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We propose and model an experiment where impurity profiles in low dimensional structures can be con-
trolled (during heat treatmenby an external parabolic potential defined by a variety of gate arrangements. At
high temperatures the impurities are ionized and are able to move relatively quickly. After a realistic equilib-
rium time of typically one hour, the profiles are rapidly cooled such that the impurities are frozen in place. The
model, which takes the electronic distribution as well as the mobile impurities into account results in a
nonlinear Poisson equation. Similar models are widely used in semiconductor device theory where doping
profiles are fixed. A parabolic potential in one, two, and three dimensions is applied to a semiconductor layer,

a cylindrical quantum wire, and a spherical quantum dot, respectively. The impurity profiles are typically
Gaussian shaped, where the distribution broadens with increasing temperature. The results demonstrate that the
profile can be widely altered by changing the temperature, the average doping density, tredaize and the

parabolic potential constant. The effect of parabolic confinement dimensionality on the diffusion is also stud-
ied. The temperature effect is studied up to a theoretical zero-temperature limit for which an analytic solution
for the impurity profile is derived. The impurity profiles are sharper as the parabolic constant increases and the
processing temperature is lowered. The processing time, however, increases exponentially as the temperature is
lowered, and this must be considered in the practical situation.
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I. INTRODUCTION predicted using a drift diffusion model coupled to Poisson’s
equation.

The physics of impurity diffusion in semiconductors has Previously a split gate arrangement was considered which
attracted a great deal of interest as most low dimensionalefined an approximately one-dimensior{aD) parabolic
structures(LDS’s) have doped region'sA number of varia-  potential in a semiconductor lay¥r.Here other arrange-
tion calculation$™° have been performed to determine impu- ments shall be investigated as well. A cylindrical quantum
rity binding energies in quantum wires. The confinement andvire coated with a single gate will define a parabolic poten-
the position of the impurities can dramatically alter the opti-tial in two dimensions? whereas a single square ¢dtean
cal properties of the system. Furthermore, it has been beeatefine a 2D parabolic potential in a semiconductor layer. We
reported that the metallic doping of silicon can facilitate light consider impurity diffusion in the presence of confining po-
emission from this material. Furthermore, a recent article hatentials in one dimension which can be achieved using the
shown how layered doped silicon germanium nanowires camentioned gate arrangements. In addition for completeness,
be grown® Such structures will have interesting electronimpurity diffusion within a three-dimension&BD) harmonic
transport properties due to thélow) dimensions and their potential is also considered. A 2D and 3D generalization of
layered nature. the previous 1D Monte Carlo simulation would be time con-

The impurities are usually introduced at high tempera-suming. Therefore the problem is solved by coupling the
tures into LDS's, either by ion implantatidndiffusion® or  drift-diffusion equation to the Poisson equation to obtain
during molecular beam epitaXBE).° The impurities ion-  equilibrium doping profiles. The Monte Carlo method ob-
ize and experience a force in the presence of an electritains time-dependent hopping probabilities using the micro-
fieldX° The experimental studies of impurities in linear po- scopic Arrhenius equatidh >>whereas the present approach
tentials is well knowrt}812-14 Fyrthermore, the Coulomb is macroscopic in nature. The two approaches are essentially
repulsion between impurities will keep these ions apart an@quivalent* The drift diffusion approach previously used to
will impose a maximum doping levé?.Recently, it was sug- model electrons and hdfehas been applied to positrdfis
gested that a nonlinear potential defined by a split gate amnd hydrogen impuriti€$ in electric fields.
rangement can be used to trap impurities to regions of a In Sec. Il we propose how the LDS can be fabricated
semiconductot®” Here we consider alternative gate ar- experimentally. In Sec. lll we give the general theory of the
rangementgpreviously used in quantum wire and dot sys- diffusion of the impurities and the nonlinear Poisson’s equa-
tems to quantize the electronic statesdefine impurity pro- tion. We also describe here the boundary conditions for the
files in LDS's. It would be technologically very useful if parabolic potential problem. In Sec. IV we present the nu-
impurity profiles can be controlled accurately and in a repro-merical results for doping profiles prepared at high tempera-
ducible manner in LDS’s. Furthermore, doping profiles aretures. Furthermore, a theoretical zero-temperature limit is
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solved numerically for which an analytical approximate so-
lution is derived. Finally, the conclusions are given in Sec. V.

Il. PROPOSED EXPERIMENTS

The schematic diagram of the split gate arrangement is
shown in Fig. 1a). The gates define a potential which fo-
cuses the impurities to the center of the semiconductor layer
during heat treatmen(t is assumed that the impurities for
the time scales considered have a relatively low probability
of penetrating into the oxideAfter the doping profile has
reached equilibrium, the sample is quickly cooled so that the
impurity profile is frozen. The split gate arrangements de-
fines an approximately parabolic potential in thdirection.
However, the curvature of the parabolic potential will also
vary in thez direction?8 The equilibrium and nonequilibrium
doping profiles were previously predicted using Monte Carlo
simulations. Here we shall predict the doping profile using a
Drift-Diffusion analysis as a function of initial doping den-
sity, layer width, and temperature.

The schematic diagram of a gated quantum wire is shown
in Fig. 1(b). This has been experimentally realiz€dThe
gates define a 2D harmonic potential in they plane. The
impurities experience a force directed towards the center
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which results in a high concentration of impurities in the (b) semiconductor
central area, as shown. The competing effect is the Coulomb &
repulsion between impurities that resist the buildup of charge .

top view

into the central region. As before, after the doping profile has
reached equilibrium the sample is rapidly cooled to freeze
the doping profile. The gate can also be etched away if
needed. One may also use a reverse bias on the gate of im-
purities with an opposite charge to localize charge around the
edge. A number of variation calculaticns have been per-
formed to determine impurity binding energies in quantum
wires. Our proposed experiment can create structures which
can test these calculations.

The schematic diagram of a square gate above a semicon-
ductor layer grown on top of a protective oxide layer is
shown in Fig. 1c). The square gate will define a potential
that is harmonic in the-y plane. When heated, the donors
will migrate to a line in thez direction which passes through
the center of the gate. After the impurity profile has reached
equilibrium the sample is rapidly cooled. It was previously
suggested that arrays of gates can be used to create modula-
tion doped quantum dot arrays.

Ill. THEORY

oxide metal gate
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. L . . FIG. 1. (a) Proposed 1D split gate arrangement for creating a
This section is organized as follows. In subsection A Weparabolic potential in a QW. The potential will, however, vary with

formally develop the nonlinear Poisson equation from thethe growth direction(b) The cylindrical split gate on the top would

diffusion theory of dopants at high temperatures. The resultzeate 4 2D parabolic potential in a QW) An effective 3D ex-

ing equation is central sto the semiclassical model for equitemal potential would be created in a thin QD region below the
librium semiconductoré® and is usually used for electrons gyide layer.

and holes in doped semiconductors. In this model, we show

that the impuritiegwhich are fixed during device operatjon profile we apply an external potential which is nonlinear
play the same role as the holes for our problem, where théparabolig to the donor-electron system. These two circum-
temperature is deliberately made very high so that the impustances makes this problem quite different from a “normal”
rities are able to diffuse within a realistic time scétgpi-  semiconductor electron and hole drift-diffusion theory. The
cally around one hour Crucially for controlling the impurity  system is in fact a mixed ionic-electronic conductor. This is
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somewhat similar to oxygenated lithium compounds whereonly difference between the donors and holes are then that

the charge carriers consist ofOions and hole$® the mobility is much smaller for the donors than for the
Subsection B deals with the boundary conditions that asholes, and in addition, the diffusion coefficient is very tem-

sure charge neutrality. In addition, we assume that the dongrerature sensitivéi.e., see Eq(1)]. Further on this means

atoms are forbidden to diffuse into the protective oxide re-that the relaxation time will depend on the temperature in the

gion (see Fig. 1 Finally, subsection C describes the numeri-same way. The time-dependent drift-diffusion equations for

cal procedure to solve the nonlinear Poisson equation. the electrons could then be formulated for the electronic con-

centrationn and for the donor density as

A. Diffusion and nonlinear Poisson theory N

We consider a symmetrical structure in one, two, or three a_n:V : ( D nmE(F)+ D nVn(F)), (3)

dimensions, and the boundary of the geometry for the gen- Jt keT
eral system is hence described bydalimensional radius

R4. The donors and the electrons are controlled by a p

d-dimensional symmetrical parabolic potential as well. For at
d=1 we have a quantum weglQW) with a maximum radius

_ ; ; : where we have used the Einstein relation, E2), in the
E; ah/%i\i/(\;ger\?vlﬁiIc:Shtr\]/\?eW;?)tgrg;i:EZtvaitu |§ ?]l;rrrg uvcgl? ?‘or above equation. This drift-diffusion equation is one of the

simplicity. Ford=2 we have a quantum wirdQWr), with simplest ones, which excludes electron-hole generation rates

I ' . . and excess carriers. Further on we also notice that the elec-
cylindrical symmetry. At the maximum radiug, there is a o : .
protective oxide as well. Finally, fai=3 we have a spheri- tric field in Egs.(3) and (4) could be determined from the

cal symmetric quantum datQD), with a radiusR, (also ~ ©lectric potential® as E(r)=—Vd(r). To determine the
surrounded by an oxideSince the diffusion coefficient is tyPical equilibration time we consider the following analysis
strongly dependent on the temperature, the requested time o On€ dimensior(in the y direction for simplicity (a QW
reach equilibrium could be manipulated by varying the temWith width L). Itis also useful to scale Eqe3) and(4). Let
perature. At high temperatures, the positively charged dono$=L-§,  ¢(y)=e®@(y)/kgT, and dr=(D/L%)dt. With
and the electrons could be modeled using Maxwell-these scaling relations E(B) would take the form
Boltzmann statistics. The equilibration time is at this high PR p on

temperature reasonably short, typically less than 1 h. The - _< —n—<P+ _)
next step in the process would be to keep the external poten- N3 9§ 9§

tial on, meanwhile the LDS structure rapidly is cooled down he si fth . f the order of uni dth
to room temperature. When the LDS structure has been | Ne Size of the system is now of the order of unity and the

cooled down we could turn off the external potential, and the¥Pical time 7 it takes for the drift diffusion to equilibrate is
donors would be frozen. If we decrease the temperaturB€nce roughly of the order of unity as wethe dominating
down to room temperature, the diffusion constant will de-iMe dependence in a diffusion equation is approximately

crease by many orders of magnitude and the equilibratio§Ven by e "). The real time it takes 4, could, using the
time would increase by many orders of magnitude as welscaling relations and Arrhenius equation, be estimated as

>

ep(r) . - -
—-v. _meE(r)JerVp(r) : (4)

®

Evidently, this rapid cooling serves as a “memory” effect. L2

We consider here the simplest model where the diffusion tn=——eFa/keT, (6)
coefficientD (for the donor atomsis given by the Arrhenius Do
equation

For times much longer thang,, Egs.(3) and(4) could
D= Doe—Ea/k 8T, (1) safely be replaced with the stationary equatiod®/ ¢+
=0). For example, with As as a dopant in Si at
where Dy is constant of the order 1 éits andE , is the  =1220 K and with a length. = 15 nm the time would be 1
activation energy of the order 3.5 eV for donors in Si. Weh. Here we use the values for As diffusion in Si, taken from
also consider the Einstein relation to be valid, which relategaegef® where D;=0.32 cm? and E,=3.56 eV. As a
the mobility u of the carriergwhereu is inversely propor-  comparison, a temperature bf 300 K would correspond to
tional to the massto the diffusion coefficient 1.5x 10" years. For realistic times and temperatures By.
T reduces to the stationary equation
B
D:(T)M- 2 —nVe+ Vn=const. (7

At high temperatures the donors are completely ionized. With no stationary bias currefithis would mean that the
If they are placed in an external potential they will accelerateconstant in Eq(7) is set to zer) n andp (now scaled back
to minimize their energy, but will also diffuse according to a 89ain are given by
concentration gradient. All formalisms that have been devel-

oped for electrons(or holes when deriving the drift- n(r)=c,e** kel ®
diffusion equation from the Boltzmann transport equations R .
could hence be applied to the positively charged donors. The p(r)=c,e eP(/keT, 9)
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The constants; andc, are determined to guarantee par- This is the resulting nonlinear Poisson equation, which

ticle conservation. These equations verify that the drift-getermines the internal potential. Once the solutiodgfr)
diffusion equations give the right Maxwell-Boltzmann distri- js known we can obtain andp from Egs.(8) and(9). So far
bution as the time goes to infinity. Note that the sign iseverything has been general and we have not specified the
opposite for the electrons and the donors in E8sand(9).  geometry or the external potential for the system. Here we
Also note that the Maxwell-Boltzmann distribution is the take the external potential to be parabolic. The parabolic con-
high-temperature limit of the Fermi-Dirac and Boze-Einsteinstant could take either a fixed value or could be determined
distributions. More generally, the following classical condi- from an external potentiaV, at the boundary(i.e., at the

tion must hold: d-dimensional radiuR 5) as
32 Y, k
1 [ mkgT 0} .2 2
o >1. 10 q) t— | 5 r=—=r-, (13)
Ng\ 2772 10 - Rg 2

where r is the general radial coordinate. By using the
N 4 is the doping density anah is the donor(or electron Laplace operator i dimensions, Eq(12) becomes a one-
mass. The interpretation of this inequality is that the thermatimensional problem,
de Broglie wavelength must be much larger than the mean

distance between the dondia between the electropdon- 1 da dldCDO(r)) _ E(c o [ o) + Do)/ gT
ized donors or acceptors could generally be either fermions  d-1 dr dr e 2

or bozons! but due to their heavy masses, their “critical”

temperaturd . would be very low. For example, for As with —c % [P ex(n) + Po(N/kpT)

N =10 cm 3 and m=74.9u the critical temperature

would beT .=0.4 mK. An ionized As donor is a fermion in (14

fact, since the remaining number of fermions is an odd num- |+ is of great importance that the solution guarantees

be.r. The Ferm|0n|c' critical temperature for the electronscharge neutrality, otherwise the internal potential would
(with the same doping concentratiowould be T =55K, 41w to infinity far outside the low dimensional structure

due to its small mass. FoF=1220 K, the requested elec- (| pg) (j.e., this happens for one and two dimensions but not
tronic density(the same as the donor densityould beN ¢ for three dimensions, where net charges givesracbhtri-

=1.0x10% cm"® to violate the classical conditioffor the  pytion even in the oxide This would be guaranteed if we
electrong. In this case one should replace the Maxwell-;se the following normalized distributions:

Boltzmann distributior{only for the electronswith the local

Thomas-Fermi distributioriwhich require a calculation of VgN "¢

the Fermi level and in addition, for small structuréseDS’s) =), (15

one may instead use a ScHiager-Poisson technigtfeto J' et edV,

handle the electronic distribution in a satisfactory way. In

this paper we work with reasonable doping densities and

high temperatures. Therefore we use the Maxwell- VN4 ?

Boltzmann distributions in all calculations. P= ' (16
So far we have neglected the Coulomb interaction. If for J e #dVy

example the external potential is a parabolic potential

(stopped at the boundarshe solution of Eq(9) would be ~ WhereN g is the (mear) doping density andp=e[P e,(r)
S(F) asT—0. This is of course not possible if we consider a * ®o(r)1/kgT for a S|mpler2 notation. Vg is the
many-electron system. To take the internal self-consistent ird-dimensional ZVOIUme{Rl’WR AmR3/3; and dVy s
teraction into account we have to repla@gr)—® . (r) {dr,27rdr,47r“dr} for one, two, and three dimensiofie-

- i ) - member thaR,;=L/2, and that we only need to integrate in
+®o(r), where the internal potentidhy(r) has to be deter-  iha nalf domain since the solution is symmetric
mined by Poisson’s equation,

B. Boundary conditions

V2Do(r) =~ 8[IJ(F)—F1(F)]. (12) To solve Eq.(14), we need to consider proper and mean-
€ ingful boundary conditions o,. First, we note that the
external potential is assumed to block both the electrons and
Using the charge densities given from E@8) and (9)  the donors outside the LDS region, even though it does not
into this equation would give appear in Eq(13) explicitly, since we treat the oxide as a
hard wall which then becomes our boundary and the external
potential is assumed to vanish in this region as well. Strictly

- e ° . - -
V2D (r) =~ Z(ce & [Pex(n) Po(lkpT speaking we should usk(r)—® o,(r)+®q(r)+E (r) for
i i the holes/donors, whereE, is the valance band/
— 6% [Pex(n) T Po(NI/keT) (120  semiconductor-oxide potential anB(r)—® ¢ (r) +Do(r)
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+E c(ré) for the electrons, wherE . is the conduction-band/ 3 6
semiconductor-oxide potential.
Now we consider the boundary conditions for the para- 25 3
bolic potential. Since the solution is symmetric around
=0 we know that the derivate @b, has to be zero at this 2 4
point. We may also choose the potential for the internal po- 7
tential to be zero at the boundary. The boundary conditions 21-5 3
could hence be summarized as
1 2
®o(Ry)=0, 17
0.5 1
dy(0)=0. (19
% 1 % 1
Note also that the charge neutrality guarantees that the /R /R

derivate of® (R 4) =0. Generally, for this kind of diffusion . o .
problem, the boundary condition should be homogeneous FIG. 2. The doping dependency of t_hgezequmzbnum profiles for
Neumann boundary conditions. This holds under the totaf =1220 K, R=15 nm, andk=1/(15<10"")" V/m*. From left to

charae neutrality condition since rightd=1, 2, and 3. From top to bottom, the mean doping densities
g y are:Ng=10', 10", 108 10'% 10?° cm 3. The local doping den-
. sitiesp are given as fractions of the mean doping denkity. As a
f f f V~(6Vq>o)dl)=f J eVd,-dS= comparison, the squares indicates the “trivial” solution when the
v s self-consistent internal potentidi, is ignored.
—ef f fv[p(r)—n(r)]dv=0- Xy NgkgT 2x
m 0 - — . —
' ek
(19 Va

(1—e ) [eerf(x)—erfi(x)]
erf(x)erfi(x)

Hence,V®,-n=0 on the whole boundary surface. This
boundary condition would then always guarantee that there
is no net electric field generated outside the LDS regionwhere x=R/s and s=+2kgT/ek Thus if max(P )
Opposite, if the charge neutrality is violated, there would not<kR?/2 one can safely use a high increment fraction. Hence
exist a solution such th&8 ®,-n=0 on the whole surface to perform a controlled convergence we take an increment
and hence there will be electric field outside the LDS regiorratio 8 to get the new i+ 1) potential
(at least at some part of the surface

Dpn1=BPop 1+ (1-B)Pgp, (23

C. Numerical method where we useB=0.1 for T<200 K and 3=0.5 for high
The nonlinear Poisson equatipfg. (14)] was solved nu- temperatures. This new internal potential is then used in Eq.
merical in the following way. The internal potential is solved (20) and so on, until self-consistency is obtained, i.e., the
self-consistently in an iterative way, and may be labebeg, solution does not change significantly. We use
at thenth iteration. At the stamh=0, and we set the internal Max( P o+ 1(r) = Pon(r))/max| P, 1(r)|]<10"° as the
potential ®,,=0 and then calculate the correspondingstop criteria. It takes typically 20 and 40 iterations for con-

. (22)

charge density in the following way: vergence for high and low temperatures, respectively.
e (kr? IV. NUMERICAL RESULTS
P= + onj: (20)
kgT\ 2

A. Profiles prepared at high temperature

We have solved Eq.14) numerically ford=1, 2, and 3
- ——= ) and the impurity profile has been studied as a function of the
f de—<prd—1dr f de+<prd—1dr doping density, temperature, radius, and parabolic constant.
0 0 It should be noted that the parabolic constémben appro-
(21)  priate is set to be the same in all Cartesian directigires,
we assume tha does to not varies within the LDS regipn
The expression for the neutral charge dengitg inserted Figure 2 shows the equilibrium impurity profile as a func-
into Eq. (14). If the resulting solutiorP, ., is large com-  tion of doping density aT =1200 K for a QW, a QWr, and
pared to the external potential we take only a fraction of thisa QD (d=1, 2, and 3, respectivelyThe confining radius in
solution and add it to the external potential. For example, fothe appropriate directigg) is R=15 nm which corresponds
d=1 one finds that the analytic “start” solutiot,; has its  to at least 50 monolayers since the lattice constant for most
maximum valugatr =0) given by semiconductors is of the order 0.5 nm. Furthermore, the ex-

eNR% e ¢ et?
p(N=—4
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FIG. 3. The self-consistent internal potentig (solid lines is FIG. 4. The donor profilésolid lineg and the electronic profile

plotted as a function of and is compared with the externglara-  (dotted line$ shown as a function of the parabolic potential con-
bolic) potential ® ,, (dotted ling for d=1, 2, and 3 from top to  stantk. Here, T=1220 K, R=15 nm, andN4=10"8 cm™3. For the
bottom. The parameters used weFe=1220 K, R=15 nm, and donor profiles, the curvature becomes more sharply for stronger
Ng= 10 cm 2 andk=1/(15x 10 °)? V/m?. parabolic potentials, which is shown from bottom to top wkre
takes the valuek/ky,=0, 0.5, 1.0, 1.5, and 2.0, whekg=1/(15

_ 10-9)2 2 _ g . X
ternal potential has a value of 0.5V at the edge of the semi: 10°%)° V/m*, Fork=0 the self-consistent solution is flat both

ductor. Th in the fi h the “start” sol for the donor profile and for the electronic profithe dotted line is
qon uctor. 9 squares in .e _|gure show the 's ar. SOIU ot visible for this value ok). The electronic profile becomes more
tion when the internal potential is equal to zero. The mternag

. . . nd more pushed up to the LDS walls as we increase the parabolic
potential is proportional to the doping densf.g., see Eq. potential constank. Notice that the electronic densities differ be-

(22)] and therefore a high doping density would generallyyyeend=1, 2, and 3. This is due to the different volume element,
generate a high internal potential so that it partly or almosiseq in the particle conservation calculation.

could compensate for the external potential. In the opposite

case, when the doping density is very low, the internal poy,e 450 analyze the electronic distribution. Her,
tential would be almost negligible in comparison with the =1220 K, N 4= 10 cm 3
external potential. A careful inspection reveals that the solu ’

tion for low doping densities (26 cm™3) could be replaced

with this *trivial” solution pociegxp(—eerIZI.(BT). For me- 4t (bulk) distribution. For high parabolic potentials the im-
dium doping densities (2dcm*), the doping profile looks purity profile becomes sharply Gaussian formed. The elec-
typically as a Gaussian distribution. For very high densityyonic density becomes also more pushed up to the edges as
(10%° cm™?), the impurity profile is almost flat. If we work increaseqi.e., this is more like an “inverse” Gaussian

with a high doping density and we want a Gaussian-likey o, 42y "Note here that the difference between the di-
distribution, we must significantly increase the parabolic pohensjons appears in the electronic distribution. Due to the
tential constank. weight factorrd=! in the normalization integrals, a “low”

It is evident from Fig. 2 that increasing results in a electronic density close to the edae i+ 3 is equal to a
sharper profile. This may be understood through Fig. 3 Wher?ather “high” eleé/tronic concentrati%n fod=1 q

the internal potentiatby(r) is plotted and compared to the In Fig. 5 we see the effect of changing the size of the low
external parabolic potential. The results show that the intery

: . . dimensional structuré.e., this size is given by the dimen-
nal potential typically looks like cdmt/2R). Note also that  gjonal radiusR g). The almost flat impurity distribution cor-
the electric field at the boundary is equal to zero, which is

desponds tdR 4=2 nm. It is particularly not realistic for a
feature of a charge neutral system. We can therefore be a D, where we can expect quantum effects to be very impor-
sured that the numerical has been done correctly. For t '

o . 85 nt. In addition the number of total impurities would be very
shown “typical” case withT=1220 K, N4=10®¥ cm 3, R

- | 1 th | hfew for such a small structure. We can of course expect
=15 nm, and an external potential that equals 0.5 V at the, ,antym proadening to be important even in one and one
semiconductor boundary, the internal potential decreas

fahtly with d he * "to th | mensions. This figure shows, however, clearly the trend. A
slightly with d. As an average, the "response” to the external g strycture would require a large parabolic potential to

potential is roughly 1/3 of the external parabolic potential.creqte a Gaussian-like distribution, to overcome the strong
Note also that the thermal nonlinear response voltage,iomb repulsion.

Ngk gT/ ek [defined in Eq(22)] is 0.04 V for this case, while

the maximum internal potentials is roughly 0.15 V. This in-

dicates that the problem has to be solved self-consistently

and that we can expect transient nonlinear phenomena. The influence of temperature is shown in Fig. 6 for an
The effect of the parabolic potential constdnis shown  average doping level of #cm™2 for the external potential

in Fig. 4 when all other parameters are fixed. In this figurethat equals 0.5 V at the semiconductor boundary. An increase

, and R=15 nm. The parabolic
potentials correspond to those that we apply 0-2 V at the
edge. Evidently, no parabolic potentidk=€0) results in a

B. Theoretical zero temperature limit
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3 6 9 An analytic solution of Eq(14) would not generally be
8 available for arbitrary dimensions. However, one could ex-
2.5 5 tract useful information of the system by taking the zero-
7 temperature limit of the nonlinear Poisson equation. Indeed
2 4 6 this is possible for an external parabolic potential as sug-
- 5 gested by an inspection of the numerical solutions in the last
Z 15 3 figure, when the temperature was decreased. The result
= 4 shows that the impurity density becomes flat inside a given
1 2 3 radius, meanwhile the electronic density is pushed up expo-
5 nentially to the boundary of the LDS, almost like a delta-
0.5 1 dirac distribution. For this case, the positive donors and the
1 &\ negative electrons are completely separated from each other.
0 0 0 The explanation is that a homogeneous distribution con-
0 ro o ! tributes with a parabolic internal potential, which tl
f/R /R f/R p potential, which exactly

cancels the external parabolic potential. Since thand p
FIG. 5. The doping density profiles as a function of the “radius” distributions are totally separated one could solve the prob-
in a QW, QWr, and QD are shown from left to right, wh@  lem in each domain separately and match the internal poten-
=1220 K, k=1/(15x10"%)? VIm?, and N4=10"cm 3. From tja| at the separation raditR,. For a homogeneous donor

bottom to top:R=2, 5, 10, 15, 30 nm. The doping profile becomes density p, in d dimensions, within the radius Or<R,
almost flat for a very small radius. To compensate for this broadengiverl as

ing one must increase the parabolic potential sufficiently.

in temperature tends to broaden the impurity profile, since Rd)d (24)

the mean kinetic energy wants to spread out the impurities. Po=N d(R_O
For T=2000 K, the profile has a paraboliclike profile, rather

than a Gaussian profile. In the low-temperature limihich  we obtain the following solution of the Poisson equation:
is unrealistic for diffusion of impurities in semiconductprs

the donors are localized within a certain radius determined eNd( Ry

by the doping density. Here we go downTe=40 K which Do(r)=apta; Py ponll) —55— R
0

d
2
2de ) ™ (25

is close to the condition for complete separation between
donors and electrons. The corresponding electronic distribyz,
tion is very closely located to the edge. Note that the maxi
mum density(at T=0 K) is directly proportional to the di-
mensionalityd. The shapes looks similar fal=1, 2, and 3,
except that the “critical” radius is slightly larger fod=3
than ford=1.

here® pon{r) is the homogeneous solution éhdimen-
'sions. Here we let the coefficieat; =0, to obtain a self-
consistent solution. Hence the sum of the external potential
(kr?/2) and the internal potential would be zero if

RO eNd 1/d
3 6 9 Ry | dek (26)
8
2.5 5 . Thus the corresponding doping leve] would be given by
2 4 6 Po dek
- 5 Ng eNy' @
Z 15 3 d d
o 4
] 5 3 Note that the conditiom —0 ensures that the electronic
density within O<r <R, would be zero. The electronic dis-
2 tribution n in the domainRy<r<Ry is in this temperature
0.5 ! 1 limit zero everywhere, except at=R 4, where it is infinite.
Its corresponding internal potential is therefore linear in this
% 1 % 1 % 1 region [i.e., it is given by ®y pon{r)] except atr=Ry,

/R 1/R r/R where its derivate changes discontinuously. This solution sets

FIG. 6. The temperature dependence of the doping profiles ar8 limit of how high the(maximum doping level can be and

shown forT=40, 200, 400, 600, 800, 1000, and 2000 K, from top what the maximal curvature of the doping profile could be,
to bottom. The used parameters &g=10' cm 3, R=15nm, When some parameters are kept fixed. It is also interesting to

andk=1/(15x 10-°)2 V/m2. From left to rightd=1, 2, and 3. The ~Note that the dimensionality of the system could be charac-
thin lines indicates the theoretical distribution for the donord at terized analytically with the numbek For example, Eq27)

=0 K. The “separation” radii ford=1, 2, and 3 are given by Says that the maximal doping level is directly proportional to
r/R=0.370, 0.430, and 0.498 and with the corresponding maxithe dimensionalityd. Of course, the electronic part of this
mum doping densityp/N 4=2.70, 5.40, and 8.11. The profiles be- solution is unrealistic due to quantum broadening in the elec-
comes broader as the temperature increases. tronic subband ground state.
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V. CONCLUSIONS atr=0. This effect is also explained with an analytic expres-
sion atT=0 K. In this paper we also analyze the type of

In this paper we show that the diffusion theory of ionizedp . conditions that has to be used for this kind of dif-

impurities (interacting with electronsat high temperatures :
. . fusion problem.

could be explained with the same model as for holes and” The tvpical solutions uses values aroufig 1200 K. R

electrons using the semiclassical model for equilibrium semi-_ 15 nmypandN —10% cm-2. and we show that oné can

conductors. In the “normal” semiconductor theory, the im- c:btain t : ical Ggassian rofiyles using split gate voltages of

purity profile is, however, kept fixed, which is normally the yp P ’ g spitg 9

case for normal temperatures< 1000 K). As the tempera- agﬁgc;x;rgnra;?rl]);l} (;/i.n-]rehrfsirgrc:sd(\a/:lf?::]enobgﬁtﬁr%plelifiglgaiﬁsng-e-
ture is kept high during the diffusion to create the speciald q

sharp(Gaussian likgimpurity profile, a rapid cool down will come important. Furthermore, a small number_ of impurities
ensure that this profile would be “frozen” at room tempera—W'“ be present and the mean-field approach in calculating
ture (and belowy since the typical diffusion time depends the internal field would not be appropriate. We suggest that a

exponentially upon the temperature. An external paraboli(prewous Monte Carlo simulation of a limited number of

potential has been used to create an arbitrary sharp Gaussi'ar.rr11purr['e53 in a delta doped layer can be modified to con

impurity profile. The sharpness of the profile depends, hOW_5|der the diffusion of a small number of impurities within a

ever, also on the doping density and the temperature. V\%D confmmgl hark;nonlc Foée?tlal. Tthel |fjeas p:ttlalser!ted n th_|s
show that at high temperatures, small radii and large dopingaper c%n atso \P;vapr? 1€ tﬁ ctotr;].ro lon prot.| esllrtl orgfjatnlc
densities tends to broaden the impurity distribution. To over- emiconductors. We hope that this paper simulates tuture
come the Coulomb repulsion and the thermal broadening on%xperlmental work.
has to increase the parabolic constasufficiently.

We find that the maximum donor density is directly pro-

portional to the dimensionality for the system, so that a QD The work was funded by SSF and the Carl Trygger Foun-
has a three times larger impurity concentration as a QW hadation.
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