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I develop methods for analyzing quantum error-correcting codes, and use these methods to construct an
infinite class of codes saturating the quantum Hamming bound. These codes encodek5n2 j22 quantum bits
~qubits! in n52 j qubits and correctt51 error.@S1050-2947~96!09309-2#

PACS number~s!: 03.65.Bz, 89.80.1h

I. INTRODUCTION

Since Shor@1# showed that it was possible to create quan-
tum error-correcting codes, there has been a great deal of
work on trying to create efficient codes. Calderbank and
Shor@2# and Steane@3# demonstrated a method of converting
certain classical error-correcting codes into quantum ones,
and Laflammeet al. @4# and Bennettet al. @5# produced
codes to correct one error that encode 1 qubit in 5 qubits.

Suppose we want to encodek qubits in n qubits. The
space of code words is then some 2k-dimensional subspace
of the full 2n-dimensional Hilbert space. The encodings
uc i& of the original 2

k basis states form a basis for the space
of code words. When a coherent error occurs, the code states
are altered by some linear transformationM :

uc i&°M uc i&. ~1!

We do not require thatM be unitary, which will allow us to
also correct incoherent errors.

Typically, we only consider the possibility of errors that
act on no more thant qubits. An error that acts nontrivially
on exactlyt qubits will be said to havelength t. An error of
length 1 only acts on a two-dimensional Hilbert space, so the
space of 1-qubit errors isM2, the space of 232 matrices.

An error-correction process can be modeled by a unitary
linear transformation that entangles the erroneous states
M uc i& with an ancillauA& and transforms the combination to
a corrected state

~M uc i&)^ uA&°uc i& ^ uAM&. ~2!

Note that the mapM°uAM& must be linear, but not neces-
sarily one-to-one. If the map is injective, I will call the code
nondegenerate, and if it is not, I will call the codedegener-
ate. A degenerate code has linearly independent matrices that
act in a linearly dependent way on the code words, while in
a nondegenerate code, all of the errors acting on the code
words produce linearly independent states. Note that Shor’s
original code@1# is a degenerate code~phase errors within a
group of 3 qubits act the same way!, while thek51,n55
codes@4,5# are nondegenerate.

At this point, we can measure the ancilla preparatory to
restoring it to its original state without disturbing the states

uc i&. This process will correct the error even if the original
state is a superposition of the basis states:

SM(
i51

2k

ci uc i& D ^ uA&°S (
i51

2k

ci uc i& D ^ uAM&. ~3!

An incoherent error can be modeled as an ensemble of
coherent errors. Since the above process corrects all coherent
errors, it will therefore also correct incoherent errors. After
the ancilla is measured and restored to its original state, the
system will once again be in a pure state. Sufficient and
necessary conditions for the system to form a quantum error-
correcting code are given in@5# and@6#. While errors acting
on different code words must produce orthogonal results,
different errors acting on the same code word can produce
nonorthogonal states, even in the nondegenerate case.

We can use the definition of nondegenerate quantum
error-correcting codes to derive the quantum Hamming
bound @7# on their possible efficiency. It is not known
whether the quantum Hamming bound applies to degenerate
codes, although some recent evidence suggests that it does
not @8,9#. However, the breeding and hashing protocol pre-
sented by Shor and Smolin@8# and the random matrix en-
codings mentioned by Lloyd@9# do not give a 100% chance
of successful decoding, even if only a fixed finite number of
errors occurs. There are no known degenerate codes that
guarantee success that violate the quantum Hamming bound.
I show in Appendix A that a certain class of degenerate
codes to correct one error are, in fact, limited by the quantum
Hamming bound. The question for fully general degenerate
codes remains open, although Knill and Laflamme@6#
showed that at least five qubits are necessary to correct one
error. Below, I will assume the code is nondegenerate.

Since there are three possible nontrivial 1-qubit errors, the
number of possible errorsM of length l on ann-qubit code
is 3l( l

n). Each of the statesM uc i& must be linearly indepen-
dent, and all of these different errors must fit into the
2n-dimensional Hilbert space of then qubits. Thus, for a
code that can correct up tot errors,

2k(
l50

t

3l S nl D<2n. ~4!

For largen, this becomes

k

n
<12

t

n
log232H~ t/n!, ~5!*Electronic address: gottesma@theory.caltech.edu
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whereH(x)52xlog2x2(12x)log2(12x).
It is an interesting question whether it is generally pos-

sible to attain this bound, or whether some more restrictive
upper bound holds. Breeding and hashing methods@10,5#
can asymptotically saturate the quantum Hamming bound for
large blocks, but have a small but nonzero probability of
failure, even for only one error. Fort51 andk51, the quan-
tum Hamming bound~4! impliesn>5, so the known 5-qubit
code does saturate the bound. Below, in Sec. III, I will give
a class of codes saturating the bound fort51 andn52 j ~so
k5n2 j22). For largen, the efficiencyk/n of these codes
approaches 1. In this sense, they are the analog of the clas-
sical Hamming codes. To aid in the construction, in Sec. II I
will present some methods for analyzing quantum error-
correcting codes. The method I present of using code stabi-
lizers to describe codes is also given, using slightly different
language, in@11#.

Throughout this paper, I will assume the basis ofM2 is

I5S 1 0

0 1D , X5S 0 1

1 0D , Y5S 0 21

1 0 D , Z5S 1 0

0 21D .
~6!

Some of the results will hold for other bases, but many will
not. This basis has two important properties: all of the ma-
trices either commute or anticommute, and
X252Y25Z25I .

II. CODE STABILIZERS

Suppose we have ann-qubit system. Let us write the ma-
tricesX, Y, andZ asXi , Yi , andZi when they act on the
i th qubit. LetG be the group generated by all 3n of these
matrices.1 Since (Xi)

25(Zi)
25I andYi5ZiXi52XiZi , G

has order 22n11 ~for eachi , we can haveI , Xi , Yi , or Zi ,
plus a possible overall factor of21). The groupG has a few
other useful features: every element inG squares to61 and
if A,BPG, then either@A,B#50 or $A,B%50.

The code words of the quantum error-correcting code
span a subspaceT of the Hilbert space. The groupG acts on
the vectors inT. LetH be the stabilizer ofT — i.e.,

H5$MPG s.t. M uc&5uc&;uc&PT%. ~7!

Now supposeEPG and 'MPH s.t. $E,M %50. Then
;uc&,uf&PT,

^fuEuc&5^fuEMuc&52^fuMEuc&52^fuEuc&, ~8!

so ^fuEuc&50.
The implications of this are profound. SupposeE andF

are two errors, both of lengtht or less. ThenEuc& and
Fuf& are orthogonal for alluc&,uf&PT wheneverF†E anti-
commutes with anything inH. This is the requirement for a
nondegenerate code, so to find such a code, we just need to
pick T and correspondingH so that every nontrivial matrix
in G of length less than or equal to 2t anticommutes with
some member ofH.

It is unclear whether every quantum error-correcting code
in theX, Y, Z basis can be completely described by its sta-
bilizer H. Certainly, a large class of codes can be described
in this way, and I do not know of any quantum error-
correcting codes that cannot be so described.

GivenT, we can figure outH, but it will be much easier
to find codes using the above property if we can pickH and
deduce a spaceT of code words. First I will discuss what
propertiesH must have in order for it to be the stabilizer of
a spaceT, then I will discuss how to chooseH so that the
matrices of length 2t or less anticommute with one of its
elements.

Clearly,H must be a subgroup ofG. Also, if MPH, then
M2uc&5M uc&5uc& for uc&PT, so M cannot square to
21. Finally, if M ,NPH, then

MNuc&5uc&, ~9!

NMuc&5uc&, ~10!

@M ,N#uc&50. ~11!

If $M ,N%50, then@M ,N#52MN, butM andN are unitary,
and cannot have 0 eigenvalues. Thus,@M ,N#50, andH
must be Abelian.

Thus,H must be Abelian and every element ofH must
square to 1, soH is isomorphic to (Z2)

a for somea. It turns
out that these are sufficient conditions for there to exist non-
trivial T with stabilizerH, as long asH is not too big. The
largest subspaceT with stabilizerH will have dimension
2n2a. To show this, I will give an algorithm for constructing
a basis forT. Intuitively, it is unsurprising that this should be
the dimension ofT, since each generator ofH has eigenval-
ues61 and splits the Hilbert space in half.

Consider a state that can be written as a tensor product of
0’s and 1’s. This sort of state is analogous to one word of a
classical code, so I will call it aquasiclassicalstate. Some-
times I will distinguish between quasiclassical states that dif-
fer by a phase and sometimes I will not. Now, given a qua-
siclassical stateuf&, then

uc&5 (
MPH

M uf& ~12!

is in T,2 since applying an element ofH to it will just rear-
range the sum. I will calluf& the seedof the code word
uc&. By the same argument, ifMPH, M uf& acts as the seed
for the same quantum code word asuf&. Not every possible
seed will produce a nonzero code word. For instance, sup-
pose H5$I ,Z1Z2% and we useu01& as our seed. Then
uc&5I u01&1Z1Z2u01&50.

To find elements ofT, we try quasiclassical states until
we get one that produces nonzerouc&, call it uc1&. I will
show later that such a state will always exist. We can write
uc1& as a sum of quasiclassical states, any of which could act
as its seed. Pick a quasiclassical state that does not appear in

1For n51, G is just D4, the symmetry group of a square. For
largern, G is (D4)

n/(Z2)
n21.

2In fact, uf& does not need to be a quasiclassical state foruc& to
be in T. Any state will do, but it is easiest to use quasiclassical
states.
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uc1& and does not produce 0, and use it as the seed for a
second stateuc2&. Continue this process for all possible qua-
siclassical states. The statesuc i& will then form a basis for
T. None of them share a quasiclassical state.

To see that$uc i&% is a basis, imagine building up the
elements ofH by adding generators one by one. Suppose
H5^M1 ,M2 , . . . ,Ma& ~i.e.,H is generated byM1 through
Ma). LetHr be the group generated byM1 throughMr , and
look at the setSr of quasiclassical states produced by acting
with the elements ofHr on some given quasiclassical seed
uf&. The phases of these quasiclassical states will matter.
The next generatorMr11 can do one of three things:~i! it
can map the seed to some new quasiclassical state not in
Sr , ~ii ! it can map the seed to plus or minus itself, or~iii ! it
can map the seed to plus or minus times some state inSr
other than the seed. I will call a generator that satisfies case
~i! a type 1 generator, and so on.

In the first case, all of the elements ofHr112Hr will also
map the seed outside ofSr : If NPHr112Hr , then
N5MMr11 for some MPHr . Then if 6Nuf&PSr ,
Nuf&56M 8uf& for some M 8PHr . Then Mr11uf&5
6M21M 8uf&PSr , which contradicts the assumption. Thus,
S5Sa will always have size 2b, whereb is the number of
type 1 generators.

In the second case, the new generator must act on each
qubit as the identityI , as2I , or asZi , so type 2 generators
can be written as the product ofZ’s. In principle, a type 2
generator could be21 times the product ofZ’s, but the
factor of 21 slightly complicates the process of picking
seeds, so for simplicity I will assume it is not present. The
method of choosingH that I give below will always create
generators without such factors of21.

In the third case, whenuf8&56Mr11uf& is already in
Sr , then there existsNPHr with Nuf&5uf8&. We can then
useN21Mr11 as a new generator instead ofMr11, and since
N21Mr11uf&56uf&, we are back to case~ii !. After adding
all of the generators, changing any of type 3 into type 2, we
are left withb generators of type 1 anda2b generators of
type 2.

If one of the type 2 generatorsMi gives a factor of21
acting on the seed, the final state is 0:

(
MPH

M uf&5S (
MPH

M DMi uf&52 (
MPH

M uf&50.

~13!

Otherwiseuc& is nonzero. We can simplify the computation
of uc& by only summing over products of the type 1 genera-
tors, since the type 2 generators will only give us additional
copies of the same sum. Thenuc& will be the sum of 2b

quasiclassical states~with the appropriate signs!.
Is this classification of generators going to be the same for

all possible seeds? Anything that is a product ofZ’s has all
quasiclassical states as eigenstates, and anything that is not a
product of Z’s has no quasiclassical states as eigenstates.
Thus if a generator is type 2 for one seed, it is type 2 for all
seeds. Type 1 generators cannot become type 3 generators
because then the matrixM21N would be type 2 for some
states but not others. Thus, all of the statesuc i& are the sum
of 2b quasiclassical states, anda2b of the generators ofH
are the product ofZ’s. Note that this also shows that the

classification of generators into type 1 and type 2 generators
does not depend on their order.

Since a seed produces a nontrivial final state if and only if
it has an eigenvalue of11 for all of the type 2 generators, all
of the statesuc i& live in the joint 11 eigenspace of the
a2b type 2 generators, which has dimension 2n2(a2b). We
can partition the quasiclassical basis states of this eigenspace
into classes based on theuc i& in which they appear. Each
partition has size 2b, so there are 2n2a partitions, proving the
claimed dimension ofT. The statesuc i& form a basis ofT.

We can simplify the task of finding seeds for a basis of
quantum code words. First, note thatu0&5u00 . . . 0& is al-
ways in the11 eigenspace of any type 2 generator, so it can
always provide our first seed. Any other quasiclassical seed
uf& can be produced fromu0& by operating with someN
PG that is a product ofX’s. ForNu0& to act as the seed for
a nontrivial state,N must commute with every type 2 gen-
erator inH: If Mi is a type 2 generator, and$N,Mi%50, then

Mi~Nu0&)52NMi u0&52Nu0&. ~14!

But only quasiclassical states which have eigenvalue11
give nontrivial code words, soN must commute with the
type 2 generators. Two such operatorsN andN8 will pro-
duce seeds for the same quantum code word iff they differ by
an element ofH—i.e.,N21N8PH. This provides a test for
when two seeds will produce different code words, and also
implies that the product of two operators producing different
code words will also be a new code word. Thus, we can get
a full set of 2n2a seeds by taking products ofn2a operators
N1 , . . . ,Nn2a . I will call the Ni seed generators. I do not
know of any efficient method for determining theNi .

Once we have determined the generatorsMi of H and the
seed generatorsNi , we can define a unitary transformation
to perform the encoding by

uc1c2 , . . . ,ck&°
1

2b/2 )
Mi type 1

~ I1Mi !N1
c1N2

c2 , . . . ,Nk
cku0&.

~15!

However, I do not know of an efficient way to implement
this transformation.

Now I turn to the next question: how can we pickH so
that all of the errors up to length 2t anticommute with some
element of it? Given MPG, consider the function
f M :G→Z2,

f M~N!5H 0 if @M ,N#50,

1 if $M ,N%50.
~16!

Then f M is a homomorphism. IfH5^M1 ,M2 , . . . ,Ma&,
then define a homomorphismf :G→(Z2)

a by

f ~N!5„f M1
~N!, f M2

~N!, . . . ,f Ma
~N!…. ~17!

Below, I will actually write f (N) as ana-bit binary string.
With this definition of f , f (N)500 . . . 0 iff N commutes
with everything inH. We therefore wish to pickH so that
f (E) is nonzero for allE up to length 2t. We can write any
suchE as the product ofF andG, each of lengtht or less,
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and f (E)Þ0 iff f (F)Þ f (G). Therefore, we need to pick
H so thatf (F) is different for eachF of length t or less.

We can thus find a quantum error-correcting code by first
choosing a differenta-bit binary number for eachXi and
Zi . These numbers will be the values off (Xi) and f (Zi) for
someH which we can then determine. We want to pick these
binary numbers so that the corresponding values off (Yi)
and errors of length 2 or more~if t.1) are all different.
While this task is difficult in general, it is tractable for
t51. In addition, even if all of thef (E) are different, we still
need to make sure thatH fixes a nontrivial space of code
wordsT by checking thatH is Abelian and that its elements
square to11.

III. THE CODES

Now I will use the method described in Sec. II to con-
struct an optimal nondegenerate quantum error-correcting
code forn52 j . The quantum Hamming bound~4! tells us
that k<n2 j22, so we takea5 j12 and j>3. I will also
show explicitly the construction forn58. Steane@12# has
found the samek53, n58 code following inspiration from
classical error-correcting codes, and Calderbanket al. @11#
have found a differentk53, n58 code.

We want to pick different (j12)-bit binary numbers for
Xi andZi ( i51, . . . ,n) so that the numbers forYi , which
are given by the bitwise XOR of the numbers forXi and
Zi , are also all different. The numbers forn58 are shown in
Table I. In order to distinguish between theX’s, theY’s, and
theZ’s, we will devote the first two bits to encoding which
of the three it is, and the remainingj bits will encode which
qubit i the error acts on~although this encoding will depend
on whether it is anX, aY, or aZ).

The first two bits are 01 for anX, 10 for aZ, and 11 for
a Y, as required to makef a homomorphism. For theXi ’s,
the last j bits will just form the binary number fori21, so
X1 is 0100 . . . 0, andXn is 0111 . . . 1. Theencoding for the
last j bits for theZi ’s is more complicated. We cannot use
the same pattern, or all of theYi ’s would just have all 0’s for
the lastj bits. Instead of counting 0, 1, 2, 3,. . . , weinstead
count 0, 0, 1, 1, 2, 2,. . . . Writing this in binary will not
make all of the numbers for theZ’s different, so what we do
instead is to write them in binary and then take the bitwise
NOT of one of each pair. This does make all of theZ’s
different. We then determine what the numbers forYi are.

How we pick which member of the pair to invert will
determine whether all of the numbers forYi are different.
For evenj , we can just take the NOT for all oddi ; but for
odd j , we must take the NOT for oddi wheni<2 j21 and for
eveni when i.2 j21. A general proof that this method will

give different numbers for all theYi ’s is given in Appendix
B.

Now that we have the numbers for all of the 1-qubit er-
rors, we need to determine the generatorsM1 , . . . ,Ma of
H. Recall that the first digit of the binary numbers corre-
sponds to the first generator. Since the first digit of the num-
ber forX1 is 0,M1 commutes withX1; the first digits of the
numbers forY1 andZ1 are both 1, soM1 anticommutes with
Y1 andZ1. Therefore,M1 isX1 times the product of matrices
which only act on the other qubits. Similarly, the first digit of
the number for eachXi is 0 and the first digits forYi and
Zi are both 1, soM15X1X2 , . . . ,Xn ~this is true even for
j.3). Using the same principle, we can work out all of the
generators.

The results forn58 are summarized in Table II. Note
that all of these generators square to11 and that they all
commute with each other. A proof of this fact forj.3 is
given in Appendix C. Thus we have a code that encodes 3
qubits in 8 qubits, or more generallyn2 j22 qubits in 2j

qubits. For these codes, there is 1 type 2 generatorM2. The
remainingj11 generators are type 1.

Table II also gives seed generators forn58. We can see
immediately that they all commute withM2, the type 2 gen-
erator. It is less obvious that they all produce seeds for dif-
ferent states, but using them produces eight different quan-
tum code words, listed in Table III, so they do, in fact, form
a complete list of seed generators. This partly answers the
question of how often we can saturate the quantum Ham-
ming bound by showing that for one error, it can be saturated
for arbitrarily largen. Although the methods given above
may help somewhat, finding optimal codes to correct more
than one error remains a difficult task.
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APPENDIX A: PROOF THAT CERTAIN DEGENERATE
CODES CANNOT DEFEAT THE QUANTUM

HAMMING BOUND FOR t51

While there is no known proof that degenerate quantum
error-correcting codes cannot beat the quantum Hamming
bound for arbitraryt andn, I will present a proof that codes
to correct just one error are, in fact, limited by that bound, so
long as the only source of degeneracies is when linearly in-

TABLE I. The values off (Xi), f (Yi), and f (Zi) for n58.

X1 01000 X2 01001 X3 01010 X4 01011
Z1 10111 Z2 10000 Z3 10110 Z4 10001
Y1 11111 Y2 11001 Y3 11100 Y4 11010

X5 01100 X6 01101 X7 01110 X8 01111
Z5 10010 Z6 10101 Z7 10011 Z8 10100
Y5 11110 Y6 11000 Y7 11101 Y8 11011

TABLE II. The generators ofH and seed generators forn58.

M1 X1 X2 X3 X4 X5 X6 X7 X8

M2 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8
M3 X1 I X3 I Z5 Y6 Z7 Y8

M4 X1 I Y3 Z4 X5 I Y7 Z8
M5 X1 Z2 I Y4 I Y6 X7 Z8

N1 X1 X2 I I I I I I
N2 X1 I X3 I I I I I
N3 X1 I I I X 5 I I I
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dependent error matrices map a code word into a one-
dimensional subspace. For instance, if three different errors
map code words into a single two-dimensional subspace, this
condition will not generally be satisfied.

Given a degenerate quantum error-correcting code of this
type that corrects one error, we can list a number of condi-
tions that describe which errors are degenerate. I will call
these relationsdegeneracy conditions.As with the stabilizers
in Sec. II, each independent condition will reduce the space
of possible code words by a factor of 2. Note that I am not
requiring that the basis for errors be theX, Y, Z basis I have
used in the rest of the paper.3

Suppose there arel different degeneracy conditions de-
scribing the code. Each one equates two one-qubit errors, so
at most 2l qubits are affected by the degenerate errors. The
errors on the remainingn22l qubits must produce mutually
orthogonal states. There are 3(n22l ) possible errors affect-
ing those qubits.

Furthermore, errors on those qubits commute with the de-
generate errors, since they act on different qubits, so if
M uc i&5Nuc i& andE is an error that acts on a qubit unaf-
fected by the degenerate errors,

MEuc i&5EMuc i&5ENuc i&5NEuc i&. ~A1!

Thus, the stateEuc i& still satisfies the same set of degeneracy
conditions. The space of states that satisfy the given set of

l degeneracy conditions has dimension at most 2n2 l . To fit
all the statesEuc i& inside it, if l<n/2, we must have

@113~n22l !#2k<2n2 l , ~A2!

or

k<n2 l2 log2@113~n22l !#5g~ l !. ~A3!

For l50, this becomes the quantum Hamming bound. Now,

dg

dl
5211

6/ln2

113~n22l !
. ~A4!

Thereforeg( l ) is decreasing for

113~n22l !>
6

ln2
, ~A5!

l<
n

2
2S 1

ln2
2
1

6D . ~A6!

Thus, the quantum Hamming bound holds forl<(n23)/2.
For l.(n23)/2, we still havek<n2 l,(n13)/2. This au-
tomatically satisfies the quantum Hamming bound for
n>13 ~see Table IV!.

For n,13, l.(n23)/2, we need a different argument.
Whenl,n21, there must always be at least one degeneracy
condition that relates errors on two qubits that are unaffected
by any other degeneracy conditions. There are three possible
errors on each qubit, and only one pair of them are going to
produce the same results, so there are still five different er-
rors, plus the possibility of no error. As above, these errors
will remain within the space that satisfies the otherl21
degeneracy conditions, so

~115!2k<2n2~ l21!, ~A7!

3The proof that the dimension ofT is 2n2 l given in Sec. II only
works for theX, Y, Z basis, but for this appendix, I only need the
weaker result that the dimension ofT is at least halved by any
degeneracy condition that constrains a qubit unaffected by any of
the other degeneracy conditions. This should be self-evident.

TABLE III. The quantum code words for then58 code.

uc0&5u00000000&1u11111111&1u10100101&1u10101010&1u10010110&1u01011010&
1u01010101&1u01101001&1u00001111&1u00110011&1u00111100&
1u11110000&1u11001100&1u11000011&1u10011001&1u01100110&

uc1&5u11000000&1u00111111&1u01100101&1u01101010&2u01010110&
1u10011010&1u10010101&2u10101001&1u11001111&2u11110011&
2u11111100&1u00110000&2u00001100&2u00000011&2u01011001&2u10100110&

uc2&5u10100000&1u01011111&1u00000101&2u00001010&1u00110110&
1u11111010&2u11110101&1u11001001&2u10101111&1u10010011&
2u10011100&2u01010000&1u01101100&2u01100011&2u00111001&2u11000110&

uc3&5u01100000&1u10011111&1u11000101&2u11001010&2u11110110&
1u00111010&2u00110101&2u00001001&2u01101111&2u01010011&
1u01011100&2u10010000&2u10101100&1u10100011&1u11111001&1u00000110&

uc4&5u10001000&1u01110111&2u00101101&1u00100010&1u00011110&
2u11010010&1u11011101&1u11100001&2u10000111&2u10111011&
1u10110100&2u01111000&2u01000100&1u01001011&2u00010001&2u11101110&

uc5&5u01001000&1u10110111&2u11101101&1u11100010&2u11011110&
2u00010010&1u00011101&2u00100001&2u01000111&1u01111011&
2u01110100&2u10111000&1u10000100&2u10001011&1u11010001&1u00101110&

uc6&5u00101000&1u11010111&2u10001101&2u10000010&1u10111110&
2u01110010&2u01111101&1u01000001&1u00100111&2u00011011&
2u00010100&1u11011000&2u11100100&2u11101011&1u10110001&1u01001110&

uc7&5u11101000&1u00010111&2u01001101&2u01000010&2u01111110&
2u10110010&2u10111101&2u10000001&1u11100111&1u11011011&1u11010100&1u00011000&
1u00100100&1u00101011&2u01110001&2u10001110&
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or k<n2 l1(12 log26) ~i.e., k<n2 l22). When
l.(n23)/2, this meansk<(n21)/2. Applying this condi-
tion for n<12 restricts violations of the quantum Hamming
bound ton<6, specificallyn56 and l52, andn54 and
l51. For these two cases, we can directly apply Eq.~A2! to
see that forn56 and l52, k<1, in accordance with the
quantum Hamming bound, and forn54 andl51, k50.

Finally, for l5n21, there must be at least one qubit that
is only affected by a single degeneracy condition. All three
errors on this qubit commute with the othern22 degeneracy
conditions, so

~113!2k<2n2~n22!. ~A8!

Thereforek50, and the quantum Hamming bound holds for
any degenerate quantum code where linearly independent er-
rors can only map code words into a one-dimensional sub-
space.

APPENDIX B: PROOF THAT THE NUMBERS
FOR Yi ARE ALL DIFFERENT

The construction of the numbers forXi andZi immedi-
ately demonstrates that they are all different. However, it is
not as clear that all of the numbers for theYi ’s, which are
determined by the numbers for theXi ’s andZi ’s, will also be
different. The first two bits just enforce the requirement that
anyYi is different from anX or aZ, so I will only consider
the lastj bits. All references to bit number in this appendix
will refer to a position within the lastj bits, so bit number
‘‘1’’ is actually bit 3, and bit ‘‘l ’’ is actually bit l12.

Consider the pictorial representation of the algorithm to
pick the errors’ binary numbers given in Table V. The num-
bers given forXi are the actual numbers that appear. For
Yi andZi , we need to take an XOR with the parity ofi ~for
j even ori<2 j21), or an XOR with the reverse of the parity
of i ~for j odd andi.2 j21). We can see that before we
apply the XOR, the number forYi encodesi in a unique
fashion, since ifi and i 8 first differ in the r th bit, then the
numbers forYi andYi 8 will also differ in the r th bit. The
only way we could get two of the numbers to be the same
would be if the XOR operation reverses one of a pair that
would normally have complementary values in all bits.

Does this ever happen? Given a numberf (Yi) for
i<n/2, the number with complementary bits must appear for
i.n/2, since the first digit does not change until then. The
XOR will therefore collapse these two numbers into one
whenever the parity of the appropriatei ’s is the same~for

j odd! or different ~for j even!.
Pick some bit string starting with 0. There will be an

i<n/2 such thatYi has that number. Whichi 8 will have the
complementary bitstring? If we take the binary representa-
tion of i , it will begin with a 0 and the binary representation
of i 8 will begin with a 1.4 The next digit ofi can be either 0
or 1, and from Table V we can seei 8 will have the same
value for this digit. The third digits ofi and i 8 will be op-
posite again. In general, a 0 in ther th digit of i or i 8 means
the two squares relevant to the next digit will read 01, while
a 1 in ther th digit will mean the two squares for the next
digit will read 10. Thus, ifi andi 8 agree in ther th digit, they
will disagree in the next digit, and vice versa. Thus,i and
i 8 agree on even-numbered digits and disagree on odd-
numbered digits.

This means the last digit agrees forj even and disagrees
for j odd. Therefore, the XOR will not makeYi the same as
Yi 8—it will either reverse both of them or neither of them.
This explains why different rules for odd and evenj were
necessary.

APPENDIX C: PROOF THAT THE GENERATORS
OF H COMMUTE

We can also use Table V to help us understand what the
generatorsM1 , . . . ,Ma of H look like. M1 is always the
product of allnXi ’s, andM2 is always the product of all the
Zi ’s. The other generators are a bit more complicated, but
still behave systematically. As we advancei , they cycle
through the sequenceI→Z→X→Y, with a change every
2 j2(r22) qubits for generatorMr . In addition, the NOT

4I am ignoring the special case ofi5n/2, which works on the
same principle after the first digit ofi .

TABLE IV. The maximumk allowed by the quantum Hamming
bound forn<13.

n k
5 1
6 1
7 2
8 3
9 4
10 5
11 5
12 6
13 7

TABLE V. The first four bits~of the lastj ) of the numbers for
Xi , Yi , andZi . The pth row corresponds to thepth bit and the
columns in thepth row correspond to the possible values for the
first p bits of i . For Yi and Zi , the actual numbers require an
additional XOR with the parity or reverse of the parity ofi .

Xi :

0 1
0 1 0 1

0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Zi : Parity XOR

0 0
0 0 1 1

0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Yi : Parity XOR

0 1
0 1 1 0

0 1 1 0 0 1 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
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switchesI↔X andZ↔Y whenever it applies — odd qubits
for even j ; odd qubits for the first half and even qubits for
the second half for oddj . This immediately implies that
everyMr for r.2 has equal numbers ofX’s, Y’s, Z’s, and
I ’s, namely, 2j22 of each. Sincej>3, this means there are
an even number ofY’s, soMr

2511.
Now, do the generators commute? Any time two genera-

tors have nontrivial but different operations on a qubit, we
get a factor of21 when we commute them. Therefore, we
can determine ifMr andMs commute by counting the qubits
on which they differ and neither is the identity. If this count
is even, they commute; if it is odd, they do not.

SinceM1 is allX’s, it disagrees withMr ~for r>3) when-
everMr has aY or a Z. Mr has 2j22 of each, so we get
2 j21 factors of21, and @M1 ,Mr #50. Similarly, M2 dis-
agrees withMr on X’s andY’s, producing 2j2212 j22 fac-
tors of21, and@M2 ,Mr #50 also.M1 andM2 disagree on
every qubit, and since there are an even number of qubits,
@M1 ,M2#50.

For r ,s>3, bothMr andMs follow the pattern described
above. I will consider the casess5r11, s5r12, and
s.r12. Table VI comparesMr andMs on blocks of size
2 j2(s22).

In general, half of each block will be normal and half will
be reversed by a NOT. Therefore, the number of factors of
21 from commuting Mr and Ms will generally be
2 j2(s23) times the total number of nontrivial disagreements

for the normal and reversed rows. We also need to consider
a few special cases. Whenr53, the generator never reaches
the second half of the cycle, so we need to count up the
disagreements only in the first half of the cycle. When
s5a5 j12, the block size is 1, so the NOT either affects the
whole block or it does not affect any of it. In this case, we
need to count disagreements only on every other block. For
even j , count the normal disagreements on even-numbered
blocks and the reversed disagreements on odd-numbered
blocks. For oddj , we must count normal disagreements on
even-numbered blocks in the first half and odd-numbered
blocks in the second half; count reversed disagreements on
odd-numbered blocks in the first half and even-numbered
blocks in the second half. We must also consider the com-
bined special case ofr53, s5a.

For s5r11, the general case gives four blocks with nor-
mal disagreements and two blocks with reversed disagree-
ments. Whenr53, there are two blocks with normal dis-
agreements and two blocks with reversed disagreements.
Whens5a, and j is even, there are two blocks with normal
disagreements and no blocks with reversed disagreements.
When s5a and j is odd, there are also two blocks with
normal disagreements and no blocks with reversed disagree-
ments. Becausea>5, we do not need to consider the com-
bined special case. Thus, whenevers5r11, there are an
even number of disagreements andMr andMs commute.

For s5r12, the general case gives six blocks with nor-
mal disagreements and six blocks with reversed disagree-
ments. Forr53, there are two blocks with normal disagree-
ments and four blocks with reversed disagreements. For
s5a, j even, there are four blocks with normal disagree-
ments and two blocks with reversed disagreements. For
s5a, j odd, there are two blocks with normal disagreements
and two blocks with reversed disagreements. Forr53,
s5a, it does not matter ifj is even or odd, since we only
consider the first half. In this case, there is one block with a
normal disagreement and one block with a reversed disagree-
ment. In all of these cases, thetotal number of disagreements
is even, so fors5r12, @Mr ,Ms#50.

For s.r12, generatorMs completes 2
s2r22 cycles be-

fore Mr advances to the next step in the cycle. This means
we can just find the number of disagreements by multiplying
the number of disagreements fors5r12 by 2s2r22. We can
do this even for the special cases, since the cycle repeats
after four steps, which does not change the parity. Thus,
there will always be an even number of disagreements, and
all of the generators ofH commute.
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TABLE VI. Comparisons ofMr and Ms in blocks of size
2 j2(s22) when the normal cycle applies and when it is reversed by
a NOT.

r5s11:

Mr norm I I Z Z X X Y Y
Ms norm I Z X Y I Z X Y

Mr rev X X Y Y I I Z Z
Ms rev X Y I Z X Y I Z

r5s12:

Mr norm I I I I Z Z Z Z X X X X Y Y Y Y
Ms norm I Z X Y I Z X Y I Z X Y I Z X Y

Mr rev X X X X Y Y Y Y I I I I Z Z Z Z
Ms rev X Y I Z X Y I Z X Y I Z X Y I Z
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