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Class of quantum error-correcting codes saturating the quantum Hamming bound
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| develop methods for analyzing quantum error-correcting codes, and use these methods to construct an
infinite class of codes saturating the quantum Hamming bound. These codes kravelg —2 quantum bits
(qubitg in n=2! qubits and correct=1 error.[S1050-294{®6)09309-7

PACS numbd(s): 03.65.Bz, 89.80+h

[. INTRODUCTION | ). This process will correct the error even if the original
state is a superposition of the basis states:

Since Shof1] showed that it was possible to create quan-
tum error-correcting codes, there has been a great deal of
work on trying to create efficient codes. Calderbank and
Shor[2] and Steang3] demonstrated a method of converting
certain classical error-correcting codes into quantum ones
and Laflammeet al. [4] and Bennettet al. [5] produced
codes to correct one error that encode 1 qubit in 5 qubits.

Suppose we want to encode qubits in n qubits. The
space of code words is then som&dimensional subspace
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" An incoherent error can be modeled as an ensemble of
coherent errors. Since the above process corrects all coherent
errors, it will therefore also correct incoherent errors. After
the ancilla is measured and restored to its original state, the

of the full 2"-dimensional Hilbert space. The encodingsSyStem will once again be in a pure state. Sufficient and

. . ; necessary conditions for the system to form a quantum error-
|44) of the original X basis states form a basis for the spaceCorrecting code are given 5] and[6]. While errors acting

of code words. When_a coherent error occurs, the code stat%% different code words must produce orthogonal results,
are altered by some linear transformatidn different errors acting on the same code word can produce
nonorthogonal states, even in the nondegenerate case.
[y M| ). 1) We can use the definition of nondegenerate quantum
error-correcting codes to derive the quantum Hamming
We do not require thatl be unitary, which will allow us to bound [7] on their possible efficiency. It is not known
also correct incoherent errors. whether the quantum Hamming bound applies to degenerate
Typically, we only consider the possibility of errors that codes, although some recent evidence suggests that it does
act on no more thah qubits. An error that acts nontrivially not[8,9]. However, the breeding and hashing protocol pre-
on exactlyt qubits will be said to havéength t An error of ~ sented by Shor and Smolii8] and the random matrix en-
length 1 only acts on a two-dimensional Hilbert space, so theodings mentioned by LloyfB] do not give a 100% chance
space of 1-qubit errors i81,, the space of X2 matrices. of successful decoding, even if only a fixed finite number of
An error-correction process can be modeled by a unitarg@rrors occurs. There are no known degenerate codes that
linear transformation that entangles the erroneous stateglarantee success that violate the quantum Hamming bound.
M|4;) with an ancilla]A) and transforms the combination to | show in Appendix A that a certain class of degenerate

a corrected state codes to correct one error are, in fact, limited by the quantum
Hamming bound. The question for fully general degenerate
(M| ) ® | Ay ) ® | Ay) ) codes remains open, although Knill and Laflamii&g
| I .

showed that at least five qubits are necessary to correct one
error. Below, | will assume the code is nondegenerate.
Since there are three possible nontrivial 1-qubit errors, the
number of possible errofgl of lengthl on ann-qubit code
%13l(|n)- Each of the stateBl|;) must be linearly indepen-

: > ° . dent, and all of these different errors must fit into the
act in a linearly dependent way on the code words, while i "_dimensional Hilbert space of the qubits. Thus, for a

a nondegenerate code, all of the errors acting on the co e de that can correct up toerrors
words produce linearly independent states. Note that Shor’s '
original code[1] is a degenerate codphase errors within a t n
group of 3 qubits act the same wayvhile thek=1,n=5 2> 3I( )gzn_ (4)
codes[4,5] are nondegenerate. =0 |

At this point, we can measure the ancilla preparatory to
restoring it to its original state without disturbing the statesFor largen, this becomes

Note that the map1+—|Ay) must be linear, but not neces-
sarily one-to-one. If the map is injective, | will call the code
nondegenerateand if it is not, | will call the codedegener-

ate A degenerate code has linearly independent matrices th

k t
. —=<1-— —log,3—H(t/n), 5
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whereH (x) = — xlog,x—(1—x)log,(1—X). It is unclear whether every quantum error-correcting code
It is an interesting question whether it is generally pos-in the X, Y, Z basis can be completely described by its sta-
sible to attain this bound, or whether some more restrictivebilizer 7. Certainly, a large class of codes can be described
upper bound holds. Breeding and hashing methdds5)| in this way, and | do not know of any quantum error-
can asymptotically saturate the quantum Hamming bound focorrecting codes that cannot be so described.
large blocks, but have a small but nonzero probability of GivenT, we can figure out{, but it will be much easier
failure, even for only one error. For=1 andk=1, the quan- to find codes using the above property if we can gitland
tum Hamming bound4) impliesn=5, so the known 5-qubit deduce a spac& of code words. First | will discuss what
code does saturate the bound. Below, in Sec. Ill, | will givepropertiesH must have in order for it to be the stabilizer of
a class of codes saturating the boundtferl andn=2! (so  a spaceT, then | will discuss how to choosH so that the
k=n—j—2). For largen, the efficiencyk/n of these codes matrices of length 2 or less anticommute with one of its
approaches 1. In this sense, they are the analog of the claslements.
sical Hamming codes. To aid in the construction, in Sec. Il |  Clearly, H must be a subgroup @f. Also, if M € H, then
will present some methods for analyzing quantum errorM?|y)=M|¢)=|) for |4)eT, so M cannot square to
correcting codes. The method | present of using code stabi- 1. Finally, if M,N e 7, then
lizers to describe codes is also given, using slightly different
language, if11]. MN| ) =|), (9)
Throughout this paper, | will assume the basisMf, is
NM[)=[4), (10)

10 01 0 -1 1 0
':(o 1)’ X:(l o)’ Y:(l o)’ Z:(o —1)' [M,N][¢)=0. (11)

If {M,N}=0, then[M,N]=2MN, butM andN are unitary,
Some of the results will hold for other bases, but many willand cannot have 0 eigenvalues. This|,N]=0, and X
not. This basis has two important properties: all of the maimust be Abelian.
trices either commute or anticommute, and Thus,H must be Abelian and every element &f must
X?=—-Y%2=7%=]. square to 1, s@{ is isomorphic to Z,)? for somea. It turns
out that these are sufficient conditions for there to exist non-
Il. CODE STABILIZERS trivial T with stabilizerH, as long agH is not too big. The
) ) largest subspacé& with stabilizer H will have dimension
~ Suppose we have anqubit system. Let us write the ma- pn=a Tq show this, | will give an algorithm for constructing
tricesX, Y, andZ asX;, Y;, andZ; when they act on the 4 pasis forT. Intuitively, it is unsurprising that this should be
ith qubit. Letg be the group generated by alh®f these  ne dimension off, since each generator ®f has eigenval-
matrices: Since (Xi)2=(Z_i)2=I andYi=ZXj=—X{Zi, G yes=+1 and splits the Hilbert space in half.
has order 2”“ (for eachi, we can have, X;, Y;, or Z;, Consider a state that can be written as a tensor product of
plus a possible overall factor ef 1). The groupi has afew s and 1's. This sort of state is analogous to one word of a
other useful features: every elementdrsquares tat1 and  cjassical code, so | will call it guasiclassicaktate. Some-
if A,Beg, then eithe{A,B]=0 or{A,B}=0. times | will distinguish between quasiclassical states that dif-

The code words of the quantum error-correcting codeer by a phase and sometimes | will not. Now, given a qua-
span a subspack of the Hilbert space. The groupacts on  sjclassical statég), then

the vectors inT. Let H be the stabilizer off — i.e.,

H={MeG st MIp)=|pV]p)eT. (D )= 2 Mle) (12
Now supposeEe§ and IMeH st {E,M}=0. Then . ) o
V]| g)eT, is in T, since applying an element 6{ to it will just rear-

range the sum. | will call#) the seedof the code word
(|E|p)=(P|EM|gp)=—(d|ME|p)=—(¢|E|), (8) |¢). By the same argument, M e H, M|¢) acts as the seed
for the same quantum code word |#%. Not every possible
so{¢|E|#)=0. seed will produce a nonzero code word. For instance, sup-
The implications of this are profound. Suppdseand F pose H={l,Z,Z,} and we use|01) as our seed. Then
are two errors, both of length or less. ThenE|y) and  |4)=1]|01)+Z,Z,|01)=0.
F|) are orthogonal for ally),|#) € T wheneverF 'E anti- To find elements ofl, we try quasiclassical states until
commutes with anything ift{. This is the requirement for a we get one that produces nonzei), call it |i,). | will
nondegenerate code, so to find such a code, we just need $bow later that such a state will always exist. We can write
pick T and correspondin@{ so that every nontrivial matrix |y,) as a sum of quasiclassical states, any of which could act
in G of length less than or equal tat Zanticommutes with  as its seed. Pick a quasiclassical state that does not appear in
some member of{.

2In fact, | ¢) does not need to be a quasiclassical statd#drto
For n=1, G is just D4, the symmetry group of a square. For be in T. Any state will do, but it is easiest to use quasiclassical
largern, G is (D)™ (Z,)" . states.
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|#1) and does not produce 0, and use it as the seed for @assification of generators into type 1 and type 2 generators
second statéy,). Continue this process for all possible qua- does not depend on their order.

siclassical states. The stateg) will then form a basis for Since a seed produces a nontrivial final state if and only if
T. None of them share a quasiclassical state. it has an eigenvalue of 1 for all of the type 2 generators, all

To see that{|y;)} is a basis, imagine building up the of the statesy;) live in the joint +1 eigenspace of the
elements ofH{ by adding generators one by one. Supposea—b type 2 generators, which has dimensidh 2. wWe
H=(M{,M,, ... M,) (i.e., H is generated by, through can partition the quasiclassical basis states of this eigenspace
M.,). Let H, be the group generated by, throughM,, and into classes based on the;) in which they appear. Each
look at the seS, of quasiclassical states produced by actingpartition has size 2 so there are2 2 partitions, proving the
with the elements of, on some given quasiclassical seedclaimed dimension of. The state$y;) form a basis ofT.
|¢). The phases of these quasiclassical states will matter. We can simplify the task of finding seeds for a basis of
The next generatoM,, ; can do one of three thing$) it  quantum code words. First, note tH&=|00...0 is al-
can map the seed to some new quasiclassical state not Ways in the+1 eigenspace of any type 2 generator, so it can
S,, (ii) it can map the seed to plus or minus itself(idr) it always provide our first seed. Any other quasiclassical seed
can map the seed to plus or minus times some sta® in |¢) can be produced fron0) by operating with someN
other than the seed. | will call a generator that satisfies case G that is a product oK’s. For N|0) to act as the seed for
(i) a type 1 generator, and so on. a nontrivial stateN must commute with every type 2 gen-

In the first case, all of the elements®f, ,—H, willalso  erator in: If M, is a type 2 generator, aqtl,M;} =0, then
map the seed outside o§,: If NeH,,,—H,, then
N=MM,,,; for some MeH,. Then if =N|$)eS,, M;(N[0)) = —NM;[0)=—N|0). (14)
N|g)==M'|¢p) for some M'eH,. Then M, | ¢p)=
+M~IM’|¢) e S, which contradicts the assumption. Thus, But only quasiclassical states which have eigenvaiue
S=S, will always have size 2 whereb is the number of give nontrivial code words, sl must commute with the
type 1 generators. type 2 generators. Two such operatdisand N’ will pro-

In the second case, the new generator must act on eaghice seeds for the same quantum code word iff they differ by
qubit as the identity, as—1I, or asZ;, so type 2 generators an element of{—i.e., N~IN’ e H. This provides a test for
can be written as the product @fs. In principle, a type 2 When two seeds will produce different code words, and also
generator could be-1 times the product of’s, but the implies that the product of two operators producing different
factor of —1 slightly complicates the process of picking code words will also be a new code word. Thus, we can get
seeds, so for simplicity | will assume it is not present. Thea full set of 2~ seeds by taking products of-a operators

method of choosing that | give below will always create Ni, ... ,Ny_5. I will call the N; seed generatord do not
generators without such factors efl. know of any efficient method for determining tihg.
In the third case, wheh¢'y==M,,,|¢) is already in Once we have determined the generatdrsof H and the

S, , then there existdl e H, with N|¢)=|¢’). We can then seed generatod;, we can define a unitary transformation
useN~ M, , as a new generator insteadMf , ;, and since  to perform the encoding by

N™IM, .| ¢)=*]|¢), we are back to cadé). After adding

all of the generators, changing any of type 3 into type 2, we

1 Cc
) 1N €2 Ck
are left withb generators of type 1 ana—b generators of [c1ca, - - ’Ck>'_>§m II « FMONFNG, . NK0).

M; type 1
type 2. (15)
If one of the type 2 generatoid; gives a factor of—1
acting on the seed, the final state is O: However, | do not know of an efficient way to implement
this transformation.
_ TN — _ Now | turn to the next question: how can we pi¢k so
MEEDH Mle) (Mze:H M ) Mil ) MEE:H Ml#)=0. that all of the errors up to lengtht Z2anticommute with some
(13 element of it? Given Me(g, consider the function
. . . . fwiG—2Z,,
Otherwise|#) is nonzero. We can simplify the computation
of | ) by only summing over products of the type 1 genera- 0 if [M,N]=0,
tors, since the type 2 generators will only give us additional fu(N)= (16)

copies of the same sum. Thér) will be the sum of 2 1 if {M,N}=0.

guasiclassical statdsvith the appropriate signs ) ]

Is this classification of generators going to be the same fof N€n fy is a homomorphism. IfH=(M,M,, ... My),
all possible seeds? Anything that is a producZaf has all  then define a homomorphisig— (Z,)* by
guasiclassical states as eigenstates, and anything that is not a
product of Z's has no quasiclassical states as eigenstates. f(N):(fMl(N)'sz(N)’ s ’fMa(N))- 17)
Thus if a generator is type 2 for one seed, it is type 2 for all
seeds. Type 1 generators cannot become type 3 generatdslow, | will actually write f(N) as ana-bit binary string.
because then the matrid ~IN would be type 2 for some With this definition of f, f(N)=00...0 iff N commutes
states but not others. Thus, all of the stdi#$ are the sum  with everything inH. We therefore wish to pick{ so that
of 2° quasiclassical states, aad-b of the generators oi f(E) is nonzero for alE up to length 2. We can write any
are the product ofZ's. Note that this also shows that the suchE as the product oF andG, each of length or less,
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TABLE I. The values off(X;), f(Y;), andf(Z;) for n=8. TABLE Il. The generators o and seed generators for=8.

X, 01000 X, 01001 X; 01010 X, 01011 M, X, Xy Xz X4 Xs Xe¢ X X
z, 10111 ZzZ, 10000 Z, 10110 Z, 10001 M, Z, 2, Zs Z, Zs Zs Z; Zg

Y, 11111 Y, 11001 Y, 11100 Y, 11010 M, X, 1 Xz Zs  Ys  Z;  Yg
M, X I Ys Z, X5 | Y, Zg

Xs 01100 X 01101 X, 01110 Xg 01111 My Xe Z, L Y, 1 Ys X; Zg

Zs 10010 Z¢ 10101 Z; 10011 Zg 10100

Ys 11110 Y 11000 Y; 11101 Y 11011 N, X, X, | | | | | |
N, X, 1 Xg o | | | |
N X, | [ I Xg | | |

and f(E)#0 iff f(F)#f(G). Therefore, we need to pick
‘H so thatf(F) is different for each~ of lengtht or less.
We can thus find a quantum error-correcting code by firsgive different numbers for all th¥;’s is given in Appendix
choosing a different-bit binary number for eactX; and  B.
Z; . These numbers will be the valuesfdiX;) andf(z;) for Now that we have the numbers for all of the 1-qubit er-
someH which we can then determine. We want to pick theserors, we need to determine the generatwts, ... ,M, of
binary numbers so that the corresponding valued (f;) ‘H. Recall that the first digit of the binary numbers corre-
and errors of length 2 or moréf t>1) are all different. sponds to the first generator. Since the first digit of the num-
While this task is difficult in general, it is tractable for ber forX, is 0, M; commutes withX4; the first digits of the
t=1. In addition, even if all of thé(E) are different, we still numbers fory, andZ, are both 1, st anticommutes with
need to make sure that fixes a nontrivial space of code Y;andZ,. ThereforeM; is X; times the product of matrices
wordsT by checking that{ is Abelian and that its elements which only act on the other qubits. Similarly, the first digit of
square to+1. the number for eaclx; is 0 and the first digits foiy; and
Z; are both 1, sdM;=X;X,, ... X, (this is true even for
IIl. THE CODES j>3). Using the same principle, we can work out all of the

_ o generators.
Now I will use the method described in Sec. Il to con- = The results fom=8 are summarized in Table II. Note

struct an optimal nondegenerate quantum error-correctinghat all of these generators square4d and that they all
code forn=2!. The quantum Hamming bourd) tells us  commute with each other. A proof of this fact fpr-3 is
thatk<n—j—2, so we takea=j+2 andj=3. | will also  gjyen in Appendix C. Thus we have a code that encodes 3
show explicitly the construction fon=8. Steang12] has  qgubits in 8 qubits, or more generally—j—2 qubits in 2

classical error-correcting codes, and Calderbehll. [11]  remainingj+1 generators are type 1.

have found a differenk=3, n=8 code. Table 1l also gives seed generators for 8. We can see
We want to pick different (+2)-bit binary numbers for  jpmediately that they all commute witid ,, the type 2 gen-
Xi andZ; (i=1,...n) so that the numbers for;, which  erator. It is less obvious that they all produce seeds for dif-

are given by the bitwise XOR of the numbers %y and  ferent states, but using them produces eight different quan-
Z;, are also all different. The numbers fo==8 are shown in  tym code words, listed in Table IIl, so they do, in fact, form

Table I. In order to distinguish between thés, theY’s, and 3 complete list of seed generators. This partly answers the
the Z’s, we will devote the first two bits to enCOding which question of how often we can saturate the guantum Ham-
of the three it is, and the remainingoits will encode which  ming bound by showing that for one error, it can be saturated
qubiti the error acts otalthough this encoding will depend for arbitrarily largen. Although the methods given above

on whether it is arX, a Y, or aZ). may help somewhat, finding optimal codes to correct more

The first two bits are 01 for aX, 10 for aZ, and 11 for than one error remains a difficult task.
aY, as required to maké a homomorphism. For th¥;’s,
the lastj bits will just form the binary number for—1, so
X;1is 0100...0, anK, is 0111 ... 1. Thencoding for the
last j bits for theZ;’s is more complicated. We cannot use | would like to thank John Preskill for helpful discussions.
the same pattern, or all of th§’s would just have all 0’s for  This work was supported in part by the U.S. Department of
the lastj bits. Instead of counting O, 1, 2, 3,. ., weinstead  Energy under Grant No. DE-FG03-92-ER40701.
count 0, O, 1, 1, 2, 2,.... Writing this in binary will not
make all of the numbers for th&'s different, so what we do
instead is to write them in binary and then take the bitwise
NOT of one of each pair. This does make all of tBks
different. We then determine what the numbersYoprare.

How we pick which member of the pair to invert will While there is no known proof that degenerate quantum
determine whether all of the numbers fgr are different.  error-correcting codes cannot beat the quantum Hamming
For evenj, we can just take the NOT for all odd but for  bound for arbitraryt andn, | will present a proof that codes
oddj, we must take the NOT for oddwheni <2"landfor to correctjust one error are, in fact, limited by that bound, so
eveni wheni>21"1. A general proof that this method will long as the only source of degeneracies is when linearly in-

ACKNOWLEDGMENTS

APPENDIX A: PROOF THAT CERTAIN DEGENERATE
CODES CANNOT DEFEAT THE QUANTUM
HAMMING BOUND FOR t=1
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TABLE lll. The quantum code words for the=8 code.

| o) = 00000000+ 1111111} +|1010010}+ 10101010+ | 10010110+ |01011010
+|01010103+|0110100}+|0000111}+|0011001}+ 00111100
+11110000+ 11001100+ |1100001}+|10011003+ 01100110
|,)=111000000+]00111113+|0110010}+]01101010—|01010110
+]10011010+ 1001010} —|1010100}+ 11001113~ |1111001}
~|11111109+ 00110000~ |00001109— |00000011— 0101100} 10100110
|4#,)=110100000+]01011113+|0000010}— 00001010+ ]00110110
+|11111010—|1111010}+|11001003— 10101113+ |1001001}
~|10011100— 01010009+ |01101109—|01100011—|0011100}— 11000110
|3 =101100000+ 1001111} +|1100010}— 11001010 |11110110
+]00111019- 00110101 —|0000100} 01101113 —0101001}
+|01011100— 10010000~ | 10101100+ |10100013+|1111100}+ 00000110
|44y =110001000+]01110113—|0010110}+|00100010+]00011110
—|11010010+|1101110}+|1110000%— 1000011}~ |1011101}
+]10110100— |01111000— 01000100+ |0100101}— 0001000} — 11101110
|#5)=101001000+ 10110113~ |1110110}+|11100010—|11011110
—|00010019+|0001110}—|0010000%—|0100011}+|0111101}
~|01110100— 10111000+ |10000100— 10001013 +|1101000}+ 00101110
|46y =100101000+]11010111— 1000110}~ 10000010+ ]10111110
—]01110019— 01111103 +]0100000}+ 00100111 —|0001101}
—|00010100+|11011000—|11100100—|11101013+|1011000}+ 01001110
|47y =111101000+]00010111—|0100110}— 01000010 |01111110
~|10110010—|1011110}—|1000000}+ 11100113+ |1101101}+[11010100+|00011000
+|00100100+]00101013—]01110003—|10001110

dependent error matrices map a code word into a one- degeneracy conditions has dimension at mdst' 2To fit

dimensional subspace. For instance, if three different errorall the state€|y;) inside it, if |<n/2, we must have

map code words into a single two-dimensional subspace, this _

condition will not generally be satisfied. [1+3(n—2h)]2"<2"", (A2)
Given a degenerate quantum error-correcting code of thigyr

type that corrects one error, we can list a number of condi-

tions that describe which errors are degenerate. | will call ksn—I—logy[1+3(n—2I)]=g(l). (A3)

these relationsiegeneracy condition#és with the stabilizers 5.1 =0 this becomes the quantum Hamming bound. Now
in Sec. Il, each independent condition will reduce the space ’ ’

of possible code words by a factor of 2. Note that | am not dg 6/In2
requiring that the basis for errors be tKeY, Z basis | have a1 1+ 1+3(n-20)" (A4)
used in the rest of the paper. _ _
Suppose there arke different degeneracy conditions de- Thereforeg(l) is decreasing for
scribing the code. Each one equates two one-qubit errors, so 6
at most 2 qubits are affected by the degenerate errors. The 1+3(n-21)=—, (A5)
errors on the remaining— 2| qubits must produce mutually In2
orthogonal states. There arer3{2l) possible errors affect- n 1 1
ing those qubits. I< 5~ ( T E) (AB)

Furthermore, errors on those qubits commute with the de-

generate errors, since they act on different qubits, so ifrhys, the quantum Hamming bound holds Fst(n—3)/2.
M|[#)=Nly;) andE is an error that acts on a qubit unaf- For|>(n—3)/2, we still havek<n—1<(n+3)/2. This au-

fected by the degenerate errors, tomatically satisfies the quantum Hamming bound for
n=13 (see Table IV.
ME|¢i)=EM|4;)=EN| ;) =NE| ;). (A1) For n<13, I>(n—3)/2, we need a different argument.

Whenl<n-1, there must always be at least one degeneracy
Thus, the stat&| ;) still satisfies the same set of degeneracycondition that relates errors on two qubits that are unaffected
conditions. The space of states that satisfy the given set dfy any other degeneracy conditions. There are three possible
errors on each qubit, and only one pair of them are going to
produce the same results, so there are still five different er-
3The proof that the dimension df is 2"~' given in Sec. Il only ~ rors, plus the possibility of no error. As above, these errors
works for theX, Y, Z basis, but for this appendix, | only need the will remain within the space that satisfies the otherl
weaker result that the dimension @f is at least halved by any degeneracy conditions, so
degeneracy condition that constrains a qubit unaffected by any of
the other degeneracy conditions. This should be self-evident. (1+5)2k<2n- (-1, (A7)
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TABLE IV. The maximumk allowed by the quantum Hamming TABLE V. The first four bits(of the lastj) of the numbers for
bound forn<13. Xi, Yi, andZ;. The pth row corresponds to thpth bit and the
columns in thepth row correspond to the possible values for the

n k first p bits of i. For Y; and Z;, the actual numbers require an
5 1 additional XOR with the parity or reverse of the parityiof
6 1
7 2 i
8 3 0 1
9 4 0 1 0 1
10 > 0 1 0 1 0 1 0 1
11 5 0 1 01010101010 1 0 1
12 6
13 7 Z;: Parity XOR
0 0
or ksn-—Il+(1-log6) (i.e., k=sn—1-2). When 0 0 1 1
[>(n—23)/2, this meank<(n—1)/2. Applying this condi- 0 0 1 1 0 0 1 1

tion for n=<12 restricts violations of the quantumHammingp o0 1 17 0 o0 1 1 0 0 1 1 0 O 1 1
bound ton<6, specificallyn=6 andl=2, andn=4 and

|=1. For these two cases, we can directly apply &) to Y, : Parity XOR
see that fom=6 andl=2, k<1, in accordance with the
guantum Hamming bound, and far=4 andl=1, k=0. 0 1
Finally, for|=n—1, there must be at least one qubit that 0 1 1 0
is only affected by a single degeneracy condition. All three 0 1 1 0 0 1 1 0

errors on this qubit commute with the other2 degeneracy 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 O
conditions, so

k n—(n—-2)
(1+3)2°<2 ' (A8) j odd or different(for j even.

Thereforek=0, and the quantum Hamming bound holds for ~ Pick some bit string starting with 0. There will be an
any degenerate quantum code where linearly independent dr=n/2 such thaty; has that number. Which will have the
rors can only map code words into a one-dimensional subcomplementary bitstring? If we take the binary representa-
space. tion of i, it will begin with a 0 and the binary representation
of i” will begin with a 1% The next digit ofi can be either 0
or 1, and from Table V we can seé will have the same
value for this digit. The third digits of andi’ will be op-

The construction of the numbers f& andZ, immedi-  POsite again. In generah 0 in therth digit of i ori’ means
ately demonstrates that they are all different. However, it ighe two squares relevant to the next digit will read 01, while
not as clear that all of the numbers for thes, which are @ 1 in therth digit will mean the two squares for the next
determined by the numbers for the's andZz;’s, will also be  digit will read 10. Thus, i andi’ agree in the'th digit, they
different. The first two bits just enforce the requirement thatwill disagree in the next digit, and vice versa. Thusand

APPENDIX B: PROOF THAT THE NUMBERS
FOR Y; ARE ALL DIFFERENT

anyY; is different from anX or aZ, so | will only consider i’ agree on even-numbered digits and disagree on odd-
the last] bits. All references to bit number in this appendix humbered digits.

will refer to a position within the las} bits, so bit number This means the last digit agrees foeven and disagrees
“1" is actually bit 3, and bit “I” is actually bit | +2. for j odd. Therefore, the XOR will not mak¢, the same as

Consider the pictorial representation of the algorithm toYi'—it will either reverse both of them or neither of them.
pick the errors’ binary numbers given in Table V. The num-This explains why different rules for odd and evpmwere
bers given forX; are the actual numbers that appear. Fornecessary.

Y; andZ;, we need to take an XOR with the parity ioffor APPENDIX C: PROOF THAT THE GENERATORS

j even ori<2/71), or an XOR with the reverse of the parity OF H COMMUTE

of i (for j odd andi>2/"1). We can see that before we

apply the XOR, the number fo¥; encodes in a unique We can also use Table V to help us understand what the
fashion, since ifi andi’ first differ in therth bit, then the generatoraMq, ... M, of H look like. M, is always the

numbers forY; andY;, will also differ in therth bit. The  product of alinX;’s, andM, is always the product of all the

only way we could get two of the numbers to be the sameZ;’s. The other generators are a bit more complicated, but

would be if the XOR operation reverses one of a pair thastill behave systematically. As we advantethey cycle

would normally have complementary values in all bits. through the sequence—Z—X—Y, with a change every
Does this ever happen? Given a numbiY;) for 2/-(~2) qubits for generatoM,. In addition, the NOT

i<n/2, the number with complementary bits must appear for

i>n/2, since the first digit does not change until then. The

XOR will therefore collapse these two numbers into one 4 am ignoring the special case ofn/2, which works on the

whenever the parity of the appropriats is the samdfor  same principle after the first digit of
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- TABLE VI. Comparisons ofM; and Mg in blocks of size for the normal and reversed rows. We also need to consider
2176572 when the normal cycle applies and when it is reversed by few special cases. Wher: 3, the generator never reaches

a NOT. the second half of the cycle, so we need to count up the
disagreements only in the first half of the cycle. When
r=s+1: s=a=j+2, the block size is 1, so the NOT either affects the
M, norm | | 7 7 X X v Y whole block or it does not affect any of it. In this case, we
M norm | 7 X v | z X v need to count disagreements only on every other block. For

evenj, count the normal disagreements on even-numbered
blocks and the reversed disagreements on odd-numbered

M, rev X X Y Y | | VA Z ] .
M.rev X v | 7 X v | 7 blocks. For oddj, we must count normal disagreements on
s even-numbered blocks in the first half and odd-numbered
f—st2 blocks in the second half; count reversed disagreements on
odd-numbered blocks in the first half and even-numbered
M,norm | | | | Z Z Z Z X X X X Y Y Y Y blocks inthe second half. We must also consider the com-
M¢norm | Z X Y | Z X Y | Z X Y | zZ X Y Dbined special case of=3, s=a.

Fors=r+1, the general case gives four blocks with nor-
YYI I 1 12z22z22Z2Z mal disagreements and two blocks with reversed disagree-
| Z XY | zZ XY | z Mments. Wherr=3, there are two blocks with normal dis-
agreements and two blocks with reversed disagreements.
Whens=a, and] is even, there are two blocks with normal
switchesl <X andZ«Y whenever it applies — odd qubits disagreements and no blocks with reversed disagreements.
for evenj; odd qubits for the first half and even qubits for when s=a and j is odd, there are also two blocks with
the second half for odd. This immediately implies that normal disagreements and no blocks with reversed disagree-
everyM, for r>2 has equal numbers ofs, Y's, Z's, and  ments. Becausa=5, we do not need to consider the com-
I's, namely, 22 of each. Sincg=3, this means there are bined special case. Thus, whenewerr +1, there are an
an even number of’s, sOM?=+1. even number of disagreements dvg and M commute.

Now, do the generators commute? Any time two genera- For s=r+2, the general case gives six blocks with nor-
tors have nontrivial but different operations on a qubit, wemal disagreements and six blocks with reversed disagree-
get a factor of—1 when we commute them. Therefore, we ments. For =3, there are two blocks with normal disagree-
can determine iM, andM g commute by counting the qubits ments and four blocks with reversed disagreements. For
on which they differ and neither is the identity. If this count s=a, j even, there are four blocks with normal disagree-
is even, they commute; if it is odd, they do not. ments and two blocks with reversed disagreements. For

SinceM; is all X's, it disagrees wittM, (for r=3) when-  s=a, j odd, there are two blocks with normal disagreements
everM, has aY or aZ. M, has 272 of each, so we get and two blocks with reversed disagreements. Fer3,

2171 factors of —1, and[M;,M,]=0. Similarly, M, dis-  s=a, it does not matter if is even or odd, since we only
agrees withM, on X’s andY’s, producing 2-2+2172 fac-  consider the first half. In this case, there is one block with a
tors of —1, and[M,,M,]=0 also.M, andM, disagree on normal disagreement and one block with a reversed disagree-
every qubit, and since there are an even number of qubitsnent. In all of these cases, thwal number of disagreements
[M;,M5]=0. is even, so fos=r+2,[M,,M;]=0.

Forr,s=3, bothM, andM follow the pattern described For s>r+2, generatoM, completes 2 "2 cycles be-
above. | will consider the cases=r+1, s=r+2, and fore M, advances to the next step in the cycle. This means
s>r+2. Table VI compared, and Mg on blocks of size we can just find the number of disagreements by multiplying
21-(572), the number of disagreements &« r +2 by 257" ~2. We can

In general, half of each block will be normal and half will do this even for the special cases, since the cycle repeats
be reversed by a NOT. Therefore, the number of factors oéfter four steps, which does not change the parity. Thus,
—1 from commuting M, and Mg will generally be there will always be an even number of disagreements, and
217(73) times the total number of nontrivial disagreementsall of the generators of{ commute.

M,rev. X X X X
Mgrev X Y | Z
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