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Exact dynamical reorientation in nematic liquid crystals:
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Abstract

The exact dynamical behavior of the nematic director field in a cell limited by two planar surfaces, having inhomogeneous distribution of easy
axes, is theoretically investigated within the Green’s function approach. The equilibrium configurations are determined for splay-bend deforma-
tions in the framework of Frank elasticity, in the one-constant approximation. Both, the strong anchoring (Dirichlet’s problem) and the weak
anchoring cases (mixed Dirichlet–Neumann problem) are solved in the presence of an external time dependent field. The general solutions for
both problems are obtained for the more general case in which the boundary conditions are position and time dependent.
© 2006 Elsevier B.V. All rights reserved.

PACS: 61.30.-v; 61.30.Gd; 64.70.Md
1. Introduction

A significant number of problems, dealing with the equi-
librium orientational states of nematic liquid crystals (NLC),
can be faced in the framework of the elastic continuum the-
ory for liquid crystalline materials [1–11] and, from the math-
ematical point of view, can be formulated as boundary value
problems. The basic principle involved in the application of the
continuum theory to the solution of relevant problems is that
the equilibrium state of the director n is always given by the
configuration that minimizes the total elastic energy of the sys-
tem [10,11]. Recently, the influence of the inhomogeneity in
the distribution of easy directions at the surfaces on the bulk
molecular orientation in a nematic cell has been considered in
two typical situations: the Dirichlet’s problem and the mixed
Dirichlet–Neumann problem [12–17]. The first problem refers
to the situation of strong anchoring in the presence of static de-
formations in a typical NLC cell. The second problem is the
general one and deals with the situation of weak anchoring at
the surfaces. Despite the importance of these problems, both
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theoretically and experimentally, closed solutions to them can
be obtained only for simplified or specific models [18].

In this work, we consider splay-bend deformations in an
NLC cell limited by two planar treated surfaces having inho-
mogeneous distribution of easy axes. We present the complete
analytical solution for the initial conditions and boundary-value
problem concerning the situation of weak anchoring at the sur-
faces in the presence of a time dependent external electric field,
taking into account the viscous torque, when the surfaces are
characterized by a space–time dependent distribution of easy
axes. The general solution is given in terms of Green’s function.
In this manner, the exact dynamical evolution of the director
field is established in closed form. The results are relevant to
a cell in which the applied field is of the order of the Fréeder-
icksz threshold field [19] to induce small deformations in the
nematic structure. We suppose that the electric field is homoge-
neous across the sample and effects like the selective adsorption
of ions are not considered [20]. We assume, furthermore, that in
the vicinity of the Fréedericksz transition the backflow effects
can be ignored. The situation in which the easy axis changes
direction continuously with time, embodied by the general so-
lution we find, is relevant to investigate systems whose surfaces
are covered with photopolymeric films [21,22]. In these sys-
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tems, the orientational changes of the photochromic molecules
promoted by incident light lead to remarkable changes in the
orientation direction of the liquid crystal molecules.

2. Statement of the problem

The elastic energy density of an NLC cell is given by the
Frank elastic energy density [10,11,23,24]

f = 1

2

{
K11(∇ · n)2 + K22

[
n · (∇ × n)

]2

+ K33
[
n × (∇ × n)

]2}
(1)− (K22 + K24)∇ · [n∇ · n + n × (∇ × n)

]
,

in which n is a unit vector representing the average molecular
orientation of the nematic phase. Furthermore, Kii > 0, with
i = 1,2,3 are, respectively, the bulk elastic constants of splay,
twist, and bend, whereas K24 is the saddle-splay elastic con-
stant, associated to a surface-like term. If this term is absent,
as will be considered here, the elastic energy density reduces
to a positive definite quadratic form in the distortions. When
the sample is submitted to an external electric field E, another
contribution, having the form

(2)fE = −1

2
εa(n · E)2,

has to be added to f to complete the bulk elastic energy den-
sity [10]. In (2), εa = ε‖ − ε⊥ (‖ and ⊥ refer to the direction
of n) is the dielectric anisotropy. The electric torque can desta-
bilize the initial homeotropic orientation if εa < 0, and tends to
reinforce the homeotropic pattern if εa > 0, since we are not
taking into account the flexoelectric contribution to the free en-
ergy [25]. For simplicity, we particularize the analysis to the
case in which the total energy density can be written in terms
of one angle only, i.e., the tilt angle θ , made by n with the
normal to the surfaces. To do this, we consider a cell in the
shape of a slab of thickness d , bounded by two flat surfaces as
in Fig. 1, and limit the analysis to the case of splay-bend distor-
tions. In this situation, the director is everywhere parallel to the
(x–z) plane. The Cartesian reference frame is chosen with the z

axis normal to the surfaces, located at z = ±d/2. The x axis is

Fig. 1. Cell of thickness d filled with nematic liquid crystals.
parallel to the direction along which the surface tilt angle is ex-
pected to change and is such that n = sin θ(x, z)i+cos θ(x, z)k,
where i and k are the unit vectors parallel to the x and z axes,
respectively. The surface energy is assumed as the one proposed
by Rapini–Papoular [26], written here as

(3)fS = 1

2
W± sin2(θ± − Θ±),

where W± are known as the anchoring strengths connected to
the surfaces located at z = ±d/2, Θ±(x) characterize the easy
axes, that is, the surface-tilt angles for which the surface energy
fS is minimum, and θ±(x) are the actual values of the tilt angle
at the surface. In the parabolic approximation, i.e., when the ac-
tual values of the tilt angle at the surface are close to the angles
defining the easy directions, fS = 1/2W±(θ± − Θ±)2.

The total energy of the cell, per unit length along y, is given
by

F =
∞∫

−∞
dx

{ d/2∫
−d/2

[
f

(
∂θ

∂x
,
∂θ

∂z

)
+ fE(θ)

]
dz

(4)+ fS(θ+) + fS(θ−)

}
.

In the one-constant approximation, K11 = K22 = K33 = K , and
in the presence of a time dependent external field E = E(t)k,
expression (4) reduces to

F
[
θ(x, z)

] =
∞∫

−∞
dx

d/2∫
−d/2

dz

[
1

2
K( �∇θ)2 + εa

2
E2(t)θ2

]

+
∞∫

−∞
dx

1

2

[
W−

[
θ−(x) − Θ−(x)

]2

(5)+ W+
[
θ+(x) − Θ+(x)

]2]
,

where �∇θ = (∂θ/∂x)i + (∂θ/∂z)k. We consider the case in
which W− = W+ = W . Note also that Eq. (5) is obtained in
the limit of small θ . As pointed out before, this approximation
is justified if we limit our analysis to the cases in which the ap-
plied field is in the order of the Fréedericksz threshold [27].

To analyze the dynamics of the orientation induced by the
field we have to consider also a viscous torque [28]. By mini-
mizing Eq. (5), taking into account the viscous torque, we find
that the dynamical evolution of the system is governed by the
equation

(6)
∂2θ

∂ξ2
+ ∂2θ

∂ζ 2
= α2(t)θ + ∂θ

∂t
,

written in a non-dimensional form by introducing reduced co-
ordinates ξ → x/d , and ζ → z/d and a reduced time t → t/τv ,
where τv = λd2/K is the viscous relaxation time and λ is an
effective viscosity coefficient of the liquid crystal [28]. In this
manner,

α2(t) = π2
[

E(t)
]2

,

Ec



C.A.R. Yednak et al. / Physics Letters A 358 (2006) 31–36 33
where E2
c = π2K/εa is the threshold field for the Fréedericksz

transition in strong anchoring [10]. The solution of Eq. (6) is
the function θ(ξ, ζ, t) subjected to an initial condition and sat-
isfying appropriated boundary conditions.

3. Strong and weak anchoring

Let us start our discussion concerning the solutions of Eq. (6)
by considering the case characterized by the strong anchoring.
For this case, we have a Dirichlet boundary value problem,
i.e., the boundary condition is given by θ(ξ, ζ, t)|ζ=±1/2 =
Θ±(ξ, t). Θ±(ξ, t) is the surface orientation imposed by the
surface treatment, i.e., the easy axes on the upper (+) and lower
(−) surfaces, respectively. Note that, in contrast with the sit-
uation recently worked out in [17], this boundary condition
is also time dependent. This time dependence can be useful,
for instance, to describe systems whose surface is prepared
with photopolymeric films. The initial condition, for simplic-
ity, is assumed as θ(ξ, ζ,0) = θ0(ξ, ζ ). Thus, we characterize
the initial state of the system, i.e., how the system was initially
prepared, by θ0(ξ, ζ ). In order to solve Eq. (6) taking these con-
siderations into account, we use the Fourier transform and the
Green’s function approach. After some calculations, it is possi-
ble to show that Eq. (6) can be reduced to

(7)
∂2

∂ζ 2
θ̄ (k, ζ, t) = ∂

∂t
θ̄ (k, ζ, t)

by using the Fourier transform and

(8)θ(k, ζ, t) = e−k2t−∫ t
0 dt̄ α2(t̄ )θ̄ (k, ζ, t)

where θ(k, ζ, t) = F{θ̄ (ξ, ζ, t)} (F{· · ·} = ∫ ∞
−∞ dξ e−ikξ · · ·

and F−1{· · ·} = 1
2π

∫ ∞
−∞ dk eikξ · · ·). By incorporating these

changes in the boundary and initial condition, we obtain that

θ̄ (k, ζ, t)|ζ=±1/2 = ek2t+∫ t
0 dt̄ α2(t̄ )Θ±(k, t) and θ̄ (k, ζ,0) =

θ(k, ζ,0) = θ0(ξ, ζ ). Now, by using the Green’s function ap-
proach [29] with appropriated boundary conditions, it is possi-
ble to find the solution for Eq. (7). It is given by

θ̄ (k, ζ, t) −
1/2∫

−1/2

dζ ′ θ0(ξ, ζ )G(s)(ζ, ζ ′, t)

(9)+
t∫

0

dt̄
∑

i=−,+
G(s)

i (ζ, t − t̄ )Θi(k, t̄ )ek2 t̄+∫ t̄
0 dt̃ α2( t̃ ),

where the Green’s function G(s)(ζ, ζ ′, t) is given by

G(s)(ζ, ζ ′, t)

= 2
∞∑

n=1

(−1)ne−(nπ)2t

(10)

×
{

sin
(
nπ

(
ζ + 1

2

))
sin

(
nπ

( 1
2 − ζ ′)), − 1

2 � ζ < ζ ′,
sin

(
nπ

(
ζ ′ + 1

2

))
sin

(
nπ

( 1
2 − ζ

))
, ζ ′ < ζ � 1

2

and

G(s)
± (ζ, t) = ± d

dz
G(s)(ζ, ζ ′, t)

∣∣∣∣
ζ=± 1

2 ,ζ ′=ζ

(11)

= 2
∞∑

n=1

(−1)n+1nπ sin

(
nπ

(
1

2
± ζ

))
e−(nπ)2t .

The first term of Eq. (9) is due to the initial condition and the
second term explicitly depends on the surface treatment, i.e.,
how the surfaces of the sample were prepared. By substituting
Eq. (9) in Eq. (8) and inverting the Fourier transform, we obtain
the tilt angle, for the strong anchoring case, as follows:

θ(ξ, ζ, t) = −
1/2∫

−1/2

dζ ′
∞∫

−∞
dξ̄ G(s)(ζ, ζ ′, t)G(ξ − ξ̄ , t)θ0(ξ̄ , ζ ′)

× e− ∫ t
0 dt̃ α2( t̃ )

+
∞∫

−∞
dξ̄

t∫
0

dt̄ G(ξ − ξ̄ , t − t̄ )

× e− ∫ t
0 dt̃ α2( t̃ )+∫ t̄

0 dt̃ α2( t̃ )

(12)×
∑

i=−,+
G(s)

i (ζ, t − t̄ )Θi(k, t̄ )

with G(ξ, t) = e−ξ2/(4t)/
√

4πt (see Fig. 2).
We may extend the previous situation by considering the

weak anchoring on both surfaces. For this case the boundary
conditions on the surfaces are given by

(13)±L
∂

∂ζ
θ(ξ, ζ, t) + θ(ξ, ζ, t)

∣∣∣∣
ζ=±1/2

= Θ±(ξ, t),

where L = b/d (b = K/W is the extrapolation length [30]).
Note that for this case we also incorporated a time dependence
in the surface orientation as the previous case characterized by
the strong anchoring, and the limit L → 0 (b → 0) corresponds
to the strong anchoring case. The situation has some similar-
ity with the problem of surface friction, if the anchoring is not
strong [31]. By employing the above procedure for this case it
is possible to show that the solution for Eq. (6) subjected to the
boundary condition given by Eq. (13) is

θ(ξ, ζ, t)

= −
1/2∫

−1/2

dζ ′
∞∫

−∞
dξ̄ G(w)(ζ, ζ ′, t)G(ξ − ξ̄ , t)θ(ξ̄ , ζ ′,0)

× e− ∫ t̄
0 dt̃ α2( t̃ )

− 1

L

t∫
0

dt̄

∞∫
−∞

dξ̄

[
G(w)

(
1

2
, ζ, t − t̄

)
Θ+(ξ̄ , t̄ )

+ G(w)

(
−1

2
, ζ, t − t̄

)
Θ−(ξ̄ , t̄ )

]

(14)× G(ξ − ξ̄ , t − t̄ )e− ∫ t
0 dt̃ α2( t̃ )+∫ t̄

0 dt̃ α2( t̃ ),
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Fig. 2. Behavior of θ(ξ, ζ, t) versus ζ is illustrated for the strong anchoring
in figures (a) and (b) in the absence of external field with θ0(ξ, ζ ) = 0. Fig-
ure (a) shows the behavior of the tilt angle for the case Θ−(ξ, t) = 0 and
Θ+(ξ, t) = Θ(1 + e−t cos(t)). Note that for long time this case recovers the
stationary solution found in [15]. Figure (b) shows the behavior of the tilt angle
for the case Θ−(ξ, t) = 0 and Θ+(ξ, t) = Θ(1 + cos(t)). This case, in contrast
to the case of the figure (a), does not have a stationary solution and the tilt angle
oscillates with the time. In both cases, we consider ξ = 1 and Θ = π/2.

where Green’s function G(w)(ζ, ζ ′, t) for this case is given by

G(w)(ζ, ζ ′, t)

= −
∞∑

n=1

[sin(kn(ζ + 1
2 )) + knL cos(kn(ζ + 1

2 ))]e−k2
nt

L(L + 1)kn sin(kn) − [(1 − L2k2
n)/2 + L] cos(kn)

(15)×
[

sin

(
kn

(
1

2
− ζ ′

))
+ knL cos

(
kn

(
1

2
− ζ ′

))]

for −1/2 � ζ < ζ ′ and

G(w)(ζ, ζ ′, t)

= −
∞∑

n=1

[sin(kn(ζ
′ + 1

2 )) + knL cos(kn(ζ
′ + 1

2 ))]e−k2
nt

L(L + 1)kn sin(kn) − [(1 − L2k2
n)/2 + L] cos(kn)

(16)×
[

sin

(
kn

(
1

2
− ζ

))
+ knL cos

(
kn

(
1

2
− ζ

))]

for ζ ′ < ζ � 1/2 with the kn determined by the equation
2knL cos(kn) + [1 − (knL)2] sin(kn) = 0 (see Figs. 3 and 4).
Fig. 3. Behavior of θ(ξ, ζ, t) versus ζ is illustrated by considering a con-
stant external field, i.e., α2(t) = α2 with α2 = 0.1. Figure (a) corresponds to
the case Θ−(ξ, t) = 0 and Θ+(ξ, t) = Θ(1 + e−t ). Figure (b) represents the
case Θ−(ξ, t) = 0 and Θ+(ξ, t) = Θ(1 + cos(t)). In both cases, we consider
θ0(ξ, ζ ) = 0, ξ = 1, L = 0.5 and Θ = π/20.

Similarly to the strong anchoring case, the second term of
Eq. (14) is due to the condition employed on the surface.

The expression (14) represents the complete analytical solu-
tion of the mixed Dirichlet–Neumann problem relative to the
weak anchoring in the cell, i.e., it is the solution of Eq. (6)
satisfying the boundary conditions Eq. (13). It gives the time
dependent profile of the tilt angle in the presence of a time de-
pendent external field, when the distribution of easy axes on
the surfaces is inhomogeneous. In the limit of strong anchor-
ing, i.e., L → 0, we recover, as expected, the results previously
presented and we extend the results reported in Ref. [17]. From
the above expression, the physical properties of the NLC sam-
ple can be explored. For instance, in the case in which a linear
polarized beam impinges normally on the nematic sample, the
optical path difference �l, between the ordinary and the extra-
ordinary ray, is given by [10] �l = 1/2noRd〈θ2〉, where

(17)
〈
θ2〉 = d

Λ

Λ/2d∫
−Λ/2d

1/2∫
−1/2

θ(ξ, ζ )2 dξ dζ,

is the average square tilt angle, evaluated over a typical
length Λ, connected with the diameter of the light beam. Fur-
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Fig. 4. Behavior of θ(ξ, ζ, t) versus ζ is illustrated in figure (a) by considering
an oscillating external field, i.e., α2(t) = α2 cos2(t) with α2 = 0.1 for a typi-
cal values of t with ξ = 1. The condition applied on the surface for this case
is Θ−(ξ, t) = 0 and Θ+(ξ, t) = Θ(1 + e−t ). Figure (b) illustrates the behav-
ior of θ(0,0, t) versus t for the previous oscillating external field taking the
boundary conditions Θ−(ξ, t) = 0 and Θ+(ξ, t) = Θ(1 + e−t ) (solid line) and
Θ−(ξ, t) = 0 and Θ+(ξ, t) = Θ(1 + sin(t))/2 (dot line) into account. In all
cases, we consider θ0(ξ, ζ ) = 0 and L = 0.5.

thermore, R = 1 − (no/ne)
2, and no and ne are, respectively,

the ordinary and extraordinary refractive indices. In Fig. 5, we
illustrate the behavior of Eq. (17) for the weak anchoring case.

4. Summary and conclusion

A general theoretical framework to investigate the dynamics
of the director reorientation in a nematic liquid crystal sam-
ple, under the action of an external time dependent field, in the
case in which deformations of the splay-bend type are present
has been proposed. The calculations assume that only small de-
viations from the easy direction at the surfaces are allowed.
Furthermore, backflow effects are not taken into account and
we consider that the field distribution across the sample is ho-
mogeneous. In this framework, which is the usual one to inves-
tigate reorientation process governed by external fields near the
Fréedericksz threshold, the results have been obtained in exact
manner for the general case of weak anchoring at the surfaces,
in the case in which these surfaces are characterized by a inho-
mogeneous distribution of easy directions, which, in addition,
Fig. 5. Behavior of 〈θ2(ξ, ζ, t)〉 versus t is illustrated by considering a constant
external field, i.e., α2(t) = α2 with α2 = 0.1, θ0(ξ, ζ ) = 0 and L = 0.5. The
solid line corresponds to the case Θ−(ξ, t) = 0 and Θ+(ξ, t) = Θ(1+e−t ) and
the dot line represents the case Θ−(ξ, t) = 0 and Θ+(ξ, t) = Θ(1 + cos(t)). In
both cases, we use Θ = π/20.

is time dependent, as in systems whose surfaces are covered by
photopolymeric films.
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