A the equation

(10) ff(w)qb(w)dw —f(a)/a+e(z—a)¢>(w)dw 0
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has « solution 0 satisfying the inequality
|6 — 1] <1.

Equation (10) is a special case of (7) where f and ¢ are functions of
but one variable, so that

By hypothesis
f(a) = ay * O,

hence, if 8,, is the first non-vanishing coefficient 8,,, we have

> _ Qoo Bxlo I |
]4\1+l(0)_>"1+1(1 6 )‘

Since § = 1 is always a root of P, 1; (6) = 0, theorem IV follows from theo-
rem III, the special region 7" assigned in IV having been chosen in order to
present a formula as closely analagous as possible to the ordinary Bonnet
formula.

The two formulas of the following theorem are usually referred to as the
first and second theorems of mean value for integrals :

THEOREM V. Let f(z) and ¢(2) be analytic throughout o region B of
which a is an interior point. Then for each of the equations

(11) sz(w)qb(w)dw —f(a + 0(z—a))[l2¢(w)dw=0,

a2 [rwean—r@ [ swdn—r@ [ pwyamw=o,

+6(z—a)

there exists a neighborhood A of a such that for any value of z in A the cor-
responding equation has a solution 6 satisfying the inequality

|6 — 3| < 3.

To deduce this result for formula (11) we make the following substitu-
tions in equation (7):

F(w, 2) _[0 1 (w)duw,
¢ (w, 2) = fi(w).
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Integration by parts now gives to (7) the form
B0, = [ [(awae] "+ [Aawa
~ [Ala +6G - 01 -A@] [uwyan
= [(Aea)dw - fila + 6e-a)] [ )an=o.

We have only to drop subscripts to obtain equation (11), and the part of our
theorem which relates to this equation is demonstrated if we can show that a
root of P, 4, (8) = 0 lies in the region defined by the inequality

|6 — 3] < 3.
The functions f(w) and ¢(w) will have developments

J(w) = Z a,(w — a)*,
(13) -
¢(w) = z B, (w—a)".

v=0
If j(w) is a constant, or if ¢(w) = 0, equation (11) is obviously an identity.
In any other case let «,, and 8, be the first non-vanishing numbers of the re-
spective sequences

A1y Qgy * *

130’ B]’ C ot t.
‘We then have

Xl =m 4 k,

( 1 om
m+k+1 k+1)
and this last equation always has a real root 6, satisfying the inequality
[0 — %] < 3.
Equation (12) may be derived from (7) by the substitution
Sf(w, 2) =f(w) = f(2),
$(1, 2) = $(w).

PA,+1(0) = auPy
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As in the discussion of equation (11), we note that if /(w) is a constant, or if
¢(w) = 0, (12) is an identity. In any other case «, and B, have the same
meaning as before, when f(w) and ¢(w) have the developments (13). We
find

X]= m+ k,
__ @B " _ gk+1
Py 41(0) = E+1lm+k+1 0 ]’

so that in this case also P, 1;(6) = Ohas a root between 0 and 1 on the axis

of reals.
Cauchy’s formula *

f@) = @) _fTat0@=a)] 0_3l <3
$(x) —¢(a) $la+6(z— a)] ’
and the various forms of Taylor’s series with remainder are special cases of

the first formula of theorem V. In particular, theorem I is a corollary of
this part of V.

NORTHWESTERN UNIVERSITY,
EvVANSTON, ILL.

* Calcul differential, p. 87.
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