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Self-consistent drift-diffusion model of nanoscale impurity profiles in semiconductor layers,
quantum wires, and quantum dots
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We propose and model an experiment where impurity profiles in low dimensional structures can be con-
trolled ~during heat treatment! by an external parabolic potential defined by a variety of gate arrangements. At
high temperatures the impurities are ionized and are able to move relatively quickly. After a realistic equilib-
rium time of typically one hour, the profiles are rapidly cooled such that the impurities are frozen in place. The
model, which takes the electronic distribution as well as the mobile impurities into account results in a
nonlinear Poisson equation. Similar models are widely used in semiconductor device theory where doping
profiles are fixed. A parabolic potential in one, two, and three dimensions is applied to a semiconductor layer,
a cylindrical quantum wire, and a spherical quantum dot, respectively. The impurity profiles are typically
Gaussian shaped, where the distribution broadens with increasing temperature. The results demonstrate that the
profile can be widely altered by changing the temperature, the average doping density, the size~radius!, and the
parabolic potential constant. The effect of parabolic confinement dimensionality on the diffusion is also stud-
ied. The temperature effect is studied up to a theoretical zero-temperature limit for which an analytic solution
for the impurity profile is derived. The impurity profiles are sharper as the parabolic constant increases and the
processing temperature is lowered. The processing time, however, increases exponentially as the temperature is
lowered, and this must be considered in the practical situation.

DOI: 10.1103/PhysRevB.67.165330 PACS number~s!: 66.30.Pa, 66.10.Cb, 66.30.Dn
as
n

u-
n
ti
e
h
ha
ca
on
r

ra

ct
o-

an

a
f
r-
s-

if
ro
r

n’s

ich

-
m
n-

We
o-
the
ess,

of
n-
he
in

b-
ro-

ch
tially
to

ed
he
ua-
the
u-
ra-

t is
I. INTRODUCTION

The physics of impurity diffusion in semiconductors h
attracted a great deal of interest as most low dimensio
structures~LDS’s! have doped regions.1 A number of varia-
tion calculations2–5 have been performed to determine imp
rity binding energies in quantum wires. The confinement a
the position of the impurities can dramatically alter the op
cal properties of the system. Furthermore, it has been b
reported that the metallic doping of silicon can facilitate lig
emission from this material. Furthermore, a recent article
shown how layered doped silicon germanium nanowires
be grown.6 Such structures will have interesting electr
transport properties due to their~low! dimensions and thei
layered nature.

The impurities are usually introduced at high tempe
tures into LDS’s, either by ion implantation,7 diffusion,8 or
during molecular beam epitaxy~MBE!.9 The impurities ion-
ize and experience a force in the presence of an ele
field.10 The experimental studies of impurities in linear p
tentials is well known.11,8,12–14 Furthermore, the Coulomb
repulsion between impurities will keep these ions apart
will impose a maximum doping level.15 Recently, it was sug-
gested that a nonlinear potential defined by a split gate
rangement can be used to trap impurities to regions o
semiconductor.16,17 Here we consider alternative gate a
rangements~previously used in quantum wire and dot sy
tems to quantize the electronic states! to define impurity pro-
files in LDS’s. It would be technologically very useful
impurity profiles can be controlled accurately and in a rep
ducible manner in LDS’s. Furthermore, doping profiles a
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predicted using a drift diffusion model coupled to Poisso
equation.

Previously a split gate arrangement was considered wh
defined an approximately one-dimensional~1D! parabolic
potential in a semiconductor layer.18 Here other arrange
ments shall be investigated as well. A cylindrical quantu
wire coated with a single gate will define a parabolic pote
tial in two dimensions,19 whereas a single square gate20 can
define a 2D parabolic potential in a semiconductor layer.
consider impurity diffusion in the presence of confining p
tentials in one dimension which can be achieved using
mentioned gate arrangements. In addition for completen
impurity diffusion within a three-dimensional~3D! harmonic
potential is also considered. A 2D and 3D generalization
the previous 1D Monte Carlo simulation would be time co
suming. Therefore the problem is solved by coupling t
drift-diffusion equation to the Poisson equation to obta
equilibrium doping profiles. The Monte Carlo method o
tains time-dependent hopping probabilities using the mic
scopic Arrhenius equation21–23whereas the present approa
is macroscopic in nature. The two approaches are essen
equivalent.24 The drift diffusion approach previously used
model electrons and hole25 has been applied to positrons26

and hydrogen impurities27 in electric fields.
In Sec. II we propose how the LDS can be fabricat

experimentally. In Sec. III we give the general theory of t
diffusion of the impurities and the nonlinear Poisson’s eq
tion. We also describe here the boundary conditions for
parabolic potential problem. In Sec. IV we present the n
merical results for doping profiles prepared at high tempe
tures. Furthermore, a theoretical zero-temperature limi
©2003 The American Physical Society30-1
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solved numerically for which an analytical approximate s
lution is derived. Finally, the conclusions are given in Sec

II. PROPOSED EXPERIMENTS

The schematic diagram of the split gate arrangemen
shown in Fig. 1~a!. The gates define a potential which fo
cuses the impurities to the center of the semiconductor la
during heat treatment~it is assumed that the impurities fo
the time scales considered have a relatively low probab
of penetrating into the oxide!. After the doping profile has
reached equilibrium, the sample is quickly cooled so that
impurity profile is frozen. The split gate arrangements d
fines an approximately parabolic potential in they direction.
However, the curvature of the parabolic potential will al
vary in thez direction.18 The equilibrium and nonequilibrium
doping profiles were previously predicted using Monte Ca
simulations. Here we shall predict the doping profile usin
Drift-Diffusion analysis as a function of initial doping den
sity, layer width, and temperature.

The schematic diagram of a gated quantum wire is sho
in Fig. 1~b!. This has been experimentally realized.19 The
gates define a 2D harmonic potential in thex-y plane. The
impurities experience a force directed towards the ce
which results in a high concentration of impurities in t
central area, as shown. The competing effect is the Coulo
repulsion between impurities that resist the buildup of cha
into the central region. As before, after the doping profile h
reached equilibrium the sample is rapidly cooled to free
the doping profile. The gate can also be etched awa
needed. One may also use a reverse bias on the gate o
purities with an opposite charge to localize charge around
edge. A number of variation calculations2–5 have been per-
formed to determine impurity binding energies in quantu
wires. Our proposed experiment can create structures w
can test these calculations.

The schematic diagram of a square gate above a sem
ductor layer grown on top of a protective oxide layer
shown in Fig. 1~c!. The square gate will define a potenti
that is harmonic in thex-y plane. When heated, the dono
will migrate to a line in thez direction which passes throug
the center of the gate. After the impurity profile has reach
equilibrium the sample is rapidly cooled. It was previous
suggested that arrays of gates can be used to create mo
tion doped quantum dot arrays.

III. THEORY

This section is organized as follows. In subsection A
formally develop the nonlinear Poisson equation from
diffusion theory of dopants at high temperatures. The res
ing equation is central to the semiclassical model for eq
librium semiconductors,28 and is usually used for electron
and holes in doped semiconductors. In this model, we sh
that the impurities~which are fixed during device operation!
play the same role as the holes for our problem, where
temperature is deliberately made very high so that the im
rities are able to diffuse within a realistic time scale~typi-
cally around one hour!. Crucially for controlling the impurity
16533
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profile we apply an external potential which is nonline
~parabolic! to the donor-electron system. These two circu
stances makes this problem quite different from a ‘‘norma
semiconductor electron and hole drift-diffusion theory. T
system is in fact a mixed ionic-electronic conductor. This

FIG. 1. ~a! Proposed 1D split gate arrangement for creating
parabolic potential in a QW. The potential will, however, vary wi
the growth direction.~b! The cylindrical split gate on the top would
create a 2D parabolic potential in a QWr.~c! An effective 3D ex-
ternal potential would be created in a thin QD region below
oxide layer.
0-2
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somewhat similar to oxygenated lithium compounds wh
the charge carriers consist of O22 ions and holes.29

Subsection B deals with the boundary conditions that
sure charge neutrality. In addition, we assume that the do
atoms are forbidden to diffuse into the protective oxide
gion ~see Fig. 1!. Finally, subsection C describes the nume
cal procedure to solve the nonlinear Poisson equation.

A. Diffusion and nonlinear Poisson theory

We consider a symmetrical structure in one, two, or th
dimensions, and the boundary of the geometry for the g
eral system is hence described by ad-dimensional radius
R d . The donors and the electrons are controlled by
d-dimensional symmetrical parabolic potential as well. F
d51 we have a quantum well~QW! with a maximum radius
R15L/2 ~whereL is the width of the QW!. It is surrounded
by an oxide, which we approximate with a hard wall f
simplicity. For d52 we have a quantum wire~QWr!, with
cylindrical symmetry. At the maximum radiusR2 there is a
protective oxide as well. Finally, ford53 we have a spheri
cal symmetric quantum dot~QD!, with a radiusR3 ~also
surrounded by an oxide!. Since the diffusion coefficient is
strongly dependent on the temperature, the requested tim
reach equilibrium could be manipulated by varying the te
perature. At high temperatures, the positively charged don
and the electrons could be modeled using Maxw
Boltzmann statistics. The equilibration time is at this hi
temperature reasonably short, typically less than 1 h.
next step in the process would be to keep the external po
tial on, meanwhile the LDS structure rapidly is cooled dow
to room temperature. When the LDS structure has b
cooled down we could turn off the external potential, and
donors would be frozen. If we decrease the tempera
down to room temperature, the diffusion constant will d
crease by many orders of magnitude and the equilibra
time would increase by many orders of magnitude as w
Evidently, this rapid cooling serves as a ‘‘memory’’ effect

We consider here the simplest model where the diffus
coefficientD ~for the donor atoms! is given by the Arrhenius
equation

D5D0e2E a /k BT, ~1!

where D0 is constant of the order 1 cm2/s andE a is the
activation energy of the order 3.5 eV for donors in Si. W
also consider the Einstein relation to be valid, which rela
the mobility m of the carriers~wherem is inversely propor-
tional to the mass! to the diffusion coefficient

D5S k BT

e Dm. ~2!

At high temperatures the donors are completely ioniz
If they are placed in an external potential they will acceler
to minimize their energy, but will also diffuse according to
concentration gradient. All formalisms that have been dev
oped for electrons~or holes! when deriving the drift-
diffusion equation from the Boltzmann transport equatio
could hence be applied to the positively charged donors.
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only difference between the donors and holes are then
the mobility is much smaller for the donors than for th
holes, and in addition, the diffusion coefficient is very tem
perature sensitive@i.e., see Eq.~1!#. Further on this means
that the relaxation time will depend on the temperature in
same way. The time-dependent drift-diffusion equations
the electrons could then be formulated for the electronic c
centrationn and for the donor densityp as

]n

]t
5¹•S D n

en~rW !

k BT
EW ~rW !1D n¹n~rW ! D , ~3!

]p

]t
5¹•S 2D p

ep~rW !

k BT
EW ~rW !1D p¹p~rW ! D , ~4!

where we have used the Einstein relation, Eq.~2!, in the
above equation. This drift-diffusion equation is one of t
simplest ones, which excludes electron-hole generation r
and excess carriers. Further on we also notice that the e
tric field in Eqs.~3! and ~4! could be determined from the
electric potentialF as EW (rW)52¹F(rW). To determine the
typical equilibration time we consider the following analys
in one dimension~in the y direction! for simplicity ~a QW
with width L). It is also useful to scale Eqs.~3! and~4!. Let
y5L•j, w(y)5eF(y)/k BT, and dt5(D/L2)dt. With
these scaling relations Eq.~3! would take the form

]n

]t
5

]

]j S 2n
]w

]j
1

]n

]j D . ~5!

The size of the system is now of the order of unity and
typical timet it takes for the drift diffusion to equilibrate is
hence roughly of the order of unity as well~the dominating
time dependence in a diffusion equation is approximat
given by e2t). The real time it takest fin could, using the
scaling relations and Arrhenius equation, be estimated a

t fin5
L2

D0
eEa /k BT. ~6!

For times much longer thant fin , Eqs. ~3! and ~4! could
safely be replaced with the stationary equations (]n/]t
50). For example, with As as a dopant in Si atT
51220 K and with a lengthL515 nm the time would be 1
h. Here we use the values for As diffusion in Si, taken fro
Jaeger,30 where D050.32 cm22 and E a53.56 eV. As a
comparison, a temperature ofT5300 K would correspond to
1.531041 years. For realistic times and temperatures Eq.~3!
reduces to the stationary equation

2n¹w1¹n5const. ~7!

With no stationary bias current@this would mean that the
constant in Eq.~7! is set to zero#, n andp ~now scaled back
again! are given by

n~rW !5c1eeF(rW)/k BT, ~8!

p~rW !5c2e2eF(rW)/k BT. ~9!
0-3
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SUNDQVIST, NARAYAN, STAFSTRÖM, AND WILLANDER PHYSICAL REVIEW B 67, 165330 ~2003!
The constantsc1 andc2 are determined to guarantee pa
ticle conservation. These equations verify that the dr
diffusion equations give the right Maxwell-Boltzmann dist
bution as the time goes to infinity. Note that the sign
opposite for the electrons and the donors in Eqs.~8! and~9!.
Also note that the Maxwell-Boltzmann distribution is th
high-temperature limit of the Fermi-Dirac and Boze-Einste
distributions. More generally, the following classical cond
tion must hold:

1

N d
S mkBT

2p\2 D 3/2

@1. ~10!

N d is the doping density andm is the donor~or electron!
mass. The interpretation of this inequality is that the therm
de Broglie wavelength must be much larger than the m
distance between the donors~or between the electrons!. Ion-
ized donors or acceptors could generally be either fermi
or bozons,31 but due to their heavy masses, their ‘‘critica
temperatureT c would be very low. For example, for As with
N d51018 cm23 and m574.9u the critical temperature
would beT c50.4 mK. An ionized As donor is a fermion in
fact, since the remaining number of fermions is an odd nu
ber. The Fermionic critical temperature for the electro
~with the same doping concentration! would beT c555 K,
due to its small mass. ForT51220 K, the requested elec
tronic density~the same as the donor density! would beN d
51.031020 cm23 to violate the classical condition~for the
electrons!. In this case one should replace the Maxwe
Boltzmann distribution~only for the electrons! with the local
Thomas-Fermi distribution~which require a calculation o
the Fermi level! and in addition, for small structures~LDS’s!
one may instead use a Schro¨dinger-Poisson technique32 to
handle the electronic distribution in a satisfactory way.
this paper we work with reasonable doping densities
high temperatures. Therefore we use the Maxw
Boltzmann distributions in all calculations.

So far we have neglected the Coulomb interaction. If
example the external potential is a parabolic poten
~stopped at the boundary! the solution of Eq.~9! would be
d(rW) asT→0. This is of course not possible if we consider
many-electron system. To take the internal self-consisten
teraction into account we have to replaceF(rW)→F ext(rW)
1F0(rW), where the internal potentialF0(rW) has to be deter-
mined by Poisson’s equation,

¹2F0~rW !52
e

e
@p~rW !2n~rW !#. ~11!

Using the charge densities given from Eqs.~8! and ~9!
into this equation would give

¹2F0~rW !52
e

e
~c2e2e•[Fext(r

W)1F0(rW)]/k BT

2c1ee•[Fext(r
W)1F0(rW)]/kBT!. ~12!
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This is the resulting nonlinear Poisson equation, wh
determines the internal potential. Once the solution ofF0(rW)
is known we can obtainn andp from Eqs.~8! and~9!. So far
everything has been general and we have not specified
geometry or the external potential for the system. Here
take the external potential to be parabolic. The parabolic c
stant could take either a fixed value or could be determi
from an external potentialV0 at the boundary~i.e., at the
d-dimensional radiusR d) as

F ext5S V0

Rd
2D r 25

k

2
r 2, ~13!

where r is the general radial coordinate. By using th
Laplace operator ind dimensions, Eq.~12! becomes a one
dimensional problem,

1

r d21

d

dr S r d21
dF0~r !

dr D52
e

e
~c2e2e•[F ext(r )1F0(r )]/k BT

2c1ee•[F ext(r )1F0(r )]/k BT!.

~14!

It is of great importance that the solution guarante
charge neutrality, otherwise the internal potential wou
grow to infinity far outside the low dimensional structu
~LDS! ~i.e., this happens for one and two dimensions but
for three dimensions, where net charges gives a 1/r contri-
bution even in the oxide!. This would be guaranteed if we
use the following normalized distributions:

n5
VdN de

1w

E e1wdVd

, ~15!

p5
VdN de

2w

E e2wdVd

, ~16!

whereN d is the ~mean! doping density andw5e@F ext(r )
1F0(r )#/k BT for a simpler notation. Vd is the
d-dimensional volume $R1 ,pR2

2,4pR3
3/3% and dVd is

$dr,2prdr ,4pr 2dr% for one, two, and three dimensions~re-
member thatR15L/2, and that we only need to integrate
the half domain since the solution is symmetric!.

B. Boundary conditions

To solve Eq.~14!, we need to consider proper and mea
ingful boundary conditions onF0. First, we note that the
external potential is assumed to block both the electrons
the donors outside the LDS region, even though it does
appear in Eq.~13! explicitly, since we treat the oxide as
hard wall which then becomes our boundary and the exte
potential is assumed to vanish in this region as well. Stric
speaking we should useF(rW)→F ext(rW)1F0(rW)1E v(rW) for
the holes/donors, whereE v is the valance band
semiconductor-oxide potential andF(rW)→F ext(rW)1F0(rW)
0-4
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1E c(rW) for the electrons, whereE c is the conduction-band
semiconductor-oxide potential.

Now we consider the boundary conditions for the pa
bolic potential. Since the solution is symmetric aroundr
50 we know that the derivate ofF0 has to be zero at this
point. We may also choose the potential for the internal
tential to be zero at the boundary. The boundary conditi
could hence be summarized as

F0~R d!50, ~17!

F08~0!50. ~18!

Note also that the charge neutrality guarantees that
derivate ofF08(R d)50. Generally, for this kind of diffusion
problem, the boundary condition should be homogene
Neumann boundary conditions. This holds under the to
charge neutrality condition since

E E E
V
¹•~e¹F0!dv5E E

S
e¹F0•dSW 5

2eE E E
V
@p~rW !2n~rW !#dv50.

~19!

Hence,¹F0•n̂50 on the whole boundary surface. Th
boundary condition would then always guarantee that th
is no net electric field generated outside the LDS regi
Opposite, if the charge neutrality is violated, there would
exist a solution such that¹F0•n̂50 on the whole surface
and hence there will be electric field outside the LDS reg
~at least at some part of the surface!.

C. Numerical method

The nonlinear Poisson equation@Eq. ~14!# was solved nu-
merical in the following way. The internal potential is solve
self-consistently in an iterative way, and may be labeledF0,n
at thenth iteration. At the startn50, and we set the interna
potential F0,050 and then calculate the correspondi
charge densityr in the following way:

w5
e

k BT S kr2

2
1F0,nD , ~20!

r~r !5
eNdR d

d

d S e2w

E
0

R d
e2wr d21dr

2
e1w

E
0

R d
e1wr d21drD .

~21!

The expression for the neutral charge densityr is inserted
into Eq. ~14!. If the resulting solutionF0,n11 is large com-
pared to the external potential we take only a fraction of t
solution and add it to the external potential. For example,
d51 one finds that the analytic ‘‘start’’ solutionF0,1 has its
maximum value~at r 50) given by
16533
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max~F0,1!5
N dk BT

ek
•

2x

Ap

3
~12e2x2

!@ex2
er f~x!2er f i~x!#

er f~x!er f i~x!
, ~22!

where x5R/s and s5A2k BT/ek. Thus if max(F0,1)
!kR2/2 one can safely use a high increment fraction. Hen
to perform a controlled convergence we take an increm
ratio b to get the new (n11) potential

F0,n118 5bF0,n111~12b!F0,n , ~23!

where we useb50.1 for T<200 K andb50.5 for high
temperatures. This new internal potential is then used in
~20! and so on, until self-consistency is obtained, i.e.,
solution does not change significantly. We u
max(uF0,n11(r )2F0,n(r )u)/max@ uF0,n11(r )u#<1026 as the
stop criteria. It takes typically 20 and 40 iterations for co
vergence for high and low temperatures, respectively.

IV. NUMERICAL RESULTS

A. Profiles prepared at high temperature

We have solved Eq.~14! numerically ford51, 2, and 3
and the impurity profile has been studied as a function of
doping density, temperature, radius, and parabolic cons
It should be noted that the parabolic constant~when appro-
priate! is set to be the same in all Cartesian directions~i.e.,
we assume thatk does to not varies within the LDS region!.

Figure 2 shows the equilibrium impurity profile as a fun
tion of doping density atT51200 K for a QW, a QWr, and
a QD (d51, 2, and 3, respectively!. The confining radius in
the appropriate direction~s! is R515 nm which corresponds
to at least 50 monolayers since the lattice constant for m
semiconductors is of the order 0.5 nm. Furthermore, the

FIG. 2. The doping dependency of the equilibrium profiles
T51220 K, R515 nm, andk51/(1531029)2 V/m2. From left to
right d51, 2, and 3. From top to bottom, the mean doping densi
are:Nd51016, 1017, 1018, 1019, 1020 cm23. The local doping den-
sitiesp are given as fractions of the mean doping densityN d . As a
comparison, the squares indicates the ‘‘trivial’’ solution when t
self-consistent internal potentialF0 is ignored.
0-5
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ternal potential has a value of 0.5 V at the edge of the se
conductor. The squares in the figure show the ‘‘start’’ so
tion when the internal potential is equal to zero. The inter
potential is proportional to the doping density@e.g., see Eq.
~22!# and therefore a high doping density would genera
generate a high internal potential so that it partly or alm
could compensate for the external potential. In the oppo
case, when the doping density is very low, the internal
tential would be almost negligible in comparison with t
external potential. A careful inspection reveals that the so
tion for low doping densities (1017 cm23) could be replaced
with this ‘‘trivial’’ solution p}exp(2ekr2/2kBT). For me-
dium doping densities (1018 cm23), the doping profile looks
typically as a Gaussian distribution. For very high dens
(1020 cm23), the impurity profile is almost flat. If we work
with a high doping density and we want a Gaussian-l
distribution, we must significantly increase the parabolic p
tential constantk.

It is evident from Fig. 2 that increasingd results in a
sharper profile. This may be understood through Fig. 3 wh
the internal potentialF0(r ) is plotted and compared to th
external parabolic potential. The results show that the in
nal potential typically looks like cos2(pr/2R). Note also that
the electric field at the boundary is equal to zero, which i
feature of a charge neutral system. We can therefore be
sured that the numerical has been done correctly. For
shown ‘‘typical’’ case withT51220 K, N d51018 cm23, R
515 nm, and an external potential that equals 0.5 V at
semiconductor boundary, the internal potential decrea
slightly with d. As an average, the ‘‘response’’ to the extern
potential is roughly 1/3 of the external parabolic potenti
Note also that the thermal nonlinear response volt
Ndk BT/ek @defined in Eq.~22!# is 0.04 V for this case, while
the maximum internal potentials is roughly 0.15 V. This i
dicates that the problem has to be solved self-consiste
and that we can expect transient nonlinear phenomena.

The effect of the parabolic potential constantk is shown
in Fig. 4 when all other parameters are fixed. In this figu

FIG. 3. The self-consistent internal potentialF0 ~solid lines! is
plotted as a function ofr and is compared with the external~para-
bolic! potentialF ext ~dotted line! for d51, 2, and 3 from top to
bottom. The parameters used wereT51220 K, R515 nm, and
Nd51018 cm23 andk51/(1531029)2 V/m2.
16533
i-
-
l

t
te
-

-

y

e
-

re

r-

a
s-

he

e
es
l
.
e

tly

e

we also analyze the electronic distribution. Here,T
51220 K, N d51018 cm23, and R515 nm. The parabolic
potentials correspond to those that we apply 0–2 V at
edge. Evidently, no parabolic potential (k50) results in a
flat ~bulk! distribution. For high parabolic potentials the im
purity profile becomes sharply Gaussian formed. The e
tronic density becomes also more pushed up to the edge
k increases@i.e., this is more like an ‘‘inverse’’ Gaussia
1/exp(2x2)]. Note here that the difference between the
mensions appears in the electronic distribution. Due to
weight factorr d21 in the normalization integrals, a ‘‘low’’
electronic density close to the edge ford53 is equal to a
rather ‘‘high’’ electronic concentration ford51.

In Fig. 5 we see the effect of changing the size of the l
dimensional structure~i.e., this size is given by thed dimen-
sional radiusR d). The almost flat impurity distribution cor
responds toR d52 nm. It is particularly not realistic for a
QD, where we can expect quantum effects to be very imp
tant. In addition the number of total impurities would be ve
few for such a small structure. We can of course exp
quantum broadening to be important even in one and
dimensions. This figure shows, however, clearly the trend
small structure would require a large parabolic potential
create a Gaussian-like distribution, to overcome the str
Coulomb repulsion.

B. Theoretical zero temperature limit

The influence of temperature is shown in Fig. 6 for
average doping level of 1018 cm23 for the external potentia
that equals 0.5 V at the semiconductor boundary. An incre

FIG. 4. The donor profile~solid lines! and the electronic profile
~dotted lines! shown as a function of the parabolic potential co
stantk. Here,T51220 K, R515 nm, andNd51018 cm23. For the
donor profiles, the curvature becomes more sharply for stron
parabolic potentials, which is shown from bottom to top werek
takes the valuesk/k050, 0.5, 1.0, 1.5, and 2.0, wherek051/(15
31029)2 V/m2. For k50 the self-consistent solution is flat bot
for the donor profile and for the electronic profile~the dotted line is
not visible for this value ofk). The electronic profile becomes mor
and more pushed up to the LDS walls as we increase the para
potential constantk. Notice that the electronic densities differ be
tweend51, 2, and 3. This is due to the different volume eleme
used in the particle conservation calculation.
0-6
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in temperature tends to broaden the impurity profile, sin
the mean kinetic energy wants to spread out the impurit
For T52000 K, the profile has a paraboliclike profile, rath
than a Gaussian profile. In the low-temperature limit~which
is unrealistic for diffusion of impurities in semiconductor!
the donors are localized within a certain radius determi
by the doping density. Here we go down toT540 K which
is close to the condition for complete separation betw
donors and electrons. The corresponding electronic distr
tion is very closely located to the edge. Note that the ma
mum density~at T50 K) is directly proportional to the di-
mensionalityd. The shapes looks similar ford51, 2, and 3,
except that the ‘‘critical’’ radius is slightly larger ford53
than ford51.

FIG. 5. The doping density profiles as a function of the ‘‘radiu
in a QW, QWr, and QD are shown from left to right, whenT
51220 K, k51/(1531029)2 V/m2, and N d51018 cm23. From
bottom to top:R52, 5, 10, 15, 30 nm. The doping profile becom
almost flat for a very small radius. To compensate for this broad
ing one must increase the parabolic potential sufficiently.

FIG. 6. The temperature dependence of the doping profiles
shown forT540, 200, 400, 600, 800, 1000, and 2000 K, from t
to bottom. The used parameters areNd51018 cm23, R515 nm,
andk51/(1531029)2 V/m2. From left to rightd51, 2, and 3. The
thin lines indicates the theoretical distribution for the donors aT
50 K. The ‘‘separation’’ radii ford51, 2, and 3 are given by
r /R50.370, 0.430, and 0.498 and with the corresponding ma
mum doping densityp/N d52.70, 5.40, and 8.11. The profiles b
comes broader as the temperature increases.
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An analytic solution of Eq.~14! would not generally be
available for arbitrary dimensions. However, one could e
tract useful information of the system by taking the ze
temperature limit of the nonlinear Poisson equation. Inde
this is possible for an external parabolic potential as s
gested by an inspection of the numerical solutions in the
figure, when the temperature was decreased. The re
shows that the impurity density becomes flat inside a giv
radius, meanwhile the electronic density is pushed up ex
nentially to the boundary of the LDS, almost like a delt
dirac distribution. For this case, the positive donors and
negative electrons are completely separated from each o

The explanation is that a homogeneous distribution c
tributes with a parabolic internal potential, which exac
cancels the external parabolic potential. Since then and p
distributions are totally separated one could solve the pr
lem in each domain separately and match the internal po
tial at the separation radiusR0. For a homogeneous dono
density p0 in d dimensions, within the radius 0<r<R0
given as

p05N dS R d

R0
D d

, ~24!

we obtain the following solution of the Poisson equation:

F0~r !5a01a1Fd, hom~r !2
eNd

2de S R d

R0
D d

r 2, ~25!

whereFd, hom(r ) is the homogeneous solution ind dimen-
sions. Here we let the coefficienta150, to obtain a self-
consistent solution. Hence the sum of the external poten
(kr2/2) and the internal potential would be zero if

R0

R d
5S eNd

dek D 1/d

. ~26!

Thus the corresponding doping levelp0 would be given by

p0

N d
5

dek

eNd
. ~27!

Note that the conditionT→0 ensures that the electron
density within 0<r<R0 would be zero. The electronic dis
tribution n in the domainR0<r<Rd is in this temperature
limit zero everywhere, except atr 5R d , where it is infinite.
Its corresponding internal potential is therefore linear in t
region @i.e., it is given by Fd, hom(r )] except at r 5R d ,
where its derivate changes discontinuously. This solution
a limit of how high the~maximum! doping level can be and
what the maximal curvature of the doping profile could b
when some parameters are kept fixed. It is also interestin
note that the dimensionality of the system could be char
terized analytically with the numberd. For example, Eq.~27!
says that the maximal doping level is directly proportional
the dimensionalityd. Of course, the electronic part of thi
solution is unrealistic due to quantum broadening in the e
tronic subband ground state.
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V. CONCLUSIONS

In this paper we show that the diffusion theory of ioniz
impurities ~interacting with electrons! at high temperatures
could be explained with the same model as for holes
electrons using the semiclassical model for equilibrium se
conductors. In the ‘‘normal’’ semiconductor theory, the im
purity profile is, however, kept fixed, which is normally th
case for normal temperatures (T<1000 K). As the tempera
ture is kept high during the diffusion to create the spec
sharp~Gaussian like! impurity profile, a rapid cool down will
ensure that this profile would be ‘‘frozen’’ at room temper
ture ~and below! since the typical diffusion time depend
exponentially upon the temperature. An external parab
potential has been used to create an arbitrary sharp Gau
impurity profile. The sharpness of the profile depends, ho
ever, also on the doping density and the temperature.
show that at high temperatures, small radii and large dop
densities tends to broaden the impurity distribution. To ov
come the Coulomb repulsion and the thermal broadening
has to increase the parabolic constantk sufficiently.

We find that the maximum donor density is directly pr
portional to the dimensionality for the system, so that a Q
has a three times larger impurity concentration as a QW
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