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We note that M is an unbounded operator on /,. For example, using the
Euclidean norm the sequence of unit vectors defined by
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transforms into the sequence Mw,,, which diverges because
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grows faster than In(m!)/m = In m, as m increases.
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More on a Mean Value Theorem
Converse

H. Fejzi¢ and D. Rinne

In a recent MONTHLY article Tong and Braza considered two possible versions of a
converse to the Mean Value Theorem [2]. For ¢ € (a, b), a continuous function f
on [a, b] that is differentiable on (a, b) satisfies the

1. Weak Form at ¢ if f'(c) = % for some interval (a, 8) C (a, b),
and the

2. Strong Form at ¢ if f'(c) =
with ¢ € (a, B).

]C(Bﬁ)_;ﬁm for some interval (a, B) C (a, b)

In [2] the authors give a function that fails the Weak Form (and so fails both
forms) at all values in a countable closed set. Borwein and Wang provided a
function that fails the Weak Form on a residual set (one whose complement is of
first category) that is of Lebesgue measure zero [1].

We show that a differentiable function can fail the Weak Form on a set that is
both residual and of relative measure arbitrarily close to 1 while the Strong Form
must hold on some subset of positive Lebesgue measure. In the rest of this Note
measure means Lebesgue measure, denoted by A.

We consider [a, b] =[0,1] and let Z be any measurable set in [0, 1] with
MZ) < 1. Let E c[0,11\ Z be an F, set with A(E) = A([0,1]\ Z) > 0 and E
having density 1 at each x € E(lim,_, ,A(E N (x — €,x + €))(2e)™' = 1). Let g
be an approximately continuous function (at each x the restriction of g to some
subset with density 1 at x is continuous at x) such that:

1.0<g(x) <1 forxeE, and .
2. g(x) =0 forx &E. (1)

A construction of such functions can be found in Zahorski [3]. Since g is bounded
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and approximately continuous it is the derivative of its integral f(x) = [fg(¢) dt.
Therefore f' =0 on Z. We can pick Z to be dense in [0,1] and of measure
arbitrarily close to 1 with E having positive measure in every subinterval of [0, 1].
Then f is strictly increasing and thus has no difference quotient equal to zero.
Hence f fails the Weak Form at every point of {x|f'(x) = 0} and thus at every
point of Z. Since {x|[f'(x) = 0} is a dense Gj (it’s the complement of the F, set E),
f fails the Weak Form on a residual set.

However, the following theorem shows that a differentiable function cannot fail
the Weak Form almost everywhere.

Theorem 1. If fis a continuous function on [a, b] that is differentiable on (a, b), then
f satisfies the Strong Form on a subset of [a, b] that has positive measure in every
subinterval.

Proof: Let [a, B] C [a, b]. We may assume that f is not linear on any subinterval
of [, B]since it would then obviously satisfy the Strong Form there. Let

h(x) = @c%w fora<x<p
f'(a) forx = a

Then A is continuous on [a, B8] and A([a, B8] is some nondegenerate interval
[r, s]. Since A can have only countably many local extrema we can pick u € (a, B)
so that A(u) is not a local extremum. Let ¢ be a point in (a, u) with f'(¢) = h(w).
Using p = (¢ + u)/2 we see that f'(c) is in the interior of A([p, B]). Call this
interior I. Let g be the restriction of f to the interval [a, p]. Then G = (g")~ (1)
# ¢ since it contains ¢ and thus A(G) > 0 by the Denjoy-Clarkson Property (the
inverse image under a derivative of an open interval is either empty or of positive
measure). For each x € G, there is a y € [p, B] with f'(x) =g'(x) = h(y) =
(f(y) = f(a))/(y — a). Since @ <x <y, f satisfies the Strong Form at x. [

As a final comment, we point out that a differentiable function can fail the
Strong Form on a set of positive measure and still satisfy the Weak Form on all of
(a, b). As an example we can simply extend our function g in (1) to the interval
[0, 4] as follows: Let

g(x) 0<x<1
G(x) = -g()(x—-2) 1<x<2
0 2<x<3
(x=3) 3<x<4

and set F(x) = [§G(¢) dt. Then F still fails the Strong Form on the set Z above
but satisfies the Weak Form on (0,4). This is because 0 < G = F' < 1 on (0,4)
while the difference quotients for F inside the interval (2,4) assume all values in
[0, 1.
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