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NORMAL AUTOMORPHISMS OF FREE SOLVABLE PRO-p-GROUPS
N. S. Romanovskii* UDC 512.5

An automorphism of a profinite group is called normal if it leaves invariant all (closed) normal
subgroups. An automorphism of an abstract group is called p-normal if it leaves invariant each
normal subgroup of p-power, where p is prime. An inner automorphism satisfies both of these
conditions. Earlier, Romanouskii and Boluts [2] gave a description of normal automorphisms
of a free solvable pro-p-group of derived length 2. That description implied, in particular, that
the number of normal automorphisms in that group ezceeds the number of inner ones. Here we
prove that each normal automorphism of a free solvable pro-p-group of derived length > 3 and a
p-normal automorphism of an abstract free solvable group of derived length > 2 are inner.

An automorphism of a profinite group is said to be normal if all (closed) normal subgroups are left
invariant by it. For abstract groups, distinction is made among normal automorphisms — keeping normal
subgroups, f-normal automorphisms — keeping normal subgroups of finite index, and p-normal automor-
phisms — keeping normal subgroups of p-power, where p is prime. Obviously, an inner automorphism
satisfies all the conditions mentioned. In {1}, f-normal automorphisms of a free solvable group of derived
length > 2 were proved inner. In [2], normal automorphisms of a free solvable pro-p-group of derived length
2 were described. That description implied, in particular, that the number of normal automorphisms in
the group in question exceeds the number of inner ones. In [3], it was proved that, for p # 2, each normal
automorphism of a free rank > 2 pro-p-group in the variety M2A is inner. This supposition served as a
basis for asserting that a p-normal automorphism (p # 2) of an abstract free A,A-group of rank > 2 is
inner. Here A3 denotes the variety of nilpotent groups of class < 2 and A denotes the variety of Abelian

groups. In the present article, we prove the following two statements.

THEOREM 1. Every normal automorphism of a free solvable pro-p-group of derived length > 3 is
inner.

THEOREM 2. Every p-normal automorphism of an abstract free solvable group of derived length > 2
is inner.

Obviously, Theorem 2 makes stronger the result by Roman’kov (1] of which we have mentioned above.

1. PRELIMINARY INFORMATION AND STATEMENTS

1.1. All necessary definitions and facts concerning varieties of profinite groups can be found in {3]. We
adopt the following notation. Let G be a (profinite) group; then a (closed) subgroup generated by the
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subset A will be denoted by (4); if z,y € G, put z¥ = vy lzy, [z,y) = 2 'y 'zy. If A and B are subsets
of G, denote by [A, B] a subgroup generated by all commutators [a,b], where a € A and b € B. Write G’
for a commutator subgroup of G, G(") = [G("'l), G("‘l)], n> 2 If g € G, § stands for a conjugation by
an element ¢, which is an inner automorphism of G.

LEMMA 1. A normal automorphism of a free solvable pro-p-group F of derived length > 3 induces
an inner automorphism on the factor group F/F".

Proof. Let ¢ be a normal automorphism of the group F. The factor group F = F/[F',F', F'] is free
in the variety M3A of pro-p-groups. The automorphism ¢ induces a normal automorphism on that group.
By Lemma 2 in (3], every normal automorphism of F induces an inner automorphism on F/F" = F/F",
whence the lemma.

Let G be a pro-p-group represented as a projective limit li.x_nG,v of finite p-groups G; and let Z, be the
ring of p-adic integers. Recall that a group algebra of G over Z,, is a (topological) algebra Z,G equal to the
projective limit lim Z,[G;]. Denote by A(G) the augmentation ideal of the ring Z,G, that is, the kernel of
the canonical ho;omorphism Z2,G — Z,. '

LEMMA 2. Let F be a free rank > 2 pro-p-group which is solvable of derived length 2, and 4 = F/F'.
Conjugation by elements in F equips F’ with the structure of 2 Z, A-module. Let ¢ be an automorphism of
F which induces an identity map on A and assume that there exists an element w € Z, A such that tp = tw
for all t € F'. Then w = 1 mod A(A4).

The proof imitates that of Lemma 4 in [3].

LEMMA 3. Let F be a free rank > 2 pro-p-group which is solvable of derived length 2. Then any
automorphism of F that induces an identity map on the factor group F/F’ and on the subgroup F' is a
conjugation by an element in F'.

This fact was established in proving the main theorem in [2].

LEMMA 4. Let F be a free solvable pro-p-group of derived length k, £ > 3, and let the automorphism
@ of F induce an identity map on the factor group F/F("‘l) and on the subgroup F(*~2), Then ¢ is an
identity automorphism.

Proof. We follow the derivational route of an appropriate statement for abstract groups in Shmel’kin [4).

1.2. Let F be a free solvable pro-p-group of derived length k > 2, with basis {z;,...,z,}. Below we use
the Magnus embedding, which now we are going to describe for the group given. Let A be a free solvable
pro-p-group of derived length k — 1, with basis {a),...,an}, andlet Y =y, - Z,A® - @ yn - Zp A be a right
free (topological) module over the ring Z, A, with basis {y1,...,ya}. Consider a pro-p-group G, which is
a natural extension of an additive group of the module Y by A. That group can be treated as the matrix

0 . .
. ) , that is, the group of matrices of the form ( ¢

(1) > , where a € A, y € Y. The group
Yy

rou 4
group v

F is then identified with a subgroup in G, if we put z; = ( “ (1) ),...,:z:,1 = ( Gn (1) ) {For more
Y1 Yn

information, consult {5, 6].)

In [6], we showed that there exists a central series (finite for £ = 2 and infinite for £ > 2). 4 = 4, >
Az > ... such that A;/A;4, = Z,, A; = (a;) - Aiy1 (here ay,...,a, coincide with generators of the group
A), N Ai = 1, and every neighborhood of unity of 4 contains a certain subgroup A;. The group algebra
ZpA, as a topological Z,-module, is a free module with a basis {14 consisting of elements of the form
M = (ay — 1)**...{am — 1)®*™, where 0 < a; € Z. In particular, every element in Z,A has a unique

presentation in the form of a series 5~ +yar - M, where vir € Z,. The weight of an element M is defined
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thus: w(M) = a1+2az+-- .4+2™~1q,.. Order elements in 34 w.r.t. their weights; elements of equal weight
are ordered by successively comparing @, Gm—1,--.,1. The weight w(u) of a nonzero element u € Z, A is
the minimum of weights of elements M € 4, which do really occur in the expansion of u. Put w(0) = co.
fu=A-M+---, 0# )X € Z,, and M is a minimal element in {34 occurring in the expansion of u, then
X - M is called a lowest term of u in the expansion w.r.t. 4. Note that if M = (a3 — 1)1 ... (am — 1)
and L = (a3 —1)P* ... (am — 1)P~ are two elements in 4, then ML = (a; — )5+ | (@ — 1)2mHBm 4y,
where w(v) > w(M) + w(L). This follows immediately from the following:

(z-1)(y-1) = (y-1)=—1)+([z, 9] - 1) +(y=1)([z 9] D+(z-1)([z, 9] - 1) +(y-)(z - 1)([=. ] -1). (1)

Throughout this section, elements of an additive group of the module Y are written multiplicatively,
that is, instead of yiu; + -+« + Yntn, Where u; € Zp A, we write yi'*...y3~. A group algebra Z,Y, if
treated as a Zp-module, is a free module with a basis {ly consisting of elements of the form P = (yM:
1) ...(yf" - l)p'...(y,f“ - 1m voo(yk — 1), where M;,L; € Q4,0 < Bi, 7 € Z. Order elements
in Qy by successively comparing the following parameters: wy(P) =1+ -+ B +---+1 +--+ 71,
wa(P) = rw(M1) + -+ Frw(M) +- -+ mw(L1) + - +%w(Ls)y Loy Yoy -0 L1y Y15 -y My, Bry ooy My,
Bi. As a Zy-basis Q of the algebra Z,G, we choose the products M P, where M € 24 and P € QQy. An
arbitrary element t € Z,G has a unique presentation in the form of a series 3" u;P;, where u; € Z, A and
P; € Qy. If Py is a minimal element in Qy, which does indeed occur in that representation, then upF, is
called a lowest term of the element ¢ in the expansion w.r.t. the basis ly. In turn, if aM is a lowest term
of ug in its expansion w.r.t. the basis 4, then aM Py is called a lowest term of ¢ in the expansion w.r.t.
§1. A multiplication rule for the elements in Z,G expanded in terms of Q can be underpinned by formula
(1) and the following:

@ - (e - 1) =

(3 = D = 1) + a5 7 = 1) + 4 - D
(a5 = D = 1+ @Y -0+ @M - DT - )t
Y — 1)+ @M - )Y - ). @

M(a;~1) _ ~1)=

Denote by V,, (resp., by Wi) the collection of elements of Z,G in the expansion of which w.r.t. the
basis Qy only those elements occur for which w;(P) > m (resp., wz(P) > ). Formula (2) implies that
the sets V;,, and W; are two-sided ideals of the ring Z,G, and V1V, C Vinyr and WiW, C Wy, hold. Let
| =w(M) = wy(y™ —1). Again from (2), we have (y¥ —1)(a; — 1) = (ay — 1){y¥ ~ 1) mod Wy, and (yM -
1)(a1 —1) = (a3 — (M = 1)+ ar (3™ — 1) mod V2. Moreover, y; Ma-1) _ = ("M _ 1 mod Wiy,
This yields the following:

LEMMA 5. Let 1 # P = (y —1)* . (y;, —1)* € Qy and wi1(P) = m, wg(P) =1. Then P(a; —
1)= a1—1)P mod Wiy and Pa;—1) = (a1—1)P+as(ar{y)* —1)* " (i (a1-1)M —) (Y -1y (-
o ek e (G = Dm0 D — )% M~ 1) mod Vi + (vm N Wisa).

LEMMA 6. If w € A(G) and the element w(z; — 1) is divided in Z,G on the left by z; — 1, then wis
also divided on the left by =z, — 1.

Proof. Since z; — 1 = a;y; — 1 = {@; — 1) + (31 — 1) + {a; — 1}{y1 — 1), this and Lemma 5 imply that

.
if0£t€ Z,Gandt =3 uwPi+1ty, where wy(P) = ... = wi(Pr) = m, wa(Py) = ... = wz(P;) =1, and
i=1
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t1 € Vi1 + (Vin N Wiyy), then

Hz1—-1)= :Z:lu;(a1 -1)F,

3
(21— 1)t = f;l(a1 — 1)u; Pimod Viny1 + (Vi N Wigs). )
0=

Assume that the conclusion of the lemma is untrue, that is, w is not divided on the left by z; — 1.
Substituting a; — 1 = (1 — 1)y; ' + (y;' ! — 1) produces a representation w = (z; — 1)w; + w2, where w; is
expressed only in terms of those elements of the basis {1 in the expansion of which the factor a; — 1 does
not occur. According to (3), the element w; cannot be divided either on the left or on the right by z; — 1.
Without loss of generality, we may assume that w = w;. Let uP be a lowest term in the expansion of w
w.r.t. the basis Qy. Let wy(P) = m and wy(P) = I. If P # 1, choose all elements P = Py, P3,..., P, € Qy
which do really occur in the expansion of w w.r.t. Qy, for which wi(P;) = m and ws(P;) = I. We have

w= Eu,P + w’, where 0 £ u; € Z,A, w' € Vinyy + (Vi F\VV;“) To be specific, let Py < P, < ... < P,.
i=1
Belo;v, we consider three cases.

(1) First assume that k > 3 and some element u;, (1 < 7o < r) does not lie in Z,. Let u;, = u’ + ",
where v’ € Z, and u"” € A(A4). By (3), then, the element u”(a; — 1) is divided on the left by a; — 1. The
group A has derived length k — 1, and by induction on k, we can state that the element u” is divided in Z, A
on the left by a; — 1. This contradicts the above-envisaged condition that the element w can be expressed
only in terms of those elements of 0 in the expansion of which the factor ¢; — 1 does not occur.

(2) Next assume that P # 1 and either k > 3, u;,. ,uf € Zp, or k = 2, that is, A is Abelian. Let
P, = P'(yF —1)?, where P’ can have only those fa.ctors yM — 1 which are less than y' — 1. It follows from

Lemma 5 that the maximal element Q € Qy, which occurs in the expansion of (E u P)(z1 — 1) w.rt.

the basis Qy and satisfies w;(Q) = m and w2(Q) = I + 1, is equal to P'(yF — 1)~ 1(y(“‘—1)L 1). In the
expansion mentioned, that element occurs with coefficient Bu,a;. If Q occurs in the expansion of w' with
coefficient v € Z, A, then, in the expansion of w(z; — 1), it will occur with coefficient Bu,a; + v(a1 — 1),
by Lemma 5 again. Let w(zy — 1) = (z1 — 1)h. Then h € V;,. Since z; — 1 = a3 — 1mod V;, we have
(z1 — 1)h = (a1 — 1)hmod V1. This means that the element fu,a; + v(ay — 1) is divided in Z, A on the
left by a; — 1, which contradicts the assumptions.

(3) Consider the last case where P = 1, k = 2, and 0 # u € A(A). Distinguish in w a component of
degree 1, that is, that part of v which is expressed in terms of elements of Qy of the form y — 1. Let
w(z1—1) = (z1—1)h. Then h = u+2z mod W>, where z is a degree 1 component of the element k. The ensuing
congruences will be taken modulo V; + (a; — 1)Z,G. We have w(z; —1) = (u+v)((a1— 1) +ar(vr1 — 1)) =
v(ar—1)+u(ys —1); (21— 1)h = (y1— Du. v = vy (¥ 1) 4., then v(a; — 1) = vy (y{* " — 1) +...
by (2). In this case vl(yff'_l)M‘ -D+...+uln— 1) = (y1 - l)u. The left-hand side of the latter has a
canonical expansion w.r.t. Qy. If we want to expand the right-hand side via (2), then no elements of the

(61 I)M

form y; — 1in Qy are likely to appear, since u € Z,(az,...,a). Therefore, v = 0, and we are led

to the congruence u(y; — 1) = (y1 — 1)u. Reduce the right-hand side to the canonical form. Let aM be a

lowest term of u in its expansion w.r.t. 4 and M = (a; — 1)*?...(a, — 1)*~. From (2), we have
(y]_ - I)M - M(y]_ — 1) = agaz(az - 1)07-1(0.3 - l)a’ e (a,, - ].)a"(‘yi"—'1 - 1) + .-

anan(az = 1)%7 ... (an_1 — 1) (an — 1)* "y~ - 1)

as(az —1)% 7 Haz — 1)** ... (an = 1)*(yP* " = 1) +---
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an(a2 — 1) ... (Gno1 = 1)**(an — )™}y - 1)+
M(aa(yP ™ = 1)+ + ey - 1))

It follows that, in the expansion of (y; — 1)u — u(y; — 1) w.r.t. Q, the coefficients at elements of the basis
(a1 — 1)®"az — 1) ... (an — )™ (327" = 1),..., (a2 — 1)*2... (@1 — 1)~ (an — 1)*"2(y5~7?) are
aas,...,aay, respectively. In particular, (y; — 1)u — u(y; — 1) # 0. The lemma is proved.

COROLLARY. Suppose w € Z,G, and for any natural m, the element w(z; — 1)™ is divided on the
left by (z1 — 1)™. Then w € Z,(z,).

Proof. If an element w is not in Z,(z,), then it has a presentation in the form w = ap + a1(z1 —
1) + -+ ap(z1 — )™ + (z1 — 1)™u, where o; € Z,, u € A(G), and u is not divided on the left by
21 — 1. Let w(z; — 1)™*! = (z; — 1)™t'v. Then (21 — 1)™u(z1 — 1)™*! = (z; — 1)™*!v’, where
v = v—ap—aiz1 —1) = -+ — am(z1 — 1)™. We have u(z; — 1) = (2, - 1)v'. fm+1 2> 2
then v’ € A(G), since otherwise vo(z; — 1) € A(G)?, where v = vo + v1, 0 # v € Zp, v1 € A(G). By
Lemma 6, then, v is divided on the right by z; — 1. If we continue the argument we come to the equality
u(zg — 1) = (z1 — 1)v” for some element v"/. By Lemma 6, u is divided on the left by z, — 1, which

contradicts the condition imposed on u. The corollary is proved.

2. PROOF OF THEOREM 1

2.1. It suffices to prove the theorem for the case where a free solvable pro-p-group has finite rank. Indeed,
let F be a free solvable pro-p-group of derived length > 3, with an arbitrary basis X. Let {X; /j € J}
be the collection of all finite subsets of X, consisting of at least two elements. Consider the canonical
homomorphisms 1; : F — F; = (X,). By definition, z7; = z,ifz € X;,and zr; = 1ifz € X \ X;. Let ¢
be a normal automorphism of F. Then the restriction of ¢7; to F; will be a normal automorphism of the
group Fj. Assume that, for each j, that automorphism is inner and equals f;-, where f; € Fj. Therefore, if
f is a saturation point of the set {f; /j € J}, then ¢ = f.

2.2. Assume that a free solvable pro-p-group F of derived length k > 3 has finite basis X = {z1,...,2n}.
Let A = F/F(""l) and ay,...,a, be canonical images in A of the elements ,...,z,, respectively. Then
A is a free solvable pro-p-group of derived length k — 1, with basis {ai,...,an}. Let ¢ be a normal
automorphism of F. For k = 3 by Lemma 1 and for k > 4 by the inductive hypothesis, then, that
automorphism induces an inner automorphism on the group 4. The ¢ modified to an inner automorphism
induces an identity map on A. Conjugation by elements in F' equips F(*~1) with the structure of a Z,A-
module. The automorphism ¢ preserves submodules of that module. Therefore, if ¢ is a nontrivial element
of F(*=1), then tp = tw, where w € ZpA. Let m be a natural number and (t(ay — 1)™)p = t(a; — 1)™v,
v € ZpA. Since (t(ay — 1)™)p = tp - (a1 — 1)™ = tw(a; — 1)™ and the Z, A-submodule generated by ¢ is
free, we have w(a; — 1)™ = (a; — 1)™v. For any natural m, therefore, the element w(a; — 1)™ is divided in
Z,A on the left by (a; — 1)™. By the corollary to Lemma 6, we have w € Z,(a,). Likewise we can assert
that w € Z,(a;), whence w € Z,. If we apply Lemma 2 to a free solvable pro-p-group F(=2) of derived
length 2 we obtain w = 1. By Lemma 3, the restriction of ¢ to F(*~2) is a conjugation by some element in
F(-1)_ Modifying the ¢ again makes it act identically on F(*~2). By Lemma 4, then, the automorphism
@ is an identity map. Theorem 1 is proved.
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3. PROOF OF THEOREM 2

Let F be an abstract free solvable group of derived length k > 2, with basis X, and let ¢ be a p-normal
automorphism of F. We break up the proof into a number of stages.

3.1. Theorem 2 reduces to the case of a group of finite rank. Indeed, if z,,..., z,, are distinct elements
in X, m > 2, then there exist z,41,...,24 € X such that (z;,...,z2,)¢ < (z1,...,%,). Represent
the group (z1,...,2,) as the factor group F/H, where H is a normal subgroup of F, generated by all
elements z € X \ {z1,...,z,}. In view of that representation, ¢ induces a p-normal automorphism on
the group (zy,...,%,). Assume that this automorphism is a conjugation by some element in F.'/ H, letting
f (f € (z1,...,Za)) be a representative of the corresponding coset w.r.t. H. Put % = of~!. We claim that
¥ is an identity automorphism. By construction, i acts identically on the elements z;,...,z,,. Let z € X.
By the above argument, for some element f; (fi € F ), the restriction of ¥ to (z1,...,zn,z) coincides with
fl. The element f; then centralizes a subgroup (zi,...,Zm). It is trivial to mention that the centralizer of
that subgroup is equal to 1 for m > 2. Consequently, ¢y =1 and ¢ = f .

Thus, let X = {z1,...,2,} be a finite set and F be a completion of the group F in the pro-p-topology.
Then F is a free solvable pro-p-group of derived length k, with basis X, and F is embedded in F. The
automorphism ¢ is uniquely extended to a normal automorphism of the pro-p-group F, which we denote
by &.

3.2. Let k = 2. The group A = F/F' is a free Abelian pro-p-group with basis {ay,...,as}, where
a; denotes the canonical image of an element z; in A. The group A = F/F' is an abstract subgroup of
A, generated by elements aj,...,a,. Recall that F’ can be treated as a topological Z, A-module, and F
— as an abstract Z,ti-mpdule. Let ¢ be a nontrivial element of F'. Then ty = tw, where w € ZA. The
description of normal automorphisms of a free solvable pro-p-group of derived length 2 (see [2]) implies
that w = 1mod A(4), and if w € A, then @ is an inner automorphism of F. In our case, the element w
is invertible in the ring ZA, whence w = =+a, where a € A. The congruence w = 1 mod A(A) yields the
equality w=a. If g = f, where f € F, then f = amod F'.

3.3. Let k£ > 2. From the preceding subsection (for k = 2) and Theorem 1 (for k > 3), it follows that @
is an inner automorphism of F. Let ¢ = f, where f € F. By 3.2, an element f modulo F' is comparable
with some element of . We prove that f € F. By induction, assume that f modulo F(*-1) js comparable
with some element in F. This allows us to reduce our problem to the case where f € F(*=1),

Further, with the notation used in 1.2, consider the Magnus embedding for a group F, introduced
therein. Recall that the group F(*-1) is identified with an additive subgroup of the ZpA-module Y.
Let Y be an abstract ZA-module (with 4 = F/F*-1) generated by yy,...,yn. By [5], the element
Yiu1+ - +Yntn of Y (resp., of ¥) lies in F*~1 (resp., in F(*~1)) if and only if (a3 —1)us+: - -+(an—1)up = 0.
Let f = y1us + -+ 4+ yntn. If a is an arbitrary element of A and h an element of F whose projection
onto A is equal to a, then h=l(he™1) = h~1fhf~! = f(a —1). Since h= (hp~1) € F(*-1) we have
uy(@a—1),...,us(a—1) € ZA. If we succeed in proving that this implies uy,...,u, € ZA4, it will fol'ow that
f € F(*=1) and ¢ is an inner automorphism of the group F. For the proof of the theorem to be completed,
we are thus left to validate the following:

LEMMA 7. Let F be an abstract free solvable group of derived length k > 1, with basis {z1,---,Za}
and let F be its pro-p-completion. If 0 # u € Z, F, and for any f eF, u(f— 1) e ZF, thenu € ZF.

Proof. Let k = 1, that is, F and F are Abelian. The map z; — 1, £z — z3,...,Tq — T, yields
endomorphisms of the rings Z F and Z,F, whose kernels are the ideals Z F. (z1 — 1) and Z,F - (z1 — 1),
respectively. It follows that ZF N Z,F - (z1 — 1) = ZF - (z; — 1). Since u(z; — 1) € ZF, there exists an
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element u’ € ZF such that u(zy — 1) = w/(z; ~ 1). Then u = v’ € ZF. Note that in the argument above,
use has not been made of F being of finite rank.

Let £ > 2 and 1 # b € F*-V, The element u(b — 1) lies in ZF, and so it has a representation
u(b—1) = fiv; + +-+ + fnvm, where f; are elements of F, representatives of distinct cosets w.r.t. the
subgroup F(*-1) 0 # v; € ZF(*-1), We prove that u = fiuy; + -+ + fmun, for some w; € Z,F*~1) To
l’j ‘: ) Let {U;/j € J}

be the collection of open normal subgroups of A, forming the base of neighborhoods of unity. Put 4; =

do this, again we consider the Magnus embedding of the group F in G = (

A/U; and G; = ( ‘;’ (1) ) , where Yj is a free Z,A;-module with basis {ygj),..., ,(,j)}. The canonical
J
homomorphism A — A; and the map y; — ygj ),. ey Yn — ) determine a homomorphism 7; : G — Gj.

Let F; = Frj. Then F;/ F}k_l) is a finite p-group. The homomorphism 7; induces a homomorphism of
group algebras Z,F — Z,F;, which we denote by the same symbol 7;. If the element u does not have
the required representation, then, for some index j € J, we have ur; = hyw; + --- + hjuy, where h;
are elements of Fj, representatives of distinct cosets w.r.t. .the subgroup F}k_l), 0 # w; € Z,FJ-(k_I),
and, for instance, the coset thj(k_l) is distinct from the cosets fi7j - Fj(k_l), cois fmT - FJ.("_I). We also
assume that ¢ = br; # 1. The group algebra ZPF;("_I) kas no zero divisors, and so w;(c — 1) # 1. Then
hiwi(e—1) +--- + hwi(c — 1) # (fiva)r5 + - - + (fm¥m )75 = (u(b — 1))1j. We are led to a contradiction.

Thus, there exist elements u; € ZPF(""I) such that u = fiu; +---+ finum. For any nontrivial element
b€ F*-1 we have u(b — 1) € ZF(*-1) whence u;(b— 1) € ZF*~1). Since F*~V is Abelian, u; € ZF.
This proves the lemma, which completes the proof of Theorem 2.
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