

More on a Mean Value Theorem Converse
Author(s): H. Fejzic and D. Rinne
Source: The American Mathematical Monthly, Vol. 106, No. 5 (May, 1999), pp. 454-455
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2589151
Accessed: 16/03/2010 03:17

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @ jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

We note that \mathbf{M} is an unbounded operator on l_{2}. For example, using the Euclidean norm the sequence of unit vectors defined by

$$
\mathbf{w}_{m}=\left\{\left\{\mathbf{w}_{m}\right\}_{n}=\frac{1}{\sqrt{m}} \quad \text { for } n \leq m, \quad \text { and }=0 \text { for } n>m\right\}
$$

transforms into the sequence $\mathbf{M w}_{m}$, which diverges because

$$
\left\|\mathbf{M} \mathbf{w}_{m}\right\|^{2}=\frac{1}{m} \sum_{n=1}^{m}\left(\sum_{k=1}^{n} \frac{1}{k}\right)^{2}
$$

grows faster than $\ln (m!) / m \approx \ln m$, as m increases.

More on a Mean Value Theorem Converse

H. Fejzić and D. Rinne

In a recent Monthly article Tong and Braza considered two possible versions of a converse to the Mean Value Theorem [2]. For $c \in(a, b)$, a continuous function f on $[a, b]$ that is differentiable on (a, b) satisfies the

1. Weak Form at c if $f^{\prime}(c)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}$ for some interval $(\alpha, \beta) \subset(a, b)$, and the
2. Strong Form at c if $f^{\prime}(c)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}$ for some interval $(\alpha, \beta) \subset(a, b)$ with $c \in(\alpha, \beta)$.

In [2] the authors give a function that fails the Weak Form (and so fails both forms) at all values in a countable closed set. Borwein and Wang provided a function that fails the Weak Form on a residual set (one whose complement is of first category) that is of Lebesgue measure zero [1].

We show that a differentiable function can fail the Weak Form on a set that is both residual and of relative measure arbitrarily close to 1 while the Strong Form must hold on some subset of positive Lebesgue measure. In the rest of this Note measure means Lebesgue measure, denoted by λ.

We consider $[a, b]=[0,1]$ and let Z be any measurable set in [0,1] with $\lambda(Z)<1$. Let $E \subset[0,1] \backslash Z$ be an F_{σ} set with $\lambda(E)=\lambda([0,1] \backslash Z)>0$ and E having density 1 at each $x \in E\left(\lim _{\epsilon \rightarrow 0} \lambda(E \cap(x-\epsilon, x+\epsilon))(2 \epsilon)^{-1}=1\right)$. Let g be an approximately continuous function (at each x the restriction of g to some subset with density 1 at x is continuous at x) such that:

$$
\begin{align*}
& \text { 1. } 0<g(x) \leq 1 \quad \text { for } x \in E \text {, and } \\
& \text { 2. } g(x)=0 \text { for } x \notin E . \tag{1}
\end{align*}
$$

A construction of such functions can be found in Zahorski [3]. Since g is bounded
and approximately continuous it is the derivative of its integral $f(x)=\int_{0}^{x} g(t) d t$. Therefore $f^{\prime} \equiv 0$ on Z. We can pick Z to be dense in $[0,1]$ and of measure arbitrarily close to 1 with E having positive measure in every subinterval of $[0,1]$. Then f is strictly increasing and thus has no difference quotient equal to zero. Hence f fails the Weak Form at every point of $\left\{x \mid f^{\prime}(x)=0\right\}$ and thus at every point of Z. Since $\left\{x \mid f^{\prime}(x)=0\right\}$ is a dense G_{δ} (it's the complement of the F_{σ} set E), f fails the Weak Form on a residual set.

However, the following theorem shows that a differentiable function cannot fail the Weak Form almost everywhere.

Theorem 1. If f is a continuous function on $[a, b]$ that is differentiable on (a, b), then f satisfies the Strong Form on a subset of $[a, b]$ that has positive measure in every subinterval.

Proof: Let $[\alpha, \beta] \subset[a, b]$. We may assume that f is not linear on any subinterval of $[\alpha, \beta]$ since it would then obviously satisfy the Strong Form there. Let

$$
h(x)= \begin{cases}\frac{f(x)-f(\alpha)}{x-\alpha} & \text { for } \alpha<x \leq \beta \\ f^{\prime}(\alpha) & \text { for } x=\alpha\end{cases}
$$

Then h is continuous on $[\alpha, \beta]$ and $h([\alpha, \beta])$ is some nondegenerate interval $[r, s]$. Since h can have only countably many local extrema we can pick $u \in(\alpha, \beta)$ so that $h(u)$ is not a local extremum. Let c be a point in (α, u) with $f^{\prime}(c)=h(u)$. Using $p=(c+u) / 2$ we see that $f^{\prime}(c)$ is in the interior of $h([p, \beta])$. Call this interior I. Let g be the restriction of f to the interval $[\alpha, p]$. Then $G=\left(g^{\prime}\right)^{-1}(I)$ $\neq \phi$ since it contains c and thus $\lambda(G)>0$ by the Denjoy-Clarkson Property (the inverse image under a derivative of an open interval is either empty or of positive measure). For each $x \in G$, there is a $y \in[p, \beta]$ with $f^{\prime}(x)=g^{\prime}(x)=h(y)=$ $(f(y)-f(\alpha)) /(y-\alpha)$. Since $\alpha<x<y, f$ satisfies the Strong Form at x.

As a final comment, we point out that a differentiable function can fail the Strong Form on a set of positive measure and still satisfy the Weak Form on all of (a, b). As an example we can simply extend our function g in (1) to the interval $[0,4]$ as follows: Let

$$
G(x)= \begin{cases}g(x) & 0 \leq x \leq 1 \\ -g(1)(x-2) & 1<x \leq 2 \\ 0 & 2<x \leq 3 \\ (x-3) & 3<x \leq 4\end{cases}
$$

and set $F(x)=\int_{0}^{x} G(t) d t$. Then F still fails the Strong Form on the set Z above but satisfies the Weak Form on (0,4). This is because $0 \leq G=F^{\prime}<1$ on (0,4) while the difference quotients for F inside the interval $(2,4)$ assume all values in $[0,1)$.

REFERENCES

1. Borwein, J. M. and Wang, Xianfu, The Converse of the Mean Value Theorem May Fail Generically, Amer. Math. Monthly 105 (1998) 847-848.
2. Tong, J. and Braza, P., A Converse of the Mean Value Theorem, Amer. Math. Monthly 104 (1997) 939-942.
3. Zahorski, Z., Sur la Première Dérivée, Trans. Amer. Math. Soc. 69 (1950) 1-54.

California State, University San Bernardino, CA 92407
hfejzic@mail.csusb.edu,drinne@mail.csusb.edu

