
Perturbation theory with a variational basis: The generalized Gaussian effective potential

Paolo Cea and Luigi Tedesco
Dipartimento di Fisica and Sezione INFN, Via Amendola 173, I-70126 Bari, Italy

~Received 18 July 1996!

The perturbation theory with a variational basis is constructed and analyzed. The generalized Gaussian
effective potential is introduced and evaluated up to second order for self-interacting scalar fields in one and
two spatial dimensions. The problem of the renormalization of the mass is discussed in detail. Thermal
corrections are incorporated. The comparison between the finite temperature generalized Gaussian effective
potential and the finite temperature effective potential is critically analyzed. The phenomenon of the restoration
at high temperature of the symmetry broken at zero temperature is discussed.@S0556-2821~97!00306-8#
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I. INTRODUCTION

In recent years the variational Gaussian approximation
has played an important role in the nonperturbative study of
quantum field theories. In particular, to investigate the spon-
taneous symmetry-breaking phenomenon in scalar quantum
field theories, the Gaussian effective potential has been in-
troduced@1#. The main disadvantage of the variational ap-
proach is the absence of the control of the approximation.
Moreover, in quantum field theories the presence of ultravio-
let divergences often makes the variational calculations use-
less.

The aim of this paper is to develop a variational scheme
in scalar quantum field theories which allows us to evaluate
in a systematic manner the corrections to the Gaussian ap-
proximation and, at the same time, to keep under control the
ultraviolet divergences. To this end, we shall construct a per-
turbation theory with a variational basis. The method we
shall follow is widely used in many-body theory where it is
known as the method of correlated basis functions@2#. Using
the variational basis we construct a vacuum stateuV& which
is adiabatically connected to the Gaussian trial vacuum,
whereupon we introduce the generalized Gaussian effective
potential VG(f0) defined as the expectation value of the
Hamiltonian density onuV& in the presence of the scalar
condensatef0. We shall give an explicit formula for
VG(f0) which is similar to the usual perturbative expansion
of the effective potential by means of Feynman vacuum dia-
grams. Moreover, we shall show that the variational-
perturbation theory developed in this paper offers a solution
to the ultraviolet divergence problem in the variational ap-
proaches which is analogous to the usual perturbative renor-
malization theory. For the sake of simplicity, we perform
explicit calculations in the case of self-interacting scalar
fields in one and two spatial dimensions. Indeed, these theo-
ries are superrenormalizable, so that we only need to renor-
malize the mass. In the second part of the paper we discuss
the finite temperature corrections to the generalized Gaussian
effective potential. Moreover, we critically compare our ap-
proach to the finite temperature effective potential and the
Gaussian potential.

The plan of the paper is as follows. In Sec. II we discuss
the Gaussian approximation in scalar field theories and intro-
duce the Gaussian effective potential. In Sec. III we set up

the variational basis starting from the trial Gaussian vacuum
wave functional. Section IV is devoted to perturbation theory
with a variational basis. The generalized Gaussian effective
potential is discussed in Sec. V. The calculations of the sec-
ond order corrections to the Gaussian effective potential are
presented in Sec. VI where we discuss in detail the mass
renormalization. In Sec. VII we introduce the finite tempera-
ture generalized Gaussian effective potential and evaluate the
lowest order thermal corrections. The second order thermal
corrections are explicitly evaluated in Sec. VIII. Our conclu-
sions are drawn in Sec. IX. Several technical details are rel-
egated in two Appendixes. In Appendix A we perform the
high temperature expansions which are relevant for the low-
est order thermal corrections. In Appendix B we collect
some well-known result on the thermodynamic perturbation
theory in the Matsubara’s scheme. Moreover, we present
some useful results on the thermal propagator.

II. GAUSSIAN APPROXIMATION

In this section we discuss the Gaussian approximation in
scalar quantum field theories. In particular we shall focus on
the Gaussian effective potential@1# for self-interacting scalar
fields ind5n11 space-time dimensions.

The Gaussian approximation in quantum field theories has
been widely developed for a long time@3–5#. The Gaussian
approximation is a variational method in which one consid-
ers trial Gaussian wave functionals as the ground state of the
theory.

Let us consider a real scalar fieldf(x) whose Hamil-
tonian is

H5E dnxFP2~xW !

2
1
1

2
@¹W f~xW !#21

1

2
m2f2~xW !1

l

4!
f4~xW !G .

~2.1!

In the Schro¨dinger representation the physical states are
wave functionals off; the conjugate momentumP(x) acts
as a functional derivative:

P~x!uC&→
1

i

d

df~xW !
C@f#. ~2.2!

The inner product is defined by
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^C1uC2&5E @df#C1* @f#C2@f#. ~2.3!

The stationary Schro¨dinger equation reads

E dnxF2
1

2

d2

df~xW !df~xW !
1
1

2
@¹W f~xW !#2

1
1

2
m2f2~xW !1

l

4!
f4~xW !GC@f#5EC@f#. ~2.4!

The analogy with ordinary quantum mechanics is evident. In
particular, we would like to apply the variational principle
which has been successfully developed in quantum mechan-
ics.

In quantum field theories it is the ground state that deter-
mines the physical properties of the quantum system. The
Gaussian approximation amounts to approximating the
vacuum functional with a set of trial Gaussian functionals
centered atf0:

C0@f#5N expF2
1

4 E dnxdny@f~xW !2f0#G~xW ,yW !

3@f~yW !2f0#G , ~2.5!

where the normalization constant is such that

^C0uC0&51. ~2.6!

A well-known method to investigate the structure of a quan-
tum field theory is to use the effective potentialVeff(f0) @6#.
In scalar field theories it turns out that the effective potential
is the expectation value of the Hamiltonian density in a cer-
tain state wherein the expectation value of the scalar field is
f0 @7#. These considerations suggested to introduce the so-
called Gaussian effective potentialVG(f0).

The Gaussian effective potential~GEP! is defined by
minimizing the Hamiltonian density on the set of wave func-
tionals, Eq.~2.5!:

VGEP~f0!5
1

V
min
uC0&

^C0uHuC0&, ~2.7!

whereV is the spatial volume.
VGEP(f0), being a variational quantity, not only goes be-

yond perturbation theory, but often gives a more realistic
picture of the qualitative physics than the effective potential.
Moreover, the Gaussian effective potential is easily comput-
able. To see this, we note that due to the translation invari-
ance of the vacuum we have

G~xW ,yW !5E dnk

~2p!ne
ikW•~xW2yW !2g~kW !. ~2.8!

Let us consider the functional

C0
J@f#5N expF2

1

4 E dnxdnyh~xW !G~xW2yW !h~yW !

1
1

2 E dnxh~xW !J~xW !G , ~2.9!

where

h~xW !5f~xW !2f0 ~2.10!

and N is fixed by Eq. ~2.6!. We can easily evaluate the
functional

I @J#5^C0
JuC0

J&. ~2.11!

Indeed, Eq.~2.11! involves a straightforward Gaussian func-
tional integration. We get

I @J#5expF12 E dnxdnyJ~xW !G21~xW2yW !J~yW !G , ~2.12!

where

G21~xW ,yW !5E dnk

~2p!n

1

2g~kW !
e2 ikW~xW2yW !. ~2.13!

Now, we have

^C0uh~x1W !•••h~xnW !uC0&5
dnI @J#

dJ~x1W !•••dJ~xnW !
U
J50

. ~2.14!

Equations~2.14! and ~2.12! allow us to evaluate the expec-
tation values of monomial inh(xW ) on the Gaussian vacuum
functionals. It is now a straightforward exercise to calculate

E0@f0 ,g~kW !#5
^C0uHuC0&

^C0uC0&
. ~2.15!

We get

E0@f0 ,g~kW !#5VH 14 E dnk

~2p!n g~kW !1
m2

2
f0
21

l

4!
f0
4

1
1

4 E kW21m21
l

2
f0
2

g~kW !

1
3

4

l

4! F E dnk

~2p!n

1

g~kW !
G2J . ~2.16!

The Gaussian effective potential is obtained by minimizing
E0@f0 ,g(kW )# with respect tog(kW ). By imposing the extre-
mum condition

dE0@f0 ,g~kW !#

dg~kW !
50, ~2.17!

we obtain

g~kW !5AkW21m2~f0!, ~2.18!
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wherem~f! satisfies the gap equation

m25m21
l

2
f0
21

l

4 E dnk

~2p!n

1

g~kW !
. ~2.19!

Inserting Eqs.~2.18! and ~2.19! into Eq. ~2.16! we get the
Gaussian effective potential

VGEP~f0!5
l

4!
f0
41

m2

2
f0
21

1

2 E dnk

~2p!n g~kW !

2
l

32F E dnk

~2p!n

1

g~kW !
G2. ~2.20!

Putting @1#

I n~m!5
1

2 E dnk

~2p!n@g~kW !2#n21/2, ~2.21!

we rewrite Eq.~2.20! in the more compact form

VGEP~f0!5
l

4!
f0
41

m2

2
f0
21I 1~m!2

l

8
I 0
2~m!,

~2.22!

while the gap equation becomes

m25m21
l

2
f0
21

l

2
I 0~m!. ~2.23!

For later convenience, it is useful to work in units of
m05m(f050). Thus we introduce the dimensionless pa-
rameters

F0
25

f0
2

m0
n21 , ~2.24!

l̂5
l

4!m0
32n , ~2.25!

x5
m2

m0
2 . ~2.26!

Moreover, we redefine the zero of the energy scale by sub-
tracting inVGEP(f0) the ~divergent! quantityVGEP(f050):

VGEP
n11~f0!5

VGEP~f0!2VGEP~f050!

m0
n11 . ~2.27!

III. THE VARIATIONAL BASIS

In the previous section we introduced the Gaussian effec-
tive potential. The most serious problem of the Gaussian
effective potential resides in the lack of control on the varia-
tional approximation. For these reasons it is desirable to deal
with a generalization of the Gaussian effective potential
which allows us to compute in a systematic way the correc-
tions to the Gaussian approximation@8#. The problem we are
interested in is not an academic one. Indeed, it is well known
that the Gaussian approximation does not take into account
all the two-loop contributions. As a consequence in non-

Abelian gauge theories the Gaussian approximation breaks
gauge invariance@9#.

In order to evaluate the corrections to the variational
Gaussian approximation we need to set up a variational-
perturbation theory. To this end we now construct a varia-
tional basis starting from the vacuum wave functional
C0@h#. To do this we considerC0@h# as the ground state
wave functional of a suitable Hamiltonian.

Let us consider the operators

a~pW !5E dnx

~2p!n/2

e2 ipW •xW

A2g~pW !

3S E dny
1
2
G~x,y!h~y!1

d

dh~xW !
D , ~3.1!

a
†
~pW !5E dnx

~2p!n/2

eip
W
•xW

A2g~pW !

3S E dny
1
2
G~x,y!h~y!2

d

dh~xW !
D . ~3.2!

It is easy to see that the only nontrivial commutator is

@a~p1W !,a†~p2W !#5d~p1W2p2W !. ~3.3!

Moreover, we have

a~pW !C0@h#50. ~3.4!

Now we rewrite the annihilation and creation operators,
Eqs.~3.1! and~3.2!, by means of the Fourier transform of the
fluctuation fieldsh(xW ):

h~pW !5E dnx

~2p!n/2e
2 ipW •xWh~xW !, ~3.5!

d

dh~pW !
5E dnx

~2p!n/2e
ipW •xW

d

dh~xW !
. ~3.6!

We get

a~pW !5Ag~pW !

2 S h~2pW !1
1

g~pW !

d

dh~pW !
D , ~3.7!

a†~pW !5Ag~pW !

2 S h~pW !2
1

g~pW !

d

dh~2pW !
D . ~3.8!

Consider, now, the Hamiltonian

H̃05
1

2 E dnpF2
d

dh~pW !

d

dh~2pW !
1g2~pW !h~pW !h~2pW !G ,

~3.9!

which can be rewritten as

H̃05E dnpg~pW !a†~pW !a~pW !1E0 , ~3.10!

where
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E05
1

2 E dnxE dnp

~2p!n g~pW !. ~3.11!

Let u0& be the vacuum ofH0 in the abstract ket formalism.
From Eq.~3.4! it follows

^hu0&5C0@h#, ~3.12!

which is C0@h# is the vacuum ofH̃0 in the Schro¨dinger
representation. Starting fromu0& we can set up the many
particle states by acting on the vacuum with the creation
operatorsa†(pW ). In the Schro¨dinger representation we have,
for instance,

C1@h#5^hupW &5^hua†~pW !u0&

5E dnx
~2p!n/2

eip
W
•xW

A2g~pW !

3 S E dny 1
2
G~x,y!h~y!2

d
dh~xW !

DC0@h#

5E dnxdny
~2p!n/2

eip
W
•xW

A2g~pW !
G~xW2yW !h~yW !C0@h#.

~3.13!

Obviously we also have

H̃0upW &5@E01g~pW !#upW & ~3.14!

and

^pW 1upW 2&5d~pW 12pW 2!^0u0&. ~3.15!

In this way we construct the orthonormal set~Fock basis! of
wave functionals$Cn@h#%, whereCn@h# is obtained by ap-
plying n times the creation operator onC0@h#.

It should be emphasized that the Fock basis is univocally
determined by the vacuum functionalC0@h#. As we will
discuss in the next section, the vacuum functional will be
fixed with a variational procedure. For this reason the Fock
basis$Cn(h)% will be referred to as a variational basis.

IV. PERTURBATION THEORY
WITH THE VARIATIONAL BASIS

In this section we use the variational basis to set up a
perturbation theory for the ground state energy. To this end
we split our Hamiltonian, Eq.~2.1!, into two pieces:

H5H01HI , ~4.1!

whereH0 will be the freeHamiltonian andHI theperturba-
tion. We defineH0 andHI as

~H0!nm5^nuH0um&5dnmHnn , ~4.2!

~HI !nm5^nuHI um&5~12dnm!Hnm , ~4.3!

where

Hnm5^nuHum&5E @dh#Cn* @h#HS 2 i
d

dh
,h DCm@h#.

~4.4!

Equations~4.2! and ~4.3! show that the perturbationHI is
given by the off-diagonal elements of the full Hamiltonian
H with respect to the variational basis. If the wave functional
C0@h# is close to the true ground state ofH, then we expect
that the (HI)mn are small with respect to (H0)nm , i.e., that
HI is a genuine perturbation.

We recall that in Sec. II we fixed the wave functional
C0@h# by minimizingE@f0 ,g(kW )#5H00 on the class of trial
Gaussian functionals, Eq.~2.5!. In this way we get an opti-
mized perturbation expansion. Moreover, we stress that in
our scheme it is unnecessary to start with a small parameter
in H. Thus our method goes beyond the usual perturbation
theory.

We now address ourselves in the determination ofH0 and
HI . We evaluate, firstly, the diagonal elements ofH with
respect to the Fock variational basis$Cn@h#%. To this end
we rewrite the Hamiltonian~2.1! in terms of the annihilation
and creation operators~3.7! and ~3.8!. A rather lengthy but
otherwise straightforward calculation shows that

H5H ~0!1H ~1!1H ~2!1H ~3!1H ~4!, ~4.5!

where

H ~0!5E@f0 ,g~kW !#, ~4.6!

H ~1!5Fm2f01
l

6
f0
31

l

4
f0E dnk

~2p!n

1

g~kW !
G E dnx:h~xW !:, ~4.7!

H ~2!5
1

2 E dnpFg~pW !1
pW 21m21~l/2!f0

2

g~pW !
1

l

4 E dnk

~2p!n

1

g~pW !g~kW !
Ga†~pW !a~pW !

1
1

4 E dnpF 2g~pW !1

pW 21m21~l/2!f0
21~l/4!*@dnp8/~2p!3#

1

g~p8W !

g~pW !
G @a†~pW !a†~2pW !1a~pW !a~2pW !#, ~4.8!
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H ~3!5
l

3!
f0E dnx:h3~xW !:, ~4.9!

H ~4!5
l

4! E dnx:h4~xW !:, ~4.10!

where the colons mean normal ordering with respect to the
vacuumC0@h#.

In the ket formalism then-particle wave functionals are
given by

un&5upW 1n1 ;pW 2n2•••&5)
i

~2p!n/2

V1/2

1

~n i ! !
1/2a

†n i~pW i !u0&,

~4.11!

with ( in i5n. A straightforward calculation gives

^nuH ~0!un&5E@f0 ,g~kW !#, ~4.12!

^nuH ~1!un&5^nuH ~3!un&50, ~4.13!

^nuH ~2!un&5
1

2 (
i

n iFg~pW i !1
pW i1m21~l/2!f0

2

g~pW i !
G

1
l

8 E dnk

~2p!n

1

g~kW !
(
i

n i
1

g~pW i !
. ~4.14!

As concernsH (4), a rather lengthy but elementary calculation
shows that in the thermodynamic limitV→`, we also have

^nuH ~4!un&50. ~4.15!

Now, if we select the variational basis by minimizing
H005E0@f0 ,g(kW )#, i.e., if we impose the extremum condi-
tion, Eq. ~2.17!, we find thatH (2) reduces to

H ~2!5E dnpg~pW !a†~pW !a~pW !. ~4.16!

Moreover,

^nuHun&5E@f0 ,g~kW !#1(
i

n ig~pW i !, ~4.17!

where g(kW )5AkW21m2(f0) and m(f0) satisfies the gap
equation~2.19!.

Equation~4.16! tells us thatH (2) is the normal-ordered
Hamiltonian of a free scalar field with massm(f0). More-
over, it is now clear that the off-diagonal elements of the full
Hamiltonian are due toH (1), H (3), andH (4). As a conse-
quence we can write~using again the gap equation!

H05H ~0!1H ~2!5E@f0 ,g~kW !#1H ~2!, ~4.18!

HI5E dnxF S m2~f0!f02
l

3
f0
3D :h~xW !:1

l

3!
f0 :h

3~xW !:

1
l

4!
:h4~xW !: G . ~4.19!

We stress once again that our perturbation is given by the
off-diagonal elements of the full HamiltonianH with respect
to the variational basis$Cn@h#%. This means that the pertur-
bation expansion that we will discuss in the next section is
not a weak coupling expansion. In other words, our varia-
tional procedure, which selects the Fock basis$Cn@h#%,
minimizes the off-diagonal elementsHnm , so that even
though the quartic self-coupling is strong, the perturbative
expansion gives sensible results. Finally, it is worth mention-
ing that the simple results, Eq.~4.19!, for the perturbation
Hamiltonian rely on Eq.~4.15! which is valid only for quan-
tum systems with an infinite number of degrees of freedom.

V. GENERALIZED GAUSSIAN EFFECTIVE POTENTIAL

In the previous section we were able to split the Hamil-
tonianH into two pieces: the free HamiltonianH0 and the
interactionHI . If we neglectHI , we see that the ground
state ofH0 is the wave functionalC0@h# and the Gaussian
effective potential, Eq.~2.22!, is the ground state energy den-
sity. In other words,VGEP(f0) is the lowest order term of the
vacuum energy density in the perturbation expansion gener-
ated byHI . Thus the corrections to the Gaussian effective
potential can be readily obtained by means of the standard
perturbation expansion for the ground state energy. For the
ground state energy we may use the well-known Brueckner-
Goldstone formula@10#

EGS~f0!5E0„f0 ,g~kW !…

1 (
n50

` F ^0uHI S 1

E02H0
HI D nu0&G

conn

. ~5.1!

For instance, up to second order inHI and using Eqs.~4.2!
and ~4.3!, we have

EGS~f0!5E01 (
n.0

~H002Hnn!
21u^nuHu0&u2. ~5.2!

Higher order terms can be analyzed by means of the so-
called Goldstone diagrams@10,11#.

However, in order to show thatEGS in Eq. ~5.1! gives
correctly the correction to the Gaussian effective potential,
we must ascertain that it exists in a stateuV& such that
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EGS~f0!5
^VuHuV&

^VuV&
, ~5.3!

with the constraint

^Vuh~xW !uV&

^VuV&
50. ~5.4!

To do this, we use the Gell-Mann–Low theorem on the
ground state@12#. Let us consider the Hamiltonian

He5H01HIe
2eutu, e→01. ~5.5!

Next, we introduce the temporal evolution operator

Ue~ t,t0!5 (
n50

`
~2 i !n

n! E
t0

t

dt1•••E
t0

t

dtne
2e~ ut1u1•••1utnu!

3T@HI~ t1!•••HI~ tn!#, ~5.6!

whereHI(t) is the perturbation Hamiltonian in the interac-
tion representation. The Gell-Mann–Low theorem says that
if the following quantity exists to all order in perturbation
theory,

lim
e→01

Ue~0,2`!u0&

^0uUe~0,2`!u0&
[

uV&

^0uV&
, ~5.7!

then

H
uV&

^0 uV&
5E

uV&

^0 uV&
. ~5.8!

Note that the denominator in Eqs.~5.7! and ~5.8! is crucial,
for the numerator and the denominator do not separately ex-
ist ase→01.

From Eq.~5.8! it follows that

E5
^VuHuV&

^VuV&
. ~5.9!

Now we show thatEGS5E. Indeed, from Eqs.~5.8! and~5.5!
we get

E2E05
^0uHI uV&

^0uV&
, ~5.10!

where we have taken into account thatH0u0&5E0u0&.
Now a standard manipulation@11# shows that

^0uHI uV&5^0uV& (
n50

`
~2 i !n

n!

3E
2`

0

dt1•••E
2`

0

dtne
[2e~ t11•••1tn!]

3^0uT@HI~0!HI~ t1!•••HI~ tn!#u0&conn, ~5.11!

where the subscript means that we need to take into account
only the connected terms. In order to carry out the time in-
tegrations, we consider thenth order contribution in Eq.
~5.11!. Observing that

HI~ t !5eiH0tHIe
2 iH0t ~5.12!

and that then! possible time orderings give identical contri-
butions, we get

~E2E0!
~n!5~2 i !nE

2`

0

dt1•••E
2`

0

dtne
2e~ ut1u1•••1utnu!

3^0uHIe
iH0t1HIe

2 iH0~ t12t2!
•••HI

3e2 iH0~ tn212tn!HIe
2 iH0tnu 0&conn. ~5.13!

By changing variables to relative times,

x15t1 , x25t22t1 , . . . ,xn5tn2tn21 , ~5.14!

one finally obtains

~E2E0!
~n!5^0 uHI

1

E02H01 ine
HI•••HI

3
1

E02H01 i e
HI u0&conn. ~5.15!

Because of the limitation to connected contributions, the
limit e→01 is harmless. Hence we get

E2E05 (
n50

`

^0uHI S 1

E02H0
HI D nu0&conn, ~5.16!

which shows that indeedE5EGS.
We can finally write down the generalization of the

Gaussian effective potential we are looking for@8#:

VG~f0!5
1

V

^VuHuV&

^VuV&
, ~5.17!

with the constraint

^Vuh~xW !uV&

^VuV&
50. ~5.18!

Note that Eq.~5.18! assures that the expectation value of the
scalar fieldf(xW ) on the stateuV& is f0.

Several remarks are in order. Equation~5.16! shows that
E reduces toE0 in the zeroth order due to the normal order-
ing of the interaction Hamiltonian. Thus, in that approxima-
tion VG(f0) coincides with the Gaussian effective potential.

Higher order contributions to the generalized Gaussian
effective potential VG(f0) can be evaluated by the
Brueckner-Goldstone formula, Eq.~5.16!. In this case one
deals with an expansion in terms of the Goldstone diagrams
@11#. However, one can do better if one uses Eqs.~5.10! and
~5.11!:

VG~f0!5VGEP~f0!1
1

V (
n50

`
~2 i !n

n! E
2`

0

dtn•••E
2`

0

dtn

3^0uT@HI~0!HI~ t1!•••HI~ tn!#u0&conn, ~5.19!

where we have performed the harmless limite→01. Indeed
a given term in Eq.~5.19! can be easily evaluated by means
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of the standard Feynman diagrams. It is evident that the free
Feynman propagator coincides with the propagator of a sca-
lar field with massm(f0).

It should be stressed that it is convenient to analyze the
expansion~5.19! by means of the Feynman diagrams. In-
deed, it is well known that a Feynman diagram withk ver-
tices containsk! Goldstone diagrams, corresponding to the
number of permutations of the timest1 , . . . ,tk .

The expansion, Eq.~5.19!, gives rise to a set of vacuum
Feynman diagrams. Let us consider the term of ordern in
Eq. ~5.19!. In the time-ordered product there aren11 inter-
action Hamiltonians. This means that, unlike the usual
vacuum diagrams the factorial factorn! is canceled by the
number of permutations of the independent integration vari-
ables. As a consequence, Eq.~5.19! allows a diagrammatic
expansion of the higher order corrections which is amenable
to a diagrammatic resummation.

Finally, we point out that in terms of Feynman diagrams,
the constraint, Eq.~5.18!, sets to zero the tadpolelike dia-
grams that are due to the linear term in the interaction Hamil-
tonian.

VI. CORRECTION TO THE GAUSSIAN APPROXIMATION

In the previous section we introduced the generalized
Gaussian effective potential which allows us to compute in a
systematic way the corrections to the Gaussian approxima-
tion. Presently we focus on the second order corrections. Let
us consider the first nontrivial term in the perturbative ex-
pansion, Eq.~5.19!. We have

VG~f0!5VGEP~f0!1DVG~f0!, ~6.1!

with

DVG~f0!5
2 i

V E
2`

0

dt^0uTHI~0!HI~ t !u0&conn. ~6.2!

Taking into account Eqs.~5.18! and ~4.19! we get

DVG~F0!5
2 i

V E
2`

0

dtE dnxdnyF S lf0

3! D 2^0 uT~ :h3~x!::h3~y!: !u 0&1S l

4! D
2

^0 uT~ :h4~x!::h4~y!: !u 0&G , ~6.3!

wherex5(0,xW ) andy5(t,yW ). Therefore we have~see Fig. 1!

DVG~f0!5
2 i

V E
2`

0

dtE dnxdnyFl2f0
2

3!
@ iGF~x,y!#31

l2

4!
@ iGF~x,y!#4G , ~6.4!

where the Feynman propagator is

GF~x,y!5E dn11k

~2p!n11

e2 ik~x2y!

k22m21 i e
. ~6.5!

Inserting Eq.~6.5! into Eq. ~6.4! and performing the time and spatial integrations we recast Eq.~6.4! into

DVG~f0!52
l2f0

2

3! E )
i51

3
dnki

~2p!n2g~kW i !

~2p!nd~kW11kW21kW3!

g~kW1!1g~kW2!1g~kW3!
2

l2

4! E )
i51

4
dnki

~2p!n2g~kW i !

~2p!nd~kW11kW21kW31kW4!

g~kW1!1g~kW2!1g~kW3!1g~kW4!
.

~6.6!

Note that the lowest order contribution in the loop expansion
is the two-loop diagram@diagram~a! in Fig. 1# which was
lost in the Gaussian approximation. In non-Abelian gauge
theories this diagram is crucial in order to maintain the gauge
invariance in the variational Gaussian approximation@9#.

Now we discuss the second order corrections in the case
of scalar fields inn51,2 spatial dimensions@13#.

A. Scalar fields in 111 dimensions

To start with, we consider the Gaussian effective potential
in one spatial dimensionn51:

VGEP~f0!5
m2

2
f0
21

l

4!
f0
41I 1~m!2

l

8
I 0
2~m!, ~6.7!

where

I 0~m!5
1

2 E
2`

1` dk

2p

1

Ag~k!
, ~6.8!

I 1~m!5
1

2 E
2`

1` dk

2p
Ag~k!. ~6.9!

Introducing an ultraviolet cutoffL, it is not difficult to see
that the integrals~6.8! and ~6.9! display quadratic and loga-
rithmic divergences. Subtracting the energy density of the
f050 vacuumVGEP(f050), one is left with a logarithmic
divergence which can be corrected by renormalizing the
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mass. In the Gaussian approximation the renormalized mass
is defined as@1#

mR
2[

]2VGEP~f0!

]f0
2 U

f050

5m21
l

2
I 0~m0!5m0

2 , ~6.10!

where we recall thatm05m(f050). However, we shall
see that once we consider the corrections to the Gaussian
approximation the prescription Eq.~6.10! needs modifica-
tion.

A serious problem of the variational approximation in
quantum field theories is due to the presence of ultraviolet
divergences@14#. The variational-perturbation theory dis-
cussed in this paper offers a natural solution to the ultraviolet
divergence problem which parallels the perturbative re-
normalization theory. As a matter of fact, we showed that
the generalized Gaussian effective potentialVG(f0) is the
energy density of the vacuumuV& with scalar condensate
f05^VufuV&/^VuV&. Observing that only the energy dif-
ferences are of importance, our renormalization prescription
will be to reabsorb the ultraviolet divergences in the field
theory without scalar condensate. Moreover, forf050 the
Hamiltonian, Eqs.~4.18! and ~4.19!, reduces to the one of
a scalar field with massm0 and normal-ordered quartic
self-interaction. In the case of one and two spatial dimen-
sions that theory is superrenormalizable and we only need
to renormalize the mass. We define the renormalized mass
by means of the zero-momentum two-point proper vertex
G (2)(p;f050):

mR
252G~2!~0;f050!. ~6.11!

In the Gaussian approximation thef050 Hamiltonian coin-
cides with the free Hamiltonian of a scalar field with mass
m0, so that Eq.~6.11! gives

mR
25m0

2 , ~6.12!

which agrees with Eq.~6.10!. In one spatial dimension Eq.
~6.12! eliminates completely the ultraviolet divergences, for
the higher order corrections are finite.

From Eq.~6.12! and the gap equation we get

m25mR
22

l0

2
I 0~mR!. ~6.13!

Inserting Eq.~6.13! into Eq. ~6.7! and using Eqs.~2.24!–
~2.27! and ~2.22! one obtains@1#

VGEP
111~f0!522l̂F0

41
x21

24l̂
F11

3l̂

p
1
x21

2
G , ~6.14!

with the gap equation

x211
3

p
lnx512l̂F0

2 . ~6.15!

These results have been obtained for the first time by Chang
@15#. In Fig. 2 we displayVGEP

111(F0) as a function ofF0 for

various values of the dimensionless couplingl̂. Several fea-
tures are worth mentioning. First,F050 is always a local
minimum of VGEP(F0). For l̂,l̂c , with l̂c.2.5527, the
F050 vacuum is the true ground state. On the other hand,
for l̂.l̂c the ground state is forF0Þ0. As a consequence,
a first order phase transition occurs atl̂c . However, Chang
@16# pointed out that the Simon-Griffiths theorem@17# rules
out the possibility of a first order phase transition in one-
dimensionallf4 field theory. Moreover, Chang@16# showed
that there is no contradiction between the existence of a sec-
ond order transition and the Simon-Griffiths theorem.

Remarkably, it turns out that the two-loop correction, dia-
gram~a! in Fig. 1, gives rise to a second order phase transi-
tion. Indeed that correction is finite:

DVG~F0!52a
l̂2

x
F0

2m0
2 , ~6.16!

with

a5
3

p2 E
2`

1`

dxdy
1

A~x211!~y211!@~x1y!211#

3
1

@Ax2111Ay2111A~x1y!211#

.0.7136, ~6.17!

so that in this approximation we get

VG~F0!

m0
2 5VGEP

111~F0!2a
l̂2

x
F0

2 . ~6.18!

FIG. 1. Second order corrections to the Gaussian effective po-
tential.

FIG. 2. The Gaussian effective potential in one spatial dimen-

sion for three different values ofl̂.
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In Fig. 3 we display Eq.~6.18!. We see that now there is a
second order phase transition atl̂c51/A2a.0.8371. This is
confirmed by considering the mass gap of theF050
vacuum:

mphys
2 5m0

21S~0!, ~6.19!

whereS(p) is the proper self-mass of thef050 theory. In
the second order approximationS(p) is given by the so-
called setting sun diagram@18#. It is easy to show that

S~0!52
l2

3! E d2x@GE~x!#3, ~6.20!

whereGE(x) is the Euclidean Feynman propagator:

GE~x!5E d2k

~2p!2
eikx

k21m0
2 . ~6.21!

A straightforward calculation gives

S~0!522al̂2m0
2 . ~6.22!

Thus, from Eqs.~6.19! and ~6.22! we get

mphys
2

m0
2 5S 12

l̂2

l̂c
2D . ~6.23!

One can easily check that in this case

mphys
2 5

]2VG~f0!

]f0
2 U

f050

. ~6.24!

A remarkable consequence of Eq.~6.24! is that the mass
renormalization of the Gaussian effective potential extends
to VG(f0) in the two-loop approximation. Equation~6.23!
tells us that thef050 vacuum is stable forl̂,l̂c . More-
over, near the critical coupling we have

mphys

m0
;~l̂c2l̂ !1/2, ~6.25!

so that the correlation lengthj51/mphys diverges as

j;~l̂c2l̂ !2n, n5 1
2 . ~6.26!

Our results are in agreement with previous studies
@16,19,20#. However, our generalized Gaussian effective po-
tential relies on a firm field-theoretical basis which allows us
to take care of the higher order corrections. Moreover, in our
scheme there are no ambiguities in the renormalization of the
ultraviolet divergences.

Let us consider now the contribution due to diagram~b! in
Fig. 1. We have

DVG~f0!52a
l̂2

x
f0
2m0

22b
l̂2

x
, ~6.27!

where

b5
3

16p2 E
2`

1`

dxdydz
1

A~x211!~y211!~z211!@~x1y1z!211#

1

Ax211Ay211Az211A~x1y1z!211
.0.0509.

~6.28!

We would like to stress that now Eq.~6.24! is no longer
valid. In the present case this does not matter due to the fact
that the second order corrections are ultraviolet finite. How-
ever, in the case of two spatial dimensions these corrections
are divergent. Thus, adopting the renormalization prescrip-
tion, Eq. ~6.24!, instead of Eq.~6.11!, it may lead to an
incongruous result.

In Fig. 4 we contrast the generalized Gaussian effective
potential in the two-loop approximation~solid lines! and in
the full second order approximation~dashed lines!.

A few comments are in order. The order of the transition
is not modified by the three-loop second order correction.
Moreover, the critical couplingl̂c.1.1486 is quite close to
our previous value. As a matter of fact, in the critical region
l̂.1 the effects of the three-loop correction do not substan-
tially change the shape of the potential. Therefore we can
safely conclude that the most important contributions in the
critical region are given by the two loop term. This suggests
that higher order corrections do not modify the order of the
transition.

FIG. 3. The two-loop Gaussian effective potential forn51 and

three different values ofl̂.
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B. Scalar fields in 211 dimensions

In the case of two spatial dimensions the Gaussian effec-
tive potential is

VGEP~f0!5
m2

2
f0
21

l

4!
f0
41I 1~m!2

l

8
I 0
2~m!, ~6.29!

where, now,

I 0~m!5
1

2 E d2k

~2p!2
1

g~kW !
, ~6.30!

I 1~m!5
1

2 E d2k

~2p!2
g~kW !. ~6.31!

Subtracting the energy density of thef050 vacuum we get

VGEP~f0!2VGEP~0!5
m2

2
f0
21

l

4!
f0
41I 1~m!2I 1~m0!

2
l

8
@ I 0

2~m!2I 0
2~m0!#, ~6.32!

which is still affected by ultraviolet divergences.
Introducing the renormalized mass

mR
25

]2VGEP~f0!

]f0
2 U

f050

5m21
l

2
I 0~m0!5m0

2 ~6.33!

and using the gap equation

m2~f0!5m21
l

2
f0
21

l

2
I 0~m!, ~6.34!

we get the finite result@1#

VGEP~F0!5
F0

2

2
1l̂F0

42
~Ax21!2

24p F11
9

2p
l̂12AxG .

~6.35!

Similarly we can rewrite the gap equation Eq.~6.34! as

x51112l̂F0
22

3

p
l̂~Ax21!, ~6.36!

whose explicit positive solution is

Ax52
3l̂

2p
1AS 11

3l̂

2p
D 2112l̂F0

2. ~6.37!

In Fig. 5 we showVGEP
211(F0) versusF0 for three different

values ofl̂. Again we find a first order phase transition at the
critical couplingl̂.3.0784@1#. Note that in two spatial di-
mensions there are no rigorous results which could exclude a
first order transition. Nevertheless, it is important to investi-
gate the effects of the second order corrections to the Gauss-
ian effective potential. From Eq.~6.4! we have

DVG~F0!52 i E
2`

0

dxE d2zH l2f0
2

3!
@ iGF~z!#2

1
l2

4!
@ iGF~z!#4J , ~6.38!

wherez5(t,xW ). Now, observing that the Feynman propaga-
tor is an even function and performing the Wick rotation, we
obtain

DVG~F0!52
1

2 E d3zEH l2f0
2

3!
GE
3~zE!1

l2

4!
GE
4~zE!J ,

~6.39!

where@21#

FIG. 4. The two-loop~solid lines! and second order~dashed
lines! generalized Gaussian effective potentials forn51 and three

different values ofl̂.

FIG. 5. The Gaussian effective potential in two spatial dimen-

sions for three different values ofl̂.
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GE~zE!5E d3kE
~2p!3

e2 ikE•zE

kE
21m2 5

m

~2p!3/2~mz!1/2
K1/2~mz!,

~6.40!

with z5uzEu andK1/2 is the modified Bessel function of or-
der 1

2:

K1/2~x!5Ap

2x
e2x. ~6.41!

Thus we get, for the Euclidean Feynman propagator,

GE~zE!5
e2mz

4pz
. ~6.42!

Introducing

J3~m!5E d3zEGE
3~zE!5E d3zE

~4p!3
e23mz

z3
, ~6.43!

J4~m!5E d3zEGE
4~zE!5E d3zE

~4p!4
e24mz

z4
, ~6.44!

we rewrite Eq.~6.39! as

DVG~f0!52
l2f0

2

12
J3~m!2

l2

48
J4~m!. ~6.45!

From Eqs.~6.43! and~6.44! we see thatJ3 andJ4 are diver-
gent. We regularize the integrals by means of an ultraviolet
cutoff e;1/L @22#:

J3~m,e!5
1

16p2 E
e

`

dz
e23mz

z

52
1

16p2 @ ln~me!1 ln31g#1O~e!, ~6.46!

J4~m,e!5
1

~4p!3
E

e

`

dz
e24mz

z2
52

1

~4p!3 H 1e 14m@ ln~me!

1 ln41g21#J 1O~e!, ~6.47!

whereg is the Euler-Mascheroni constant.
Putting it all together we obtain

VG~f0!2VG~0!5
1

2
m2f0

21
l

4!
f0
41I 1~m!2I 1~m0!2

l

8
@ I 0

2~m!2I 0
2~m0!#1

l2f0
2

192p2 @ ln~me!1 ln31g#

2
l2

768p3 ~m2m0!@ ln41g21#2
l2

768p3 @m ln~me!#2m0ln~m0e!]. ~6.48!

Now we show that the logarithmic divergences are cured by renormalizing the mass. To this end, we observe that@1#

I 1~m!2I 1~m0!5
1

2
~m22m0

2!I 0~m0!2
m0
3

8p F13 SAm2

m0
221D 2S 2Am2

m0
2 21D G , ~6.49!

I 0~m!2I 0~m0!52
m0

4p SAm2

m0
2D . ~6.50!

Inserting Eqs.~6.49! and ~6.50! into Eq. ~6.48!, and using the gap equation~6.34!, we rewrite Eq.~6.48! as

VG~f0!2VG~0!5
1

2
m0
2f0

21
l

4!
f0
42

m0
3

24p SAm2

m0
221D 2S 2Am2

m0
2 21D 2

l

128p2m0
2SAm2

m0
221D 2

1
l2f0

2

192p2 @ ln~me!1 ln31g#2
l2

768p3 @~m2m0!~ ln41g21!1m ln~me!2m0ln~m0e!#. ~6.51!

As we have already discussed, the renormalized mass is

mR
252G~0,f050!5m0

21S~0!. ~6.52!

In the lowest order Gaussian approximation we have

S~0!5dm22
l2

3! E d3xEGE
3~xE!, ~6.53!

where the second order term is due to the ‘‘setting-sun’’
diagram. Explicitly, by using the previous regularization, we
find

S~0!5dm21
l2

96p2 @ ln~m0e!1 ln31g#1O~e!. ~6.54!

We fix the mass counterterm by imposing that

mR
25m0

2 . ~6.55!

This results in
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dm252
l2

96p2 @ ln~m0e!1 ln31g#. ~6.56!

As a consequence, we must introduce the following counter-
term Hamiltonian in thef050 theory:

dH5 1
2dm2E d2xf2~xW !. ~6.57!

After writing f(xW )5f01h(xW ) and using the constraint, Eq.
~5.18!, it turns out thatdH adds to the second order gener-
alized Gaussian effective potential the further contributions
depicted in Fig. 6:

dVG
~a!5 1

2f0
2dm2, ~6.58!

dVG
~b!5

1

2
dm2E d2k

~2p!2
1

2g~kW !
. ~6.59!

Now, observing that

1

2g~kW !
5E

2`

1`dk0
2p

1

k0
21g2~kW !

, ~6.60!

we have (e→0)

dVG
~b!5

1

2
dm2GE~e!5

1

8p
dm2F 1

4pe
2m G1O~e!. ~6.61!

Finally, using Eq.~6.56! we get

dVG
~a!52

l2f0
2

192p2 @ ln~m0e!1 ln31g#, ~6.62!

dVG
~b!52

l2

768p3 @ ln~m0e!1 ln31g#F 1

4pe
2m G . ~6.63!

Now, it is easy to see thatdVG
(a) eliminates the ultraviolet

divergences of the two-loop second order correction,
whereasdVG

(b) makes finite the three-loop second order cor-
rection. Thus we are left with the finite result

VG~f0!2VG~0!5
1

2
m0
2f0

21
l

4!
f0
42

m0
3

24p SAm2

m0
221D 2

3S2Am2

m0
221D 2

l

128p2m0
2SAm2

m0
221D 2

1
l2f0

2

192p2 lnS m

m0
D1

l2

768p3mF12 lnS m

m0
D

2 ln
4

3G2
l2

768p3m0F12 ln
4

3G . ~6.64!

In terms of the scaled variables, Eqs.~2.23! and ~2.24!, we
rewrite Eq.~6.64! as

VG~F0!5VGEP
211~F0!1

3l̂2

p2 F0
2lnAx1

3

4p3 ~Ax21!

3S 12 ln
4

3D2
3

4p3l̂
2AxlnAx. ~6.65!

It is worthwhile to study separately the effects of the two
second order corrections. If we take into account the two-
loop correction we get

VG
~a!~F0!5VGEP

211~F0!1
3l̂2

p2 F0
2lnAx. ~6.66!

In Fig. 7 we display Eq.~6.66! for l̂51, 3, and 5. As is
evident there is no spontaneous symmetry breaking@13#.
Comparing Fig. 7 with Fig. 5, we see that the two-loop cor-
rection adds to the Gaussian effective potential a positive
contribution which is important in the regionF0;1 and
overcomes the negative minimum displayed byVGEP

211(F0) in
that region. On the other hand, considering the three-loop
second order correction, we have

VG
~b!~F0!5VGEP

211~F0!1
3l̂2

4p3 ~Ax21!S 12 ln
4

3D
2

3

4p3l̂
2AxlnAx. ~6.67!

From Fig. 8, where display Eq.~6.67! for three different
FIG. 7. The generalized Gaussian effective potential forn52

and three different values ofl̂ with the two-loops correction.

FIG. 6. Mass counterterm contributions to the generalized
Gaussian effective potential in the second order approximation.
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values ofl̂, we deduce that the most important effects of the
three-loop second order correction are near the origin where
one gets

DVG
~b!~F0! ;

F0→0

2
18

4p3 ln
4
3

l̂3

113l̂/2p
F0

2. ~6.68!

Indeed, Fig. 8 shows thatVG
(b)(F0) undergoes a continuous

phase transition atl̂c53.0959. This feature persists even for
the full second order generalized Gaussian effective potential
Eq. ~6.65! ~see Fig. 9!. Our result is in qualitative agreement
with Refs.@23# and @24#. However, from Fig. 9 we see that
the condensation energy is very small. Moreover, the critical

couplingl̂c53.0959 differs from that of the Gaussian effec-
tive potential by less than 1%. We feel that the only sound
conclusion we can draw is the exclusion of a first order phase
transition. Note that unlike what is stated in Ref.@24#, the
absence of a broken phase is not in contradiction with the
analysis by Magruder@25# and Chang and Magruder@26#.

We would like to conclude this rather technical section by
stressing the most important achievements of our analysis.
Our analysis of the ultraviolet divergences in two spatial di-
mensions showed that our renormalization procedure works
up to second order. However, it is clear that our renormal-
ization can be extended to higher orders by the usual renor-
malization procedure. Thus we feel that our results put the
generalized Gaussian effective potential on the same level as
the effective potential.

VII. THERMAL CORRECTIONS TO THE GENERALIZED
GAUSSIAN EFFECTIVE POTENTIAL

The aim of this section is to study the thermal corrections
to the generalized Gaussian effective potential. For the read-
er’s convenience, let us first recall the essential points of the
finite temperature effective potential@27–29# and the finite
temperature Gaussian effective potential@30,31#.

Following the classical paper by Dolan and Jackiw@29#
the finite temperature effective potential in the one-loop ap-
proximation is given by

Vb
1 loop~f0!5

1

2b (
n
E dnk

~2p!n ln~E21vn
2!, ~7.1!

wherevn52pbn, b51/T, are the Matsubara’s frequencies
@32#, and E25kW21M2(f0), M

2(f0)5m21(l/2)f0
2. Per-

forming the sum overn one finds@29#

Vb
1 loop~f0!5E dnk

~2p!n

E

2
1
1

b E dnk

~2p!n ln@12e2bE#. ~7.2!

On the right-hand of Eq.~7.2! the first term is the one-loop
zero temperature effective potential, while the second term
gives the one-loop thermal corrections.

As concerns the Gaussian effective potential at finite tem-
perature, we shall follow Hajj and Stevenson@30#. Let us
consider a system in thermal equilibrium; this means that our
system has minimized its free energy,

F52
1

b
lnZ, ~7.3!

whereZ is the partition function:

Z5Tr~e2bH!. ~7.4!

In order to evaluate the thermal corrections to the Gaussian
effective potential, the authors of Ref.@30# split the Hamil-
tonian as

H5H01HI , ~7.5!

whereH0 is the Hamiltonian of a scalar field with variational
massM2, whileHI comprises the remainder. The variational
mass is fixed by minimizing the free energy, Eq.~7.3!. To do

FIG. 8. The generalized Gaussian effective potential forn52

and three different values ofl̂ with the three-loops correction.

FIG. 9. The second order generalized Gaussian effective poten-

tial for n52 and three different values ofl̂.
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this one uses the thermodynamic perturbation theory to
evaluate the free energy in the lowest order in the perturba-
tion Hamiltonian. Writing

e2b~H01HI !.e2bH0~12bHI !, ~7.6!

we get

Z.Tre2bH0@12b^HI&
b#, ~7.7!

where^O&b means the thermal average with respect toH0:

^O&b5
Tr~e2bH0O!

Tr~e2bH0!
. ~7.8!

From Eqs.~7.3! and ~7.7! we obtain

F52
1

b
lnTr~e2bH0!1^HI&

b. ~7.9!

Now observing that the thermal average involves a summa-
tion over the eigenstates ofH0, it is not too difficult to find
@30#

VGEP
T ~f0!5

F

V
5I 11I 1

b2
l

8
~ I 01I 0

b!21
m2

2
f0
21

l

4!
f0
4 ,

~7.10!

where

I 1
b[

1

b E dnk

~2p!n ln~12e2bg~kW !!, ~7.11!

I 0
b[E dnk

~2p!n

1

g~kW !

1

ebg~kW !21
, ~7.12!

with g(kW )5AkW21M2. It turns out that the massM satisfies
the thermal gap equation:

M25m21
l

2
@ I 01I 0

b1f0
2#. ~7.13!

A remarkable consequence of Eq.~7.10! is that the finite
temperature Gaussian effective potential can be obtained
from VGEP(f0) with the substitution rule:

I 0→I 01I 0
b , ~7.14!

I 1→I 11I 1
b . ~7.15!

The main drawback of the Hajj-Stevenson approach is that
the splitting of the Hamiltonian in Eq.~7.5! is not natural, for
the variational massM , which is fixed by minimizing the
free energy, depends on the approximation adopted in evalu-
ating perturbatively the free energy. Moreover, the calcula-
tions of the thermal corrections beyond the Gaussian ap-
proximation are very difficult. On the other hand, as we have
already discussed in Sec. IV, in our approach the Hamil-
tonian is split into two pieces, the free Hamiltonian and the
interaction, in a natural manner.

As a consequence the thermal corrections to the general-
ized Gaussian effective potential can be evaluated easily by
means of the familiar thermodynamic perturbation theory

@33#. In the remainder of this section we focus on the lowest
order thermal corrections and compare with the one-loop
thermal effective potential corrections and the finite tempera-
ture Gaussian effective potential. The higher order thermal
corrections will be discussed in the next section.

In the lowest order in the perturbation we write@34#

F52
1

b
lnTr~e2bH0!1^HI&

b, ~7.16!

where, now,H0 is given by Eq.~4.18! andHI by Eq.~4.19!.
Observing that the eigenstates ofH0 are the statesun&, Eq.
~4.11!, with eigenvaluesEn given Eq.~4.17!, we have

^HI&
b5

Tre2bH0HI

Tre2bH0
5

(ne
2bEn^nuHI un&
(ne

2bEn
. ~7.17!

According to our definition Eq.~4.3! we have^nuHI un&50,
and so we end up with

^HI&
b50. ~7.18!

The calculation of the partition functionZ05Tre2bH0 is
straightforward:

Z05Tre2bH05e2bE0TrexpS 2b(
kW
g~kW !a

†
kWakW D

5e2bE0)
kW

1

12e2bg~kW !
5e2bE0

3expS 2VE dnk

~2p!n ln@12e2bg~kW !# D , ~7.19!

whereg(kW )5AkW21m2(f0), m2(f0) satisfies the zero tem-
perature gap equation~2.19!, and E05E@f0 ,g(kW )#, Eq.
~4.6!. The insertion of Eqs.~7.18! and~7.19! into Eq. ~7.16!
leads to

VG~f0!5
F

V
5VGEP~f0!1

1

b E dnk

~2p!n ln~12e2bg~kW !!.

~7.20!

Note that Eq. ~7.20! differs from the finite temperature
Gaussian effective potential Eq.~7.16!. The difference re-
sides in the different use of the gap equation. In our scheme
the gap equation~2.19! is fixed once and for all. In particular
it does not depend on the temperature. On the other hand, in
the finite temperature Gaussian effective potential approach
the gap equation includes the thermal effects. The gap equa-
tion fixes the basis to sum over in the thermal average, so
that different gap equations lead to inequivalent basis. In fact
the discrepancy between our results, Eq.~7.20!, and the finite
temperature Gaussian effective potential comes from the
thermal average of the interaction Hamiltonian. In our ap-
proach Eq.~7.18! holds, whereas in Ref.@30# ^HI&

bÞ0. Note
that the possibility of a nonequivalent basis is a peculiar
feature of quantum systems with an infinite number of de-
grees of freedom.

It is worthwhile to compare the one-loop thermal correc-
tion to the effective potential with our finite temperature gen-
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eralized Gaussian effective potential, Eq.~7.20!. Comparing
Eq. ~7.2! with Eq. ~7.20! we see that the former agrees with
the latter if

M2~f0!5m21
l

2
f0
2→m2~f0!. ~7.21!

Now m2(f0) satisfies the gap equation~2.19! which, from a
diagrammatic point of view, is obtained by summing the
infinite set of the superdaisy graphs in the zero temperature
propagator. In other words, if in the thermal corrections of
the effective potential we replace the tree level mass of the
shifted theory with the massm2(f0) obtained by summing
the superdaisy graphs atT50 in the propagator, then we
obtain again a free energy density. Up to now this remark-
able result in thermal scalar field theories holds for the one-
loop approximation. In the next section we will show that it
extends to higher order thermal corrections too.

Let us analyze the lowest order thermal corrections, Eq.
~7.20!, in the casen51,2 @34#. In one spatial dimension Eq.
~7.20! reads

VG
T ~F0!5VGEP

1111
1

pb̂2 E0
`

dtln@12e2At21b̂2x#, ~7.22!

where b̂5bm0. In Fig. 10 we showVG
T (F0)2VG

T (0) ~in

units ofm0
2) versusF0 for l̂.l̂c . As we can see, the sym-

metry broken atT50 gets restored forT̂.T̂c . Obviously
the critical temperature depends onl̂. For l̂54 we find
T̂c.1.27. It turns out thatT̂c can be estimated, within a few
percent, by means of the high temperature expansion of the
integral in Eq.~7.22!. From the results of the Appendix A
@see Eq.~A16!# we find the high temperature expansion

VG
T ~F0!5VGEP

111~F0!2
p

2b̂2
1

Ax
2b̂

1
x

4p
lnS b̂Ax

4p
D

2
z~3!

64p3 x
2b̂21

z~5!

512p5b̂
4x31O~ b̂6!, ~7.23!

where z(z) is the Riemann’s zeta function. In Fig. 10 we
also show the high temperature expansion, Eq.~7.23!
~dashed lines!; as we can see, the high temperature expansion
is a very good approximation even near the critical tempera-
ture. Indeed, forl̂54, Eq.~7.23! predicts a critical tempera-
ture which differs by less than 1% from the numerically es-
timated value.

The case of two spatial dimensions can be dealt with in a
similar way. We have

VG
T ~F0!5VGEP

211~F0!1
1

2pb̂3 E0
`

dttln~12e2At21b̂2x!.

~7.24!

In Fig. 11 we display Eq. ~7.24! @we subtract the
temperature-dependent constantVG

T (0)] for three different

values of the temperature andl̂54. Again the thermal cor-
rections lead to the expected symmetry restoration at high
temperatures. As in the previous case we performed the high
temperature expansion of the integral in Eq.~7.24!. We find
~see Appendix A!:

VG
T ~F0!5VGEP

211~F0!1
x21

8pb̂
2

x

8pb̂
ln~ b̂2x!1

1

8pb̂
lnb̂2

1
x3/221

12p
2

b̂~x221!

92p
. ~7.25!

FIG. 10. The generalized Gaussian effective potential with the

lowest order thermal corrections forn51 andl̂54. Dashed lines
refer to the high temperature expansion.

FIG. 11. The generalized Gaussian effective potential with the

lowest order thermal corrections forn52 and l̂54. The critical

temperature isT̂c.1.60.
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However, we would like to stress that the expansion param-
eter in the above-mentioned integral isb̂2x, so that in the
regionF0;1 wherex@1 the high temperature expansion
Eq. ~7.25! breaks down. In Appendix A we develop an alter-
native expansion which is useful in the regionb̂2x>1.

To conclude this section, it is worthwhile to perform a
quantitative comparison of our generalized Gaussian effec-
tive potential with the finite temperature Gaussian effective
potential and the one-loop thermal effective potential. For
definiteness we focus on the critical temperature as a func-
tion of the coupling constantl in the case of two spatial
dimensions. In this case the one-loop thermal effective po-
tential reads~assuming unit mass!

Vb
1 loop~F0!5

1

2
F0

21l̂F0
41

1

8p
~1112l̂F0

2!2
1

12p

3~1212l̂F0
2!3/22

1

24p
1I 1

b~1112l̂F0
2!.

~7.26!

As concerns the finite temperature Gaussian effective poten-
tial, the critical temperature can be extracted from Eqs.
~7.10!, ~7.11!, and~7.12! with n52. In Fig. 12 we compare
the critical temperature as a function ofl̂ ~in units of l̂c) for
the three different potentials. We see that our finite tempera-
ture generalized Gaussian effective potential leads to a criti-
cal temperature which increases more slowly than for the
other two potentials. This is due to our choice of the varia-
tional basis which implieŝHI&

b50 .

VIII. FINITE TEMPERATURE DIAGRAMMATIC
EXPANSION

In the previous section we evaluated the lowest order
thermal corrections by means of the thermodynamic pertur-

bation theory. Presently we would like to calculate the higher
order thermal corrections. To do this the usual thermody-
namic perturbation theory is useless. Instead we may follow
Matsubara’s methods@32,33#. In Matsubara’s scheme one
deals with scalar fields which depend on the fictitious imagi-
nary timet varying in the interval (0,b). If the Hamiltonian
of the system in thermal equilibrium can be written as
H5H01HI , then one can show that the corrections to the
thermodynamic potential are given by~see Appendix B!

DV52
1

b
lnK TtexpH 2E

0

b

HI~t!dtJ L b

, ~8.1!

whereHI(t) is the interaction Hamiltonian in Matsubara’s
interaction representation.Tt is the t-ordering operator and
the thermal averages are done with respect to the free field
partition function. Moreover, it turns out that only the con-
nected diagrams contribute toDV:

DV52
1

b (
m51

`
~21!m

m! E
0

b

dt1•••dtm

3^Tt@HI~t1!•••HI~tm!#&conn
b . ~8.2!

In our case, if we write

VG
T ~f0!5VGEP~f0!1

1

b E dnk

~2p!n ln~12e2bg~kW !!

1DVG
T ~f0!, ~8.3!

we readily get

DVG
T ~f0!52

1

bV (
m52

`
~21!m

m! E
0

b

dt1•••tm

3^Tt@HI~t1!•••HI~tm!#&conn
b . ~8.4!

Note that, due to Eq.~7.18!, the sum in Eq.~8.4! starts from
m52. The thermal average of the time-ordered products is
evaluated by means of the Wick’s theorem for thermal fields
@35#. In this way we obtain the thermal corrections to the
generalized Gaussian effective potential by means of the
connected thermal vacuum diagrams. For instance, the sec-
ond order thermal corrections are displayed in Fig. 13. The
vertices can be extracted from the interaction Hamiltonian,
Eq. ~4.19!. The solid lines in Fig. 13 are the thermal propa-
gators of the free scalar fields with massm(f0):

Gb~xW2yW ,t12t2!5^Tth~xW ,t1!h~yW ,t2!&
b

5
1

b (
n52`

1` E dnk

~2p!n

ei [k
W
•~xW2yW !2vn~t12t2!]

vn
21g2~kW !

,

~8.5!

wherevn52pnb. Note that the thermal propagator is peri-
odic in the time variable with period 2pb.

A distinguishing feature of the graphical expansion of Eq.
~8.4! with respect to Eq.~5.19! stems from the fact that the
factor (m!)21 coming from themth order term is not com-
pletely canceled by the number of different Wick contrac-

FIG. 12. The critical temperature versus the couplingl̂ for the
one-loop effective potential~dotted line!, the Gaussian effective
potential~dashed line!, and the generalized Gaussian effective po-
tential ~solid line! in two spatial dimensions.
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tions corresponding to a given graph. Consequently, a graph
contributes toDVG

T (f0) in proportion to a combinatoric co-
efficient depending on the order of the graph. Moreover, in
evaluating the contribution due to a given graph one should
take care of the normal-ordering prescription in the interac-
tion Hamiltonian. In turns out that normal ordering inHI
modifies the so-called anomalous diagrams, i.e., the dia-
grams which vanish at zero temperature@36#. For instance, in
Fig. 13 diagrams~b!, ~c!, and~e! are anomalous. To see this,
we note that normal ordering inHI is ineffective when we
consider a thermal contraction of two scalar fields belonging
to different vertices. Therefore, normal ordering comes into
play when we contract two fields which belong to the same
vertex. In this case we get the thermal average

G̃b~0!5^Tt :h~xW ,t!h~xW ,t!:&b, ~8.6!

instead ofGb(0). Taking into account canonical commuta-
tion relations between the creation and annihilation operators
it is straightforward to show that

G̃b~0!5Gb~0!2E dnk

~2p!n

1

2g~kW !
. ~8.7!

Now we observe that

E dnk

~2p!n

1

2g~kW !
5 lim

b→`

Gb~0!. ~8.8!

Indeed, from Eq.~8.5! it follows that

Gb~0!5
1

b (
n52`

1` E dnk

~2p!n

1

vn
21g2~kW !

. ~8.9!

By using the well-known identity@21#

coth~x!5
1

px
1
2x

p (
n51

`
1

x21n2
, ~8.10!

we rewrite Eq.~8.9! as

Gb~0!5E dnk

~2p!n

1

2g~kW !
cothFbg~kW !

2
G . ~8.11!

Finally, performing the limitb→` in Eq. ~8.11! we recover
Eq. ~8.8!.

Using Eq.~8.11! we rewrite Eq.~8.7! as

G̃b~0!5E dnk

~2p!n

1

2g~kW !
FcothS b

2
g~kW ! D21G . ~8.12!

Note thatG̃b(0) is free from ultraviolet divergences in any
spatial dimensions. This means that the ultraviolet diver-
gences due to the tadpoleGb(0) are cured by normal order-
ing the Hamiltonian atT50, in accordance with the well-
known result that the thermal corrections in quantum field
theories are ultraviolet finite@37#.

We are now in the position of extending the result implied
by Eq.~7.21! to the higher order thermal corrections. To this
end we observe that the higher order thermal corrections to
the effective potential are given by Eq.~1.9! of Ref. @29#.
Observing that in the imaginary time formalism the interac-
tion Lagrangian agrees with the interaction Hamiltonian and
that the Gaussian functional integrations with periodic
boundary conditions in Ref.@29# correspond to the thermal
Wick theorem, we obtain the desired result. There are, how-
ever, two further points which need to be discussed. First,
our interaction Hamiltonian is normal ordered atT50. How-
ever, our previous discussion tells us that the normal order-
ing does not affect the thermal corrections, forG̃b(0) and
Gb(0) differ by a temperature-independent term. Second, in
Ref. @29# there is not the linear term in the shifted scalar
field. This means that our substitution rule, Eq.~7.21!, holds
for the physically relevant on-shell thermal effective poten-
tial.

Let us now explicitly evaluate the second order thermal
corrections in the case of one spatial dimension. From Eq.
~8.4! we have

DVG
T ~f0!52

1

2bV E
0

`

dt1dt2^TtHI~t1!HI~t2!&conn
b ,

~8.13!

which gives rise to the diagrams depicted in Fig. 13.
It is easy to see that graph~a! is temperature independent.

So it does not contribute toDVG
T (f0) due to the stability

condition ^VuhuV&50. As concerns graph~b! we get

~b!52
lf0

4bV S m2f02
l

3
f0
3D E

2`

1`

dxdy

3E
0

b

dt1dt2^Tth~x,t1!h~y,t2!&
b

3^Tt :h~x,t2!h~y,t2!:&
b. ~8.14!

According to our previous discussion we obtain

~b!52
lf0

2

4 S 12
l

3m2f0
2D G̃b~0!. ~8.15!

FIG. 13. Thermal Feynman diagrams contributing to the second
order thermal corrections to the generalized Gaussian effective po-
tential.
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In a similar way we find

~c!52
l2f0

2

8

1

m2 G̃b
2~0!. ~8.16!

For the graph~d! we have

~d!52
l2f0

2

12 E
2b/2

1b/2

dtE
2`

1`

dxGb
3~x,t!. ~8.17!

Using Eq.~8.5! and the result@see Appendix B, Eq.~B32!#

1

b (
n

eivnt

vn
21g2~kW !

5
e2g~kW !utu

2g~kW !
1

1

2g~kW !
@eg~kW !t

1e2g~kW !t#
1

ebg~kW !21
, ~8.18!

we get

~d!52
l2f0

2

48~2p!2
E
0

b/2

dtE
2`

1` dk1dk2
g~k1!g~k2!g~k3!

3)
i51

3 Fe2g~ki !t1
eg~ki !t1e2g~ki !t

ebg~ki !21 G , ~8.19!

where( i51
3 ki50. Finally, using again Eq.~8.18! we find

~e!52
l2

32~2p!
G̃b
2~0!E

0

b/2

dt E
2`

1`

3
dk

g2~k!Fe2g~k!t1
eg~k!t1e2g~k!t

ebg~k!21 G2, ~8.20!

~ f!52
l2V

384~2p!3
E
0

b/2

dt

3E
2`

1` dk1dk2dk3
g~k1!g~k2!g~k3!g~k4!

3)
i51

4 Fe2g~ki !t1
eg~ki !t1e2g~ki !t

ebg~ki !21 G , ~8.21!

with ( i51
4 ki50.

Some comments are in order. In Eqs.~8.19!–~8.21! the
t integration can be performed explicitly, while the remain-
ing integrations over the momenta must be handled numeri-
cally. In the limit b→`(T→0) the anomalous graphs~b!,
~c!, and ~e! go exponentially to zero due to the factor
G̃b(0). On theother hand, graphs~d! and ~f! reduce to the
zero temperature second order generalized Gaussian effec-
tive potential. Indeed, in that limit in Eqs.~8.19!–~8.21! only
the factorse2g(ki )t survive. Performing the elementaryt in-
tegration we obtain the zero temperature contributions. As a
consequence the zero temperature limit ofVG

T (f0) reduces
to VG(f0).

In the high temperature limit we find that graphs~e! and
~f! dominate:

~e! ;
b→0

2
l2

256
1

b3m5
, ~8.22!

~ f! ;
b→0

2
l2

1536
1

b3m5
. ~8.23!

Therefore, in the intermediate temperature regionb̂;1 we
expect that the main contribute toVG

T (f0) comes from
graphs~d!, ~e!, and~f!. This is indeed the case as shown in
Fig. 14 where we display the contributions due to the second
order graphs forb̂51.

In Fig. 15 we display the finite temperature generalized
Gaussian effective potential~in units ofm0

2) for three differ-

ent values ofT̂ and l̂.l̂c . We see that the symmetry bro-
ken at T50 gets restored by increasing the temperature
through a continuous phase transition.

We have also performed the analysis of the second order
thermal corrections in two spatial dimensions. The calcula-
tion are very similar to the previous case. Moreover, we find
that the contributions to the second order thermal corrections
behave similarly to the ones of the one-dimensional case. So
we do not discuss any further this matter.

IX. CONCLUSIONS

In this paper we have developed a perturbation theory
with a variational basis for self-interacting scalar quantum
field theories. Our aim was to evaluate in a systematic man-
ner the corrections to the variational Gaussian approxima-
tion. In particular we introduced the generalized Gaussian
effective potential which allowed us to determine the correc-
tions to the Gaussian effective potential@38#.

Our method has been illustrated in the case of self-

FIG. 14. Contributions due to the second order thermal correc-
tions to the generalized Gaussian effective potential forn51,

l̂54, andb̂51.
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interacting scalar fields. However, we feel that there are no
problems in extending our method to scalar fields with con-
tinuous internal symmetry. As a matter of fact, recently our
approach has been applied to scalar fields with O~2! internal
symmetry@39#.

One of the most serious problems of the variational ap-
proximation in quantum field theories is due to the apparency
of the ultraviolet divergences. The variational-perturbation
theory developed in the present paper offers a solution to the
ultraviolet divergence problem which is similar to the well-
known perturbative renormalization theory. Indeed, starting
from the fact that the generalized Gaussian effective poten-
tial by definition is the vacuum energy density in the pres-
ence of a scalar condensate, we showed that the divergences
are corrected by the counterterms of the underlying field
theory without scalar condensate.

We would like to stress that, to our knowledge, there are
no rigorous results on the problem of ultraviolet divergences
in the variational approach to quantum field theories. For this
reason we focused on scalar field theories in one and two
spatial dimensions, where one only needs to renormalize the
mass. In one spatial dimension we showed that the lowest
order renormalization of the mass assures that the higher
order corrections are finite. In the case of two spatial dimen-
sions we find that the our mass renormalization procedure
works up to second order. However, it should be clear that
our prescription can be extended to higher orders without
problems.

In the second part of the paper we studied the thermal
corrections to our effective potential. In particular in our
method the Hamiltonian is split into a free piece and an
interaction in a natural way. This allows us to directly use
the well-developed thermodynamic perturbation theory to
evaluate the thermodynamic potential. A remarkable conse-
quence of our analysis is that the thermal corrections to the
generalized Gaussian effective potential agree with the ones

of the effective potential provided we use, Eq.~7.21!.
Let us conclude by briefly discussing the more realistic

case of scalar fields in three spatial dimensions. There is
growing evidence that quartic self-interacting scalar field
theories are trivial in four-dimensional spacetime@40#. How-
ever, recently Consoli and Stevenson proposed that the
vacuum of the (lf4)4 theory is not trivial@41#. More pre-
cisely, within the Gaussian variational approximation they
argued that the elementary excitations behave as free fields
while the vacuum resembles a Bose condensate.

Recently, this triviality and spontaneous symmetry break-
ing scenario found some evidence in the lattice approach
@42,43#. If this turns out to be the case, we expect that the
symmetry broken at zero temperature gets restored by in-
creasing the temperature. Thus our approach to the calcula-
tion of the thermal corrections may be useful to investigate
the nature of the thermal phase transition. In particular it is
important to ascertain if the phase transition is first order or
continuous.

APPENDIX A

We are interested in the high temperature expansion
b̂→0 of the integral

h~a2!5
1

pb̂2 E0
`

dtln@12e2At21a2# , ~A1!

wherea25b̂2x. Following Ref.@29# we consider

hb~a2!5
]h

]a2
5

1

2pb̂2
E
0

` dt

At21a2~e
At21a221!

. ~A2!

To perform the high temperature expansion of Eq.~A2! it is
useful to deal with

h1~e,a2!5E
0

`

dt
t2e

At21a2~e
At21a221!

, ~A3!

with e→01. Using the identity@21#

(
n51

`
y

y21n2
52

1

2y
1

p

2
coth~py!, ~A4!

we rewrite Eq.~A3! as

h1~e,a!5E
0

`

dt
t2e

At21a2
F (
n52`

1` A t21a2

t21a214p2n2
2
1

2G
[I e

~1!~a2!1I e
~2!~a2!. ~A5!

Performing the change of variabley5
t

Aa214p2n2
we

rewrite the first term on the right-hand of Eq.~A5! as

I e
~1!~a2!5 (

n52`

1`
1

~a214p2n2!~11e!/2 E
0

`

dy
y2e

y211
.

~A6!

FIG. 15. The generalized Gaussian effective potential with sec-

ond order thermal corrections forn51, l̂54, and three different
values of the temperature.
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The last integration can be performed to yield@21#

I e
~1!~a2!5

p

2

1

cos
p

2
e H 1

a11e 12(
n51

`
1

~2pn!11e

12(
n51

`
1

~2pn!11e F 1

S 11
a2

4p2n2D ~11e!/221G J .
~A7!

Using the definition of Riemann’s zeta function we get

I e
~1!~a!5

p

2a
12212ep2ez~11e!1 Ĩ ~a!

5
1

2e
1

p

2a
1
1

2
~g2 ln2p!1 Ĩ ~a!, ~A8!

where

Ĩ ~a2!5
1

2 (
n51

`
1

nF S 11
a2

4p2n2D
21/2

21G . ~A9!

As concern the integralI e
(2)(a2) in Eq. ~A5! we have@21#

I e
~2!~a2!52

1

2
E
0

`

dx
x2e

Ax21a2

52
1

2
a2e

1

212e

G~12e!G~e/2!

G~12e/2!
52

1

2e
1
1

2
lna,

~A10!

so that in the limite→01 we obtain

lim
e→01

h1~e,a2!5
p

2a
1
1

2
lna1

1

2
@g2 ln4p1 Ĩ ~a2!#.

~A11!

Finally we perform the Taylor expansion ofĨ (a2):

Ĩ ~a2!52
z~3!

16p2a
21

3z~5!

256p4a
41O~a6!. ~A12!

Putting it all together we obtain

h1~a
2!5

p

2a
1
1

2
lna1

1

2
~g2 ln4p!2

z~3!

16p2 a
2

1
3z~5!

256p4a
41O~a6!, ~A13!

whence

hb~a2!5
1

2pb̂2 H p

2a
1
1

2
lna1

1

2
~g2 ln4p!

2
z~3!

16p2a
21

3z~5!

256p4a
4J 1O~a6!. ~A14!

In order to recoverh(a2) we integratehb(a2) in a2 with the
boundary condition

h~0!5
1

pb̂2 E0
`

dtln~12e2t!5
p

6b̂2
. ~A15!

We get

h~a2!5
1

2pb̂2 H p2

3
1pa2

a2

4
1
a2

2
lnS a

4p D1
g

2
a2

2
1

32p2 z~3!a41
1

256p4 z~5!a61O~a8!J . ~A16!

Let us now evaluate the high temperature expansion
(a→0) of the integral

J~a2!5E
0

`

dttln~12e2At21a2!5
1

2 E
0

`

dyln~12eAy1a2!.

~A17!

To this end, we evaluate

J8~a2!5
dJ

da2
5
1

4
E
0

`

dy
1

Ay1a2

1

e2Ay1a221
. ~A18!

Using the identity, Eq.~A4!, we write

J8~a2!5 lim
e→01

@Ke
1~a2!1Ke

2~a2!#, ~A19!

where

Ke
15

1

4 (
2`

1` E
0

`

dy
y2e

y1a214p2n2
, ~A20!

Ke
2~a2!52

1

8
E
0

`

dy
y2e

Ay1a2
. ~A21!

To evaluateKe
(1)(a2) we proceed as we did forI e

(1)(a2). We
obtain

Ke
~1!~a2!5

1

4e F 1

a2e 1
2

~4p2!e z~2e!2
2a2

~4p2!11eez~2!G
52

1

2 F lna1
a2

4p2 z~2!G1O~e!. ~A22!

As concernsKe
(2)(a2) we find

Ke
~2!~a2!52

a122e

8
B~12e,e2 1

2 !5
a

4
1O~e!. ~A23!

Using z(2)5p2/6 we obtain

J8~a2!52
1

2
lna1

a

4
2
a2

48
. ~A24!

Integrating ina2 we are led to

J~a2!5J~0!1
1

4
a22

1

4
a2lna21

a3

6
2
a4

96
, ~A25!
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where

J~0!5E
0

`

dttln~12e2t!52z~3!. ~A26!

It is useful to perform also the low temperature expansion
(a→`) of J(a2). To do this we note that

J~a2!52
1

2 (
n51

` E
0

`

dy
e2nAy1a2

n
. ~A27!

Changing the integration variable we get

J~a2!52
a2

2 (
n51

`
1

n E
0

`

dte2naAt11

52a(
n51

`
e2na

n2
2 (

n51

`
e2na

n3
. ~A28!

This last expression can be used to approximateJ(a2) for
a>1.

APPENDIX B

For the reader’s convenience we briefly discuss the ther-
modynamic perturbation theory in Matsubara’s scheme
@11,35#. Let us suppose that the Hamiltonian of our thermo-
dynamic system can be written as

H5H01HI . ~B1!

We are interested in evaluating the thermodynamic potentials
perturbatively inHI . To this end we introduce theS matrix

eHt5S21~t!eH0t, 0<t<b. ~B2!

Let us consider the field operators in the Matsubara’s inter-
action representation:

f~xW ,t!5eH0tf~xW !e2H0t. ~B3!

In this representation the interaction Hamiltonian reads

HI~t!5eH0tHIe
2H0t, ~B4!

while

H0~t!5H0 . ~B5!

The solution of Eq.~B2! is well known:

S~t!5Tt expF2E
0

t

HI~t8!dt8G . ~B6!

Let us evaluate the thermodynamic potentialV:

e2bV5Tr~ebH!. ~B7!

From Eqs.~B2! and ~B7! we get

V52
1

b
lnTr@e2bH0S~b!#. ~B8!

Defining

V052
1

b
lnTr~e2bH0!, ~B9!

we get

V2V052
1

b
ln
Tre2bH0S~b!

Tre2bH0
, ~B10!

whence

DV52
1

b
ln^S~b!&b. ~B11!

Using Eq.~B6! we rewrite~B11! as

DV52
1

b H ln(
m51

`
~21!m

m! E
0

b

dt1•••dtm

3^Tt@HI~t1!•••HI~tm!#&bJ . ~B12!

One can show that@35#

DV52
1

b (
m51

`
~21!m

m! E
0

b

dt1•••dtm

3^Tt@HI~t1!•••HI~tm!#&conn
b . ~B13!

This last equation has been used in Sec. VIII.
We would like now to discuss the thermal propagator of a

free scalar field with massm. From the well-known expan-
sion

f~xW ,0!5
1

AV
(
pW

@e1 ipW •xWapW1e2 ipW •xWapW
†
# ~B14!

we readily obtain

f~xW ,t!5
1

AV
(
pW

@apWe
ipW •xW2Ept1apW

†e2 ipW •xW1Ept#,

~B15!

whereEp5ApW 21m2, and we used

eH0tapWe
2H0t5apWe

2Ept, ~B16!

eH0tapW
†e2H0t5apW

†e2Ept. ~B17!

We are interested in the thermal propagator

^Ttf~xW ,t!f~0!&b5Gb~xW ,t!. ~B18!

Using Eq.~B15! and

^apW 1apW 2
† &b5

dpW 1pW 2

12e2bEp1
, ~B19!

^a
†
pW 1apW 2&

b5
dpW 1pW 2

ebEp121
, ~B20!

we obtain

Gb~xW ,t!5
1

V
(
pW

1

2Ep
F eipW •xW2Ept

12e2bEp
1
e2 ipW •xW2Ept

ebEp21
G . ~B21!
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Now we observe that

e2Ept

12e2bEp
52E

G

dz

2p i

e2zt

~12e2bz!~z2Ep!
, ~B22!

where the integral in the complexz plane is on the contour
G shown in Fig. 16. The integrand in Eq.~B22! goes to zero
exponential whenuzu→`. Thus we deform the contourG in
G8 ~see Fig. 16!. Applying the Cauchy’s integral theorem we
get

e2Ept

12e2bEp
5
1

b (
n

e2 ivnt

Ep2 ivn
, ~B23!

wherevn52pnb. The other term in Eq.~B21! can be dealt
with in a similar way. Thus we obtain:

Gb~xW ,t!5
1

b
(
n

1

V
(
pW

1

2Ep
FeipW •xW2 ivnt

Ep2 ivn

1
e2 ipW •xW1 ivnt

Ep2 ivn
G .
~B24!

Finally, observing that

1

V (
pW
→E dnp

~2p!n

and performing the change of variablespW→2pW , vn→2vn
in the second term on the right-hand side of Eq.~B24!, we
get

Gb~xW ,t!5
1

b (
n
E d3p

~2p!3
e2 ivnt1 ipW •xW

Ep
21vn

2 . ~B25!

In the following we need to evaluate the sum

1

b (
n

eivnt

vn
21Ep

2 . ~B26!

To do this, we use the Sommerfeld-Watson transform@44#

1

b (
n52`

1`

f ~z5 ivn!5
1

2p i E2 i`

1 i`

dz f~z!

1
1

2p i E2 i`1e

1 i`1e

@ f ~z!1 f ~2z!#
1

ebz21

[A11A2 . ~B27!

In our case

f ~z!52
ezt

z22Ep
2 . ~B28!

Let us consider, first,A1. We have

A152
1

2p i E2 i`

1 i`

dz
ezt

z22Ep
2 . ~B29!

If t.0, we close the integration contour in the semiplane
Rez,0, while fort,0 the contour is closed in the semiplane
Rez.0. In this way, by applying the residue theorem we
obtain

A15
e2Eputu

2Ep
. ~B30!

In the same way we get

A25
eEpt1e2Ept

2Ep

1

ebEp21
. ~B31!

Combining Eqs.~B30! and ~B31! we obtain the desired re-
sult

1

b (
n

eivnt

vn
21Ep

2 5
e2Eputu

2Ep
1
eEpt1e2Ept

2Ep

1

ebEp21
. ~B32!
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