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Abstract

The main theories of diffraction are brie¯y described
and their more important results compared. The
limitations of the geometrical theory are discussed and
the concept of extinction introduced. The main features
of the diffraction by a perfect crystal are brie¯y
reviewed: total re¯ection and Darwin width associated
with the Bragg gap, standing waves, anomalous absorp-
tion, ray tracing, plane-wave and spherical-wave
PendelloÈsung, polarization properties. Real crystals are
seldom perfect. They may be nearly perfect with small
strains and/or individual lattice defects faults or they
may be highly deformed with large strains and a high
density of defects. The diffraction by the former is
handled using extensions of the dynamical theory of
diffraction by perfect crystals using ray tracing. The
results are analytical in the case of a constant strain
gradient and are otherwise described by simulations
which can be compared to the experimental results. The
latter case is more dif®cult but can be approached by
more sophisticated theories such as that of Takagi and
Taupin.

1. Introduction

Diffraction of waves by crystals has permitted the
development of crystallography in the 20th century. It all
started with Ewald's thesis and his theory of re¯ection
and refraction, which relates the macroscopic properties
of dispersion and refraction in a crystal to the inter-
action of the propagating waves with a microscopic
distribution of resonators, that is with its atomic struc-
ture. The derivation does not depend on the wavelength
and it is this remark by him in January 1912 in answer to
a question by Laue that started off Laue's reasoning
and led to Friedrich & Knipping's decisive experiment.
It was promptly followed by Laue's geometrical theory
and Darwin's geometrical and dynamical theories
(Darwin, 1914a,b). Ewald's extension of his theory to
the case of X-rays (Ewald, 1916, 1917) shows that
refraction and re¯ection of light waves and X-ray
diffraction are essentially the same physical phenom-
enon.

The scope of diffraction physics is very wide, ranging
from the interaction of waves with matter to diffraction
theory for perfect and imperfect crystals, powders,
modulated structures, paracrystals etc., extinction
theory, X-ray optics, interferometry, imaging of
defects, . . . and only limited aspects will be broached
upon in this paper.

2. The theories of diffraction

2.1. Geometrical theory

The basis of Laue's `geometrical theory' of X-ray
diffraction is given in the very ®rst of the two papers that
gave the account of the discovery of X-ray diffraction
(Friedrich et al., 1912): the amplitude diffracted by a
three-dimensional periodic assembly of atoms is derived
by adding the amplitudes of the waves diffracted by each
atom, simply taking into account the optical path
differences between them, but neglecting the interaction
of the propagating waves and matter. This can be
expressed simply using Fourier transforms. The expres-
sion of the distribution of electronic density (or more
generally of diffracting centres) of a triply periodic
in®nite medium, �1�r�, can be written as the convolu-
tion of the electron density in one cell, �0�r�, by a triply
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periodic distribution of Dirac distributions located at the
nodes of the direct lattice. In practice, the crystal is not
in®nite, but limited in space and, if y�r� is a shape
function equal to 1 inside the medium and 0 outside, the
electronic density of the crystal is

��r� � �1�r�y�r� with �1�r� � �o�r� �
P1

i�ÿ1
��rÿ ri�;

�1�
where ri � uia� vib� wic is the position vector of the
origin of a cell (ui, vi and wi integers).

According to the geometrical theory, the total scat-
tered amplitude is the sum of the amplitudes scattered
by each diffracting centre, simply taking into account
their optical path differences. If we assume a continuous
distribution of diffracting centres, ��r� d�, the distribu-
tion of diffracted amplitude is given in reciprocal space
by

A�DK� � R
��r� exp�ÿ2�iDK � r� d�; �2�

where the integration is over the whole volume of the
diffracting medium, DK � Kh ÿ Ko is the diffraction
vector (Fig. 1) and the amplitude diffracted by a
diffraction centre is taken to be unity. Substituting the
expression for ��r�, and noticing that, since y�r� is 0
outside the crystal, the limits of integration can be taken
as in®nite, the expression for A�DK� is seen to be a
Fourier transform. Using the properties of Fourier
transforms, it follows that

A�DK� � Vÿ1
P
h

FhklY�DKÿ h�; �3�

where V is the volume of the unit cell, the sum is over all
reciprocal-lattice vectors h,

Fhkl �
R1
ÿ1

�o�r� exp�2�ih � r� d�

is the usual structure factor and Y�DK� is the Fourier
transform of the shape function, F�y�r��. This expression
shows that the scattered amplitude is distributed around
each reciprocal-lattice point and that it is given by the
Fourier transform of the shape function, weighted by the
structure factor. This result calls for a certain number of
remarks:

(i) The ®ne structure of each diffraction spot depends
only on the size and shape of the crystal.

(ii) The diffracted amplitude does not depend on the
reaction of matter on the wave; this is because geo-
metrical theory assumes that the amplitude incident on
every diffracting centre is the same; this assumption can
only be expected to be valid when the interaction is very
weak and this point will be further discussed below.

(iii) Y�DKÿ h� is proportional to the volume of the
crystal and the scattered amplitude increases to in®nity
when the crystal increases towards in®nity. This is not
physically possible because it violates the conservation
of energy and is due to the assumption just recalled
(Darwin, 1914b).

(iv) The expression for the intensity depends on the
shape of the crystal. It is, in re¯ection geometry, for a
plane-parallel plate and for unpolarized radiation (see,
for instance, James, 1950):

Ih �
R2�2�1 � cos2 2��

2 sin2 �
V2jFhklj2

sin�2�kt cos ����
2�kt cos ���

� �2

;

Fig. 1. Diffraction according to the geometrical theory. (a) Direct
space, Laue geometry; (b) direct space, Bragg geometry; (c)
reciprocal space. OH � h: reciprocal-lattice vector; La: Laue point
(centre of the Ewald sphere); OLa � Ko: incident wave (OLa � k);
HLa � Kh: re¯ected wave (HLa � k); these both satisfy the Bragg
condition.

Fig. 2. Comparison of the rocking curves according to the dynamical
and the geometrical theory, re¯ection geometry; silicon, Mo K�,
220, assuming zero absorption. Blue curves: dynamical theory with
t � 0:3�B; �B; 1, respectively (�B � 6:82 mm); red curves:
geometrical theory, with t � 0:3�B and �B, respectively, normal-
ized and centred at the same angular position as the corresponding
curve given by dynamical theory; for t � 1, the geometrical theory
gives a Dirac distribution.
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where �� is the difference between the incident angle
and the Bragg angle and R is the classical radius of the
electron. Its full width at half-maximum (FWHM) is
�geom � 0:44295�=t cos �. Its maximum and the inte-
grated intensity under the rocking curve are propor-
tional to the square of the structure factor. The rocking
curve is represented in Fig. 2 for two different crystal
thicknesses (for comparison purposes with dynamical
theory, these thicknesses are given in terms of a
parameter, �B, de®ned in the next section).

If the crystal is very large, the diffracted intensity is
concentrated at the reciprocal-lattice points and the
diffraction geometry is as is represented in Fig. 1: there
is re¯ection for one incident wavevector only,
OLa � Ko, which satis®es Bragg's law, where La is the
centre of the Ewald sphere passing through the reci-
procal-lattice points O and H.

2.2. Darwin's dynamical theory

In the second of his fundamental papers, Darwin
(1914b) took into account the interaction between the
lattice planes and the propagating waves: at each lattice
plane, the incident wave is both re¯ected and trans-
mitted; each of the waves just generated is in turn
re¯ected and transmitted each time it crosses a lattice
plane. Darwin showed that the balance of transmitted
and re¯ected amplitudes can be described at each lattice
plane by recurrence equations. By solving this set of
equations, it is possible to obtain the expression of the
amplitue re¯ected at the surface of the crystal. If the
crystal is semi-in®nite (of in®nite thickness) and not
absorbing, one ®nds that, for a very narrow angular
range at the centre of the re¯ection domain, this am-
plitude is pure imaginary. The corresponding re¯ected
intensity is equal to 1, this is the total re¯ection domain;
the rocking curve presents the famous top-hat shape
(Fig. 2). Its angular width is proportional to the structure
factor and so is the integrated intensity. The theory was
extended to the case of absorbing crystals by Prins
(1930), who showed that there is no longer a total
re¯ection domain. When the crystal thickness is ®nite,
there is also no longer total re¯ection even for a non-
absorbing crystal (Fig. 2) and, when the thickness
becomes very small, the expression for the integrated
intensity, Ihi�dyn:�, tends towards that obtained with the
geometrical theory, Ihi�geom:�. It is, for a symmetrical
re¯ection:

Ihi�dyn:� � Ihi�geom:� tanh��t=�B�
�t=�B

; �4a�

where t is the crystal thickness and

�B �
�V sin �

R� Cj j�FhklF �h �k�l�1=2
�4b�

is called the extinction distance; jCj � 1 or cos 2� for �
(normal to the diffraction plane) and � polarization

(parallel to the diffraction plane), respectively, F �h �k�l is
the structure factor associated with the �h �k�l re¯ection.

The coef®cient tanh��t=�B�=��t=�B� tends towards 1
when t=�B tends towards zero. For instance, it is equal
to 0.968, 0.992 and 0.999 for t=�B � 0:1, 0.05 and 0.01,
respectively. This shows that, for the approximation of
the geometrical theory to be better than 3%, the crystal
thickness must be smaller than one tenth of the extinc-
tion distance. For a given crystal thickness, the longer
the extinction distance, the better the geometrical
theory approximation is.

Darwin's work had been limited to the re¯ection
geometry but it was adapted to the transmission
geometry by Borie (1967).

2.3. Extinction

Darwin (1914a,b) compared the intensities calculated
with his dynamical theory with the experimental
measurements by Moseley & Darwin (1913) on rock salt
and found them in profound disagreement both with
respect to the value of the re¯ected intensity and with
respect to the width of the re¯ection domain which was
very much larger than predicted. He was so certain of his
theoretical derivation that he concluded that this
disagreement was certainly due to the imperfections of
the crystal. This led him to develop his model of
extinction and of diffraction by a crystalline conglom-
erate (Darwin, 1922). This model was further re®ned by
Bragg et al. (1926) with the concept of the mosaic crystal.
They considered that real crystals are made of a mosaic
of small blocks more or less misoriented with respect to
one another. The geometrical theory applies to the very
thin blocks only. When their thickness is larger, their
re¯ectivity becomes closer to that predicted by the
dynamical theory and a correction must be applied,
which is given by equation (4a); this is the primary
extinction. The incident beam crosses many blocks. If
their misalignment is larger than the width of the
rocking curve of the individual blocks, they re¯ect
different fractions of the incident beam and the total
intensity is the sum of the intensities re¯ected by the
blocks. But if two successive blocks are nearly parallel,
part of the incident intensity is re¯ected off by the ®rst
block before it reaches the second one. This is the origin
of the secondary-extinction correction, which is taken
into account by an arti®cial absorption correction. If the
crystal is made of a mosaic of widely misoriented very
thin crystals, the geometrical theory applies and the
crystal is said to be ideally imperfect. This model is of
course very crude and in general does not correspond
physically to the nature of the imperfections in crystals.
It was improved by Hamilton (1957) and by Zachariasen
(1967, 1968) who introduced energy-transfer equations
to take into account the coupling between the beams
transmitted and diffracted by successive blocks. They
involve both the mosaic spread between the blocks and
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the size of the blocks. The model was further re®ned by
Becker & Coppens (1974, 1975), whose formalism is well
adapted to many experimental results (Palmer & Jauch,
1995). A comparison of the extinction theories based on
the Darwin mosaic model is given in Sabine (1988).

Another and more modern approach has been used
by different authors. It is based on the Takagi±Taupin
equations which generalize the fundamental equations
of the dynamical theory for any kind of wave and allow
for deformations of the crystalline lattice (see x4.2);
these equations are amplitude-transfer equations.
Different theories may be mentioned, such as Kato's
statistical theory (Kato, 1991, 1994) and Kulda's random
elastic deformation theory (Kulda, 1987, 1991). Reviews
and comparison with experiment are given in Schneider
et al. (1992) and in Takama & Harima (1994).

2.4. Ewald's and Laue's dynamical theory

One of main results of Ewald's dynamical theory is
the rediscovery of the total-re¯ection domain. But it has
a much wider scope than Darwin's and it was far ahead
of its time. Of utmost importance is the introduction of
the notion of wave®elds (Ewald, 1913). The optical ®eld
that propagates through the crystal and excites the
dipoles is a sum of plane waves, called the wave®eld,
whose wavevectors can be deduced from one another by
translations in reciprocal space:

E � Eo exp�ÿ2�iKo � r� � Eh exp�ÿ2�iKh � r�
� Eg exp�ÿ2�iKg � r� � . . . �5�

with Kh � Ko � h, Kg � Ko � g, where h � OH and
g � OG are reciprocal-lattice vectors (Fig. 3 ± only two
reciprocal-lattice points, O and H, are represented). The
Bloch wave introduced much later by Bloch in the
theory of electrons in solids (Bloch, 1928) corresponds
to exactly the same notion. The wave®eld is character-
ized by its tiepoint, which is the common extremity of
the wavevectors, Ko � OP, Kh � HP, Kg � GP etc.

In contrast to Ewald's theory which discusses the
interaction of an electromagnetic wave with a distribu-
tion of discrete dipoles, von Laue's basic assumption

(von Laue, 1931, 1960) is to consider that the electric
negative and positive charges are distributed in a
continuous way throughout the volume of the crystal.
Since the crystal must be neutral, they cancel out and the
local electric charge and density of current are equal to
zero. The electric ®eld, E, the electric displacement, D,
the magnetic ®eld, H, and the magnetic induction, B, are
related by Maxwell's equations and by the material
relations that describe the reaction of the medium to the
electromagnetic ®eld:

D � "E � "0�1 � ��E �6�
B � �H;

where " and � are the dielectric constant and the
magnetic permeability of the medium, respectively, "0

the dielectric constant of vacuum and � the electric
susceptibility or polarizability of the medium. The
magnetic interaction of X-rays with the electron distri-
bution is very small and is neglected in classical dy-
namical theory; � is then simply replaced by �0 ,
magnetic permeability of vacuum. This interaction was,
however, observed as early as 1972 using a conventional
X-ray tube (de Bergevin & Brunel, 1972), but is now
studied with synchrotron radiation (for a review, see
Lovesey & Collins, 1996).

The polarizability is classically shown to be propor-
tional to the electronic density and is therefore triply
periodic. The key point of the dynamical theory is the
dispersion equation. From both Ewald's and Laue's
formulations, it can be shown that the amplitude of any
one wave can be expressed in terms of the amplitudes of
all the waves in the wave®eld with the following relation:

Eh � �K2
h=�K2

h ÿ k2��P
h0
�h0Eh0 �h�; �7�

where �h � ÿR�2jCjFhkl=��V� is the Fourier coef®cient
of the polarizability, k � 1=�, Eh0 �h� is the projection of
Eh0 on the plane normal to the wavevector Kh.

This is a set of linear equations. Its solution is
nontrivial if the associated determinant is zero. The
corresponding secular equation is the dispersion equa-
tion. Each equation (7) contains a sum over an in®nite
number of terms. The factors K2

h=�K2
h ÿ k2�, called

resonance factors by Ewald, are, however, only non-
negligible when the wavenumber Kh is very close to the
wave number in vacuum, k. If only one term is non-
negligible, then only one wave propagates in the
medium, with wavenumber nk (n is the index of
refraction); the extremity of the wavevector lies on a
sphere of centre O and radius nk. If there are two, two
waves propagate, with wavevectors OP � Ko and
HP � Kh (Fig. 3) and there are two reciprocal-lattice
nodes lying very close to the Ewald sphere. This is the
most frequently studied case but the situation when
there are more terms (the n-beam case) is also very

Fig. 3. Diffraction according to the dynamical theory: OP � Ko and
HP � Kh are the wave vectors inside the crystal. Solid curve:
dispersion surface; P: tiepoint. La: Laue point; OLa � k: wave-
number in vacuum; Lo: Lorentz point; OLo � nk: wavenumber in
the crystal (n is the index of refraction).
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interesting and is discussed in the paper by Chang (1998)
in this issue.

The dispersion equation relates the lengths of the
wavevectors of the various waves in the wave®eld, Ko,
Kh etc.; it is the equation of the locus of the tiepoint, P,
which is a connecting surface between the spheres
centred at O, H etc. and of radii nk, called dispersion
surface. It is represented schematically on Figs. 3 and 4
in the two-beam case. The main properties of the
dispersion surface are the following:

(i) The dispersion surface is a surface of revolution
around OH and its intersection with the diffraction
plane, Ko, Kh is a hyperbola whose asymptotes are the
tangents to the sphere of centres O and H and of radii
nk; it has two branches, labelled 1 and 2, branch 1 being
on the same side as the Laue point (Fig. 4).

(ii) The dispersion surface is analogous to the band
diagram in the theory of solids; the former is a constant
energy surface and the latter represents the variations of
the energy with position in reciprocal space, but they
proceed from a similar derivation. The separation
between the branches of the dispersion surface is
equivalent to the gap between two successive bands and
the diameter

GB � Ao2Ao1 �
R�jCj�FhklF �h �k�l�1=2

�V cos �
�8a�

of the dispersion surface is sometimes called for that
reason Bragg gap; it is larger, the larger the structure
factor is, that is the stronger the interaction of the waves
with matter, and the longer is the wavelength. Its
inverse, �L, is the PendelloÈsung distance in the
symmetric Laue case and is related to the extinction
distance de®ned for the Bragg case (4b) by:

�L � Gÿ1
B � �B cot �: �8b�

(iii) The propagation direction of a wave®eld, indi-
cated by the Poynting vector, S, is along the normal to
the dispersion surface at the tiepoint.

(iv) An incident plane wave excites in the crystal two
wave®elds whose tiepoints are obtained by applying
boundary conditions on the wavevectors at the entrance
surface. In the transmission geometry or Laue case (Fig.
1a), their tiepoints lie, one on branch 1 and the other one
on branch 2; as the crystal is rocked through the
re¯ection domain, both branches of the dispersion
surface are therefore excited simultaneously. In the
re¯ection geometry or Bragg case (Fig. 1b), the tiepoints
of the two wave®elds lie on the same branch of the
dispersion surface. One of them is not physically
meaningful if the crystal is very thick, but both of them
are for a thin crystal, one of the wave®elds being back-
re¯ected at the bottom surface of the crystal. As the
crystal is rocked through the re¯ection domain one goes
through three zones: in the ®rst one, the tiepoint(s) lie(s)
on one branch of the dispersion surface; in the second
one, the tiepoint(s) lie(s) within the Bragg gap and

is(are) imaginary; and in the third one the tiepoint(s)
lie(s) on the second branch. If the crystal is very thick,
there is total re¯ection when the physically meaningful
tiepoint lies within the Bragg gap. The angular width of
the domain of total re¯ection is therefore proportional
to the Bragg gap. If the crystal is thin and two wave®elds
are excited, these interfere, giving rise to the oscillations
in the rocking curves which can be seen in Fig. 2 (equal-
orientation PendelloÈsung fringes).

(v) Expression (8a) for the Bragg gap is proportional
to the polarization factor jCj � 1 or cos 2� for � and �
polarization, respectively, and this shows that there are
two sheets of the dispersion surface according to the
polarization (Fig. 4). The index of refraction is therefore
different according to the direction of polarization and
this is the equivalent of birefringence in optics. An
incident plane-polarized wave will generate in the
crystal two coherent waves propagating with different
velocities which combine to produce an elliptically
polarized wave. This is true even far from the centre of
the re¯ection domain and is used to produce phase
plates (Giles et al., 1994; Malgrange, 1996).

(vi) The width of the total re¯ection domain or
Darwin width is

�dyn �
�j
j1=2

�B cos �
� j
j1=2GB

k sin �
� 2dhklj
j1=2GB; �9�

where 
 is a geometrical factor depending on the
asymmetry of the re¯ection and dhkl is the distance
between re¯ecting planes. It is proportional to the Bragg
gap, very small, of the order of a few seconds of arc and
is smaller, the smaller the structure factor and the
smaller the wavelength; it is also strongly dependent on

Fig. 4. Dispersion surface. P: tiepoint of a wave®eld. S: Poynting
vector of that wave®eld; Ao1, Ao2: vertices of the dispersion surface.
Solid line: � polarization (C � 1); dashed line: � polarization
(C � cos 2�).
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the asymmetry of the re¯ection and by combining
various re¯ections on several crystals (cut or not from
the same monolithic block) it is possible to produce
beams of any width and shape; this is the basis of X-ray
optics for synchrotron radiation described by Hart &
Berman (1998) in this issue.

The main features of the diffraction by a perfect
crystal are described in x3.

2.5. Comparison between the results of the geometrical
and the dynamical theories

In practice, the only useful information provided by
the geometrical theory is the diffracted intensity. From
the shape of the rocking curve (its width, its asymmetry),
information can be deduced relative to the particle size,
the distribution of twin and stacking faults, order±
disorder in the distribution of atomic positions (for a
review, see Warren, 1969). For structure determination,
it is the integrated intensity that is useful.

It is interesting to compare the results of the
geometrical and dynamical theories. In Fig. 2, rocking
curves are compared according to the two theories in
re¯ection geometry for a perfect crystal of increasing
thickness. It can be seen that they become identical for
values of the crystal thickness that are a fraction of �B

(between 1=10 and 1=3, according to how accurate one
wishes to be) but, as the crystal thickness increases
towards in®nity, the FWHM of the rocking curve
according to the geometrical theory tends towards 0
while that of the rocking curve according to the dy-
namical theory saturates at a value equal to the Darwin
width.

A similar comparison can be performed for the inte-
grated intensity. It is given by (4a) in re¯ection
geometry. In the Laue case, and for a nonabsorbing case,
the integrated intensity has been calculated by von Laue
(1960) using dynamical theory:

Ihi �
R�2jC�hj�FhklF �h �k�l�1=2

2V sin 2�

Z 2�t�ÿ1
L

0

J0�z� dz;

where J0�z� is the zeroth-order Bessel function.
When the ratio of the crystal thickness to the

PendelloÈsung distance, t=�L � tGB, tends towards zero,
this expression tends towards

Ihi �
R�2jCj�FhklF �h �k�l�1=2

2V sin 2�
2�t�ÿ1

L � R2�3C2jFhklF �h �k�ljt
V2 cos � sin 2�

;

which is identical to the expression obtained with the
geometrical theory. Fig. 5 compares the variations of the
integrated intensity obtained with the two theories.

Equation (4a) and Figs. 2 and 5 show that the
approximation of the geometrical theory is more and
more satisfactory as the Bragg gap (8a) decreases. The
inverse of the Bragg gap is a length in direct space that
can be considered as a yardstick with which one can
determine whether the re¯ected intensity according to

the geometrical theory is a good approximation. By
varying the diffraction conditions, one varies the length
of this yardstick and, for a given thickness, the primary-
extinction correction.

The importance of the inverse of the Bragg gap, �L,
as a yardstick can be readily understood by remem-
bering that, in the geometrical theory, there is only one
position for the tiepoint: the Laue point (Fig. 1); if one
takes refraction into account, then it would be the
Lorentz point, Lo (Fig. 3). As the Bragg gap tends
towards zero, the two vertices of the dispersion surface,
Ao1 and Ao2 (Fig. 4), tend towards each other until the
dispersion surface is reduced to the Lorentz point. This
can be achieved either by reducing the interaction
(going to higher-order re¯ections or to neutrons instead
of X-rays) or by going towards high energies (small
wavelengths). The geometrical theory corresponds
therefore to a situation where the crystal does not react
on the waves, and is what Ewald called an empty crystal.

Example. The fact that the `apparent' perfection of a
crystal depends on the conditions of diffraction is illus-
trated, for instance, by the following experience by
Freund (1990). He studied the variation with wavelength
of the integrated intensity of the 222 re¯ection of several
copper crystals with different degrees of perfection:
samples B1 to B4 were Bridgman crystals with dis-
location densities 2 � 104, 4 � 104, 7 � 104 and
2 � 107 dislocations cmÿ2, repectively, and sample C1

was a dislocation-free Czochralski crystal (Fig. 6). The
wavelength ranged from 0.03 to 1.66 AÊ . Sample C1

behaves like a perfect crystal for wavelengths greater
than 0.1 AÊ but seems quite imperfect for wavelengths
smaller than about 0.07 AÊ . Samples B1, B2 and B3

behave almost like a perfect crystal for wavelengths
above the K-absorption edge of copper, whereas for a
wavelength of about 0.01 AÊ they behave like an ideal
mosaic crystal, with every intermediary stage in
between. Sample B4 behaves essentially like a mosaic
crystal. These results can be interpreted with the remark
of the preceding paragraph. As the wavelength and the
diameter Ao2Ao1 of the dispersion surface becomes
shorter, the length of the yardstick increases and the

Fig. 5. Variations of the integrated intensity with crystal thickness in
the transmission case and zero absorption. Solid line: dynamical
theory; dashed line: geometrical theory.
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`coherent' domains in the samples appear smaller and
smaller: the samples behave more and more like ideally
imperfect crystals.

3. Diffraction by a perfect crystal

The diffraction properties of waves by crystals result
from the properties of the wave®elds. If the notion of
wave®eld was introduced by Ewald who predicted their
elementary properties, their physical existence was
proved experimentally much later, through three deci-
sive observations: anomalous absorption, PendelloÈsung
and double refraction.

3.1. Standing waves ± anomalous absorption

The intensity of the wave®eld described by (5) is, in
the most usual two-beam case

jEj2 � jEoj2 � jEhj2 � 2jEoEhj cos 2��h � r�	�;
�10�

where 	 is the phase associated with Eh=Eo. von Laue
noted that this expression shows that the two waves
interfere and produce a set of standing waves. The term
cos 2��h � r�	� expresses that the nodes lie on planes
parallel to the lattice planes and that their periodicity is
equal to the distance 1=h � dhkl, where dhkl � d=n, d is
the lattice plane spacing and n the order of the re¯ec-
tion. If the origin is taken on an atomic plane, the phase
	 is equal to � for wave®elds associated with branch 1 of
the dispersion surface and equal to 0 for wave®elds
associated with branch 2 of the dispersion surface. The
nodes of standing waves therefore lie on the atomic
planes for a wave®eld associated with branch 1 of the

dispersion surface while it is the antinodes (maxima of
electric feld) that lie on the atomic planes for wave®elds
associated with the other branch of the dispersion
surface (Fig. 7). Borrmann pointed out that the former
would undergo a very small absorption and penetrate
through thick crystals while the latter would be
absorbed out very rapidly. This is the phenomenon of
anomalous absorption, or Borrmann effect, discovered
by Borrmann (1941, 1950) and calculated by von Laue
(1949). The anomalous-absorption effect is maximum at
the centre of the re¯ection domain: the tiepoint of the
wave®eld with a minimum absorption coef®cient is Ao1

and the tiepoint of the wave®eld with a maximum
absorption coef®cient is Ao2. For instance, for a ger-
manium crystal and Mo K� radiation, the normal
absorption coef®cient is �o � 320 cmÿ1 and the
minimum effective absorption coef®cient is
�min � 11:5 cmÿ1 (Ludewig, 1969).

It has been noted in x2.4 that the dispersion surface
has different sheets for the two directions of polariza-
tion. The theory shows that the coef®cient of anomalous
absorption is also different. It is therefore possible to
make an X-ray polarizer by using a suf®ciently thick
crystal (Cole et al., 1961).

A very interesting and now very developed applica-
tion of the standing waves formed by wave®elds was
proposed by Batterman (1964, 1969): in the Bragg case,
as one rocks the crystal through the re¯ection domain,
the tiepoints lie ®rst on branch 1 and then on branch 2;
the phase 	 varies by �, and the system of nodes and
antinodes glides by half a lattice plane distance inside
the crystal. When an antinode of an electric ®eld passes
through an atom, there is a high absorption as has been
noted and, therefore, emission of X-ray ¯uorescence and
photoelectrons. If this emission is recorded simulta-
neously with the angular position of the crystal, the
position of the atom within the unit cell along the
normal to the re¯ecting plane can be measured. This
effect, which was ®rst observed by Golovchenko et al.

Fig. 7. Borrmann effect: the standing-wave nodes lie on the atomic
planes for branch 1 of the dispersion surface (full lines). The
corresponding wave®elds undergo small absorption. For branch 2,
the antinodes lie on the atomic planes (dotted lines) and there is a
high absorption. In a thick absorbing crystal, the path of the
wave®elds is along the lattice planes.

Fig. 6. Variations with wavelength of the integrated intensity of the 222
re¯ection from several copper crystals of different degrees of
perfection; samples B1 to B4 are Bridgman crystals with dislocation
densities 2 � 104, 4 � 104, 7 � 104 and 2 � 107 dislocations cmÿ2,
repectively, and sample C1 is a dislocation-free Czochralski crystal;
the markers represent the experimental values, the thick solid lines
represent the theoretical values for the mosaic and the perfect
crystal, respectively (after Freund, 1990).
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(1974), is used to record the position of impurities at
crystal surfaces and interfaces and to study the sructure
of surfaces and interfaces (for reviews, see Bedzyk, 1988;
Malgrange & Ferret, 1992; Zegenhagen, 1993; Lago-
marsino, 1996; Patel, 1996).

3.2. Spherical waves ± PendelloÈsung

In the two-beam case, the incident wave generates
two wave®elds inside the crystal whose re¯ected waves
are: Eh1 exp�ÿ2�iKh1 � r� and Eh2 exp�ÿ2�iKh2 � r�. In
the regions where they overlap, they interfere and the
resulting intensity is

jEh1j2 � jEh2j2 � 2jEh1jjEh2j cos�2��Kh1 ÿ Kh2� � r� '�;

where ' is the phase difference between jEh1j and jEh2j.
There is thus a periodic variation of the intensity of

the re¯ected wave as was shown by Ewald (1917) and
which he called the oscillating solution, or PendelloÈsung,
of the dynamical theory. If P1 and P2 are the tiepoints of
the two wave®elds, the period of the oscillations is

� � P2P1
ÿ1 � jKh1 ÿ Kh2jÿ1:

For instance, in the Laue symmetrical case, in the middle
of the re¯ection domain, the two tiepoints are A02 and
A01 (Fig. 4) and the period is the PendelloÈsung distance,
�L [equation (8b)].

The PendelloÈsung oscillations were only observed
42 years after Ewald's prediction, by Kato & Lang
(1959) and in a slightly different context. They observed
equal-thickness fringes on projection topographs (Lang,
1959) along the edges of a wedge-shaped silicon crystal
which Kato interpreted as PendelloÈsung fringes due to
the interferences of wave®elds produced by a spherical
wave. Ewald's (and Laue's) theory had been derived in
the case of an incident plane wave but such a wave is not
produced naturally for X-rays. In those pre-synchrotron
days, X-rays were produced as spherical waves by X-ray
tubes. The dynamical theory was extended to incident
spherical waves by Kato for both nonabsorbing (Kato,
1960, 1961) and absorbing crystals (Kato, 1968).

PendelloÈsung fringes were later observed in the
rocking curves of thin crystals using a pseudo-plane
wave as incident beam. These observations were made
both in the re¯ection geometry (Batterman & Hilde-
brandt, 1968) and in the transmission geometry (Lefeld-
Sosnowska & Malgrange, 1969).

The precise measurement of the period of PendelloÈ -
sung fringes has been used by a number of authors to
determine with high accuracy the structure factor of
very perfect crystals such as quartz, germanium and
silicon (see, for instance, Yamamoto et al., 1968; Hart &
Milne, 1969; Kato, 1969; Bonse & Teworte, 1980;
Deutsch & Hart, 1985; Graf & Schneider, 1986; Saka &
Kato, 1986).

3.3. Ray tracing: Borrmann triangle, double refraction of
X-rays

It was mentioned in x2.4 that one of the important
properties of the wave®elds is that their direction of
propagation, given by the Poynting vector, is along the
normal to the dispersion surface (von Laue, 1952). For
an incident plane wave that, by de®nition, has an in®nite
lateral extension, this is dif®cult to check. Real waves,
whichever way they have been produced or conditioned
by optical systems, always have a certain divergence and,
in dealing with their propagation, one has to reason
with wavepackets. It is well known in optics that in a
dispersive medium the direction of propagation of the
energy of a wavepacket is along the normal to the
surfaces of indices. For X-ray diffraction, the dispersion
surface plays the same role and the direction of propa-
gation is indeed along the normal to the dispersion
surface (Ewald, 1958; Wagner, 1959). If the divergence
of the incident beam is wider than the angular width of
the re¯ection domain, the whole dispersion surface is
excited and there is a whole fan of wave®eld trajectories
within the triangle of angle 2� between the incident and
the re¯ected directions as is shown in Fig. 8 in trans-
mission geometry: this is the Borrmann fan, or Borr-
mann triangle (Borrmann, 1959). A very important
consequence is the phenomenon of angular ampli®ca-
tion: while the angular width of the fan of wavevectors
exciting the whole dispersion surface is of a few seconds
of arc only, that of the fan of the corresponding trajec-
tories is of several degrees (twice the Bragg angle). This
ampli®cation ratio applies to any wavepacket within the
Borrmann triangle: if �� is the angular width of the
corresponding wavevectors, the angular width �� of the
associated trajectories is �� � A��. The value of this
ampli®cation ratio, A, depends on the position of the
tiepoint on the dispersion surface and varies from 104 or
more at the centre of the dispersion surface to 1 far from
the re¯ection domain.

Two methods were used in the early days to isolate
wavepackets and to determine their direction of
propagation. The ®rst one is due to Borrmann. It was

Fig. 8. Borrmann triangle; Ko: incident direction; Kh: re¯ected
direction.
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mentioned in x3.1 that anomalous absorption is most
important for the wave®elds whose tiepoints are at the
vertices of the dispersion surface, A02 and A01. Their
propagation direction is along the normal to the
dispersion surface, which, for these points, is parallel to
the lattice planes. For a very high value of �ot (t crystal
thickness) out of the whole Borrmann fan, the only
wave®elds that will go through the crystal are those
whose tiepoints are very close to A01 and whose direc-
tion of propagation is nearly parallel to the lattice planes
(Fig. 7). The crystal then acts as a waveguide. This
observation by Borrmann (1954) was a direct proof of
the existence of the wave®elds as a physical reality and
not merely as a mathematical concept.

The second method consisted in the observation by
Authier (1960) of the double refraction predicted by
Borrmann (1955, 1959). It was noted in x2.4 that an
incident plane wave excites four wave®elds inside the
crystal, two for each direction of polarization; this is
what Borrmann called Vierfachbrechung. The paths of
the wave®elds corresponding to the two directions of
polarization are too close to be separated but it is
possible to observe a double refraction. In the experi-
ment by Authier (1960), a double-crystal setting was
used (Fig. 9). The ®rst crystal is thick and not too
absorbing. A slit S enables a narrow wavepacket to be
isolated from the beam coming out of the base B1C1 of
the Borrmann triangle of this ®rst crystal. Owing to the

angular ampli®cation, the divergence of this wavepacket
is very much smaller than the width of the rocking curve
and it can be considered as a pseudo-plane wave. It is
incident on a second crystal of the same material
(silicon), set for the same Bragg re¯ection. It excites two
wave®elds with different paths in this second crystal and,
because the lateral expansion of the wavepacket is
suf®ciently small, the paths can be separated on a
photographic plate placed outside the exit surface of the
crystal. By rocking the crystal slightly, the angle of
incidence of the wavepacket could be varied and
therefore also the paths of the wave®elds excited in the
second crystal. It was thus possible to con®rm the
physical reality of the wave®elds and to trace their paths
in the crystal (ray tracing). The same method was used
for the ®rst observation of plane-wave PendelloÈsung
fringes (Malgrange & Authier, 1965). The beam coming
from the slit is incident on a thick wedge-shaped crystal;
where the second crystal is thin enough, the paths of the
two wave®elds overlap and PendelloÈsung fringes are
observed, while, where the crystal is thicker, the paths of
the wave®elds separate and no fringes are observed (Fig.
10).

3.4. Applications of dynamical diffraction by perfect
crystals

Several applications of dynamical diffraction have
already been mentioned: accurate determination of
structure factors using measurement of PendelloÈsung
fringes, standing-wave studies of the structure of
surfaces and interfaces and of the adsorption of im-
purities at surfaces and interfaces, design of polarizers
and of phase plates. Other applications are described in
the papers by Chang (1998) and by Hart & Berman
(1998) in this Special Issue.

Another very interesting application is the X-ray
interferometer developed by Bonse & Hart (1965). It
has many applications, such as phase-contrast micros-
copy, measurement of lattice parameters on an absolute
scale, determination of the Avogadro number or,

Fig. 9. Double refraction. Ko1, Kh1: wavevectors of wave®eld 1; Ko2,
Kh2: wavevectors of wave®eld 2; S: slit.

Fig. 10. Plane-wave PendelloÈsung fringes. The second crystal in the
setting of Fig. 9 is wedge-shaped; where it is thin enough, the paths
of the two wave®elds overlap and interference fringes are produced;
where it is thicker, the paths separate and there are no longer
fringes. Ko1, Ko2 indicate the traces of the refracted beams for
branch 1 and branch 2 wave®elds, respectively; Kh1, Kh2 indicate the
traces of the re¯ected beams for branch 1 and branch 2 wave®elds,
respectively (after Malgrange & Authier, 1965).
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conversely, measurement of displacements on a nano-
metre scale, the `AÊ ngstroÈ m ruler' (Hart, 1968),
measurement of very minute strains etc. For an intro-
duction to the principles of X-ray and neutron inter-
ferometers, see Colella (1996), and for a review of their
design and applications, see Bowen (1996).

4. Diffraction by imperfect crystals

Since the early days when the calculated diffracted
intensities were ®rst compared with experimental values,
it was realised that most crystals contain imperfections,
some being nearly perfect, such as calcite and quartz, the
others more or less highly imperfect. It was not until
silicon and germanium were grown for their applications
as semiconductors that crystals of a high degree of
perfection were obtained. For structure-determination
purposes, it is usually better to use crystals imperfect
enough for the geometrical theory to be applicable and
the extinction corrections to be negligible. If this is not
the case for some of the more intense re¯ections, it is
necessary to have a good model for the extinction
corrections or to go to high-energy X-rays where these
corrections will be less important. But for many appli-
cations of crystals as high-technology materials, good-
quality crystals must be used and it is usually necessary
to characterize the nature and the distribution of
defects. For this purpose, one must develop extensions
of the diffraction theory for imperfect crystals. One may
distinguish three cases:

(i) The crystal is only slightly deformed (regime I).
The notions of dispersion surface and of wave®elds as
they were de®ned in xx2.4 and 3 are still valid. The paths
of the wave®elds in the deformed materials are bent as
are rays of light in a region of varying index of refraction
(the mirage effect); the variations of re¯ected intensity
are calculated using `ray theories' based on the tradi-
tional dynamical theory (x4.1).

(ii) The crystal is strongly deformed, but there is a
model to describe the distribution of strain (regime II).
When the strain gradient becomes very large, the
divergence of wavepackets increases, as in light optics,
because diffraction effects occur (in the optical sense of
the term); this is accompanied for X-rays by `interbranch
scattering' (creation of new wave®elds on the opposite
branch of the dispersion surface) and the ray theories
are no longer valid. New forms of the dynamical
theories, such as those developed by Takagi (1962, 1969)
and Taupin (1964) must be used; their principle is brie¯y
described in x4.2. If one applies a strain gradient to a
perfect crystal and increases it, passing progressively
through regimes I and II, one may span the whole
domain of variations of intensities, from the values given
by the perfect-crystal dynamical theory to the values
given by geometrical theory for the `ideally imperfect'
crystal; the strain distribution may be determined by
comparison between theory and experiment.

(iii) The crystal is strongly deformed but the distri-
bution of defects is so complicated that it cannot be
modelled: statistical dynamical theories must be used.

4.1. Ray tracing in slightly deformed crystals

It is well known in light optics that, if a wavepacket
propagates in a region where the index of refraction n
varies, the direction of the main vector of the wave-
packet varies accordingly. Its variation

�k � rrrn
�! �11�

ensures the continuity of the tangential component of
the wavevector as the beam crosses regions of different
indices of refraction. The direction of propagation of the
wavepacket is along the normal to the surface of indices
and can be found by applying Fermat's principle.

Penning & Polder (1961) made the hypothesis that
when the deformation of the crystal is small enough it is
possible to consider at each point a local perfect crystal,
asymptotic to the real deformed one to which dynamical
theory applies.

Local strain in a deformed crystal is due partly to a
rotation of the lattice planes and partly to a variation of
the lattice parameter. The path of the wave®elds inside
the crystal and their intensity are determined by the
local variation of their departure from Bragg's angle,
called effective misorientation, ��. It can be expressed in
reciprocal space (Authier, 1966):

�� � ÿ�h � sh=k sin 2� �12�

Fig. 11. Ray theory. The dispersion surface after a deformation is
represented by dotted lines. P: tiepoint before deformation; P 0:
tiepoint after deformation; �h: variation of the reciprocal-lattice
vector.
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where sh is a unit vector in the re¯ected direction and

�h � ÿr�h � u�r�� �13�
is the local variation of the reciprocal-lattice vector; u�r�
is the local displacement ®eld associated with the strain.

To a ®rst approximation, the structure factor and
therefore also the diameter of the dispersion surface are
not affected by the deformation. As the Lorentz point
necessarily lies on a sphere centred at the origin O of the
reciprocal space, which is invariant, and with radius nk,
that is, in practice, on its tangential plane To, the effect of
the deformation is simply to translate the dispersion
surface along To, the shift being LoL0

o

��!� nk�� (Fig. 11).
The position of the tiepoint on the dispersion surface
varies and so does the direction of propagation of the
wave®eld which is still given by that of the normal to the
dispersion surface. The path of the wave®eld in the
crystal is obtained as in light optics by applying Fermat's
principle (Penning & Polder, 1961; Kato, 1963, 1964).
This is the so-called Eikonal approximation (Kato,
1963).

The variation of the local wavevector is

�Ko � OP0 ÿOP � PP0:

Equation (12) shows that the dispersion surface is
invariant if �h � sh � 0. The surfaces �h � sh � constant
can therefore be interpreted as surfaces of constant
index of refraction and, by analogy to (11), the local
variation of the wavevector is

�Ko � rrr!��h � Kh�: �14�
The parameter that is used in the derivation of the ray
trajectories is actually proportional to �Ko � so, where so
is a unit vector in the incident direction. It is given by

� � ÿ �L

cos2 �
�Ko � so �

�L

cos2 �

@2�h � u�
@so@sh

;

after substitution of (13) into (14), and is called the
strain gradient. One can note here that, for a given
distortion, � is larger, the larger the yardstick, �L,
mentioned in x2.5 is (the inverse of the Bragg gap).

It is usually more convenient to consider the disper-
sion surface as invariant and the reciprocal-lattice points
as mobile relative to it. The tiepoint is then displaced
along the dispersion surface. A simple case is that where
the strain gradient � is constant, which can be obtained
by a pure mechanical bending of the lattice planes, a
temperature gradient or a concentration gradient. The
paths of the wave®elds are then sections of hyperbolae,
as shown in Fig. 12, drawn in the case of an incident
spherical wave and in transmission geometry. It can be
seen in the ®gure that, at any point p of the base of the
Borrmann triangle, BC, two wave®elds arrive, one
excited on branch 1 of the dispersion surface (solid line)
and one excited on branch 2 (dotted line). They inter-
fere, giving rise to equal-strain PendelloÈsung fringes on

X-ray diffraction topographs (Kato, 1964; Patel & Kato,
1973).

4.2. Takagi±Taupin theory

The theory developed by Takagi (1962, 1969) and
Taupin (1964) constitutes a generalization of the dy-
namical theory for any kind of incident wave and any
kind of deformation. Its principle is to consider the
crystal wave as a modi®ed Ewald wave which can be
developed as a sum of modulated waves:

E �P
h

Eh�r� exp�ÿ2�iKh � r� �15�

with Kh � Ko ÿ h. The amplitudes Eh�r� of the consti-
tuting waves are slowly varying functions of the position
vector r and wavevector Ko has an arbitrary orientation,
chosen at will, and is of length nk. The local variations of
the phases are thus included in those of the amplitudes.
The hypothesis that Eh�r� is a slowly varying function
implies that D�Eh�r�� can be neglected, which is not true
for very large deformations.

The consequence of the fact that the amplitudes are
now modulated is that the set of linear equations (7) is
replaced by a set of partial differential equations that
can be written, in the two-beam case:

Fig. 12. Ray trajectories in a crystal with a constant strain gradient �.
(a) Reciprocal space: as the wave®eld propagates in the strained
crystal, its tiepoint is displaced from P1 to P 0

1. (b) Direct space: the
path of a wave®eld is a hyperbola whose curvature is in the same
sense as that of the lattice planes for branch 1 (solid line), its
asymptotes are thin broken lines; the path of a wave®eld belonging
to branch 2 is represented as a thick dotted line; the lattice planes
are represented as thin dotted lines.
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@Eo�r�=@so � ÿi�kC�0�h�r�Eh�r�
@Eh�r�=@sh � ÿi�kC�0h�r�Eo�r�

)
�16�

where �0h � �h exp�2�ih � u�r�� is the Fourier coef®cient
of the expansion of the polarizability of the deformed
crystal and Ko has been chosen equal to OLo.

In some simple cases such as a perfect crystal and an
incident plane or spherical wave or a constant strain
gradient, it is possible to ®nd an analytical solution to
(16). Otherwise, it is necessary to calculate numerical
solutions with a computer (Authier et al., 1968; Epel-
boin, 1983). It is possible in this way to simulate the
images of defects on X-ray diffraction topographs (for a
review, see Epelboin, 1985) or to similate the rocking-
curve pro®les for crystals with surface layers or epilayers
(see, for instance, Halliwell et al., 1984; Fewster, 1992) or
with implanted layers (for a review, see Servidori,
Cembali & Milita, 1996).

The Takagi±Taupin theory has also been used to
interpret the phenomenon of `interbranch scattering'
mentioned in the introduction to this section. Authier &
Balibar (1970) showed that ray theory is only valid when
the variation of the effective misorientation over a
PendelloÈsung distance is much less than the width of the
rocking curve; when this is not the case, new wave®elds
are created on the other branch of the dispersion
surface. Balibar et al. (1975), by solving Takagi±Taupin
equations numerically, showed that the generation of

new wave®elds occurs when the strain gradient � is
larger than a critical value �c � �=�2�L) and when the
wave®eld trajectories are paralllel to the lattice planes
(Fig. 13). Balibar et al. (1983) for the Laue case and
Chukhovskii & Malgrange (1989) for the Bragg case
con®rmed this result analytically and showed that the
fraction of the intensity that is transferred to the new
wave®eld is exp�ÿ2��c=��. This was also shown
numerically by Gronkowski & Malgrange (1984) in the
case of a variable-strain gradient. These results enable
the ray theory to be extended to highly deformed crys-
tals and to give in some cases a quantitative inter-
pretation of their rocking curves.

5. Concluding remarks

The development of diffraction physics can be roughly
divided into three major stages. In the ®rst one, which
lasted up to the early 1940s, the bases of diffraction
theories were laid down: the diffracted intensities were
calculated according to the geometrical and dynamical
theories and extinction was invoked to interpret inten-
sities measured from real crystals. In the second one,
which lasted up to the early 1960s, on one hand prop-
erties related to the propagation of X-rays in perfect
crystals were observed for the ®rst time, a number of
them predicted by Ewald ± wave®elds, anomalous
absorption, PendelloÈsung ± and, on the other hand, the
bases of diffraction theories by imperfect crystals were
developed. The third stage, corresponding to modern
times, has seen very big steps forward: the results of the
studies in these two directions have led to many appli-
cations of practical importance, X-ray optics for
synchrotron radiation, qualitative and quantitative
characterization of crystal imperfections by imaging and
diffractometry techniques, combined with computer
simulations; the Takagi±Taupin and the statistical
dynamical theories make it possible to bridge the gap
between the `perfect' and the `ideally imperfect' crystal
and to understand how the transition takes place.
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transitions. II. Report of an IUCr Working
Group on Phase Transition Nomencla-
ture. Erratum
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Six printing errors are corrected in the Report by ToleÂdano et

al. [Acta Cryst. (2001), A57, 614±626]. The ®rst is in x2.1, the

fourth last sentence of which should read ``Although such

nicknames do not always describe the magnetic character of

the substance explicitly, since `AF' for example may be

mistaken for antiferroelectric, this lack is compensated for by

the ®fth and sixth ®elds (see the examples in xx3.1±3.5).'' The

second is in x3.4, second ®eld of the AF phase, which should

read `<260 K'. The third is in x4.5, the ®nal sentence of which

should be `However, certain materials display ferroic proper-

ties in the incommensurate phase (cf. x5.3)'. The fourth is in

x5.1, sixth ®eld of phase II, which should read `Incommensu-

rate. Modulation: � ~ 0.78. Displacive modulation.'. The ®fth is

in x6, the third sentence of which should read ``While

accepting this de®nition, it is necessary to point out, however,

that the boundary between phases in the examples below need

not be `thermodynamically abrupt' (i.e. involve a latent heat

and discontinuities in the physical quantities).''. The ®nal error

is in x6.1, sixth ®eld of the FT phase, which should read `FT |

0.45 < x < 1 | P4mm (99) | Z = 1 | Ferroelectric and ferroelastic

| All phases pseudo-cubic perovskites. No perovskite octahe-

dral tilts; 6 variants.'.
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Diffraction physics. Erratum
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Owing to a copying error, the formula in x2.1(iv) of the paper

by Authier & Malgrange [Acta Cryst. (1998), A54, 806±819] is

erroneous and should be replaced by:

Ih �
R2�2�1 � cos2 2��
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jFhklj2

sin�2�kt cos ����
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