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Synopsis 

In this paper, we derive the general forms of the equations required to extract thermodynamic 
data from equilibrium transition curves on oligomeric and polymeric nucleic acids of any 
molecularity. Significantly, since the equations and protocols are general, they also can be used to 
characterize thermodynamically equilibrium processes in systems other than nucleic acids. We 
briefly review how the reduced forms of the general equations have been used by many 
investigators to  evaluate mono- and bimolecular transitions, and then explain how these equa- 
tions can be generalized to calculate thermodynamic parameters from common experimental 
obsenrables for tramitions of higher molecularities. We emphasize the strengths and weaknesses 
of each method of data analysis 80 that investigators can select the approach most appropriate for 
their experimental c i r ~ c e s .  We also describe how to analyze calorimetric heat capacity 
curvee and noncalorimetric Merentiated melting curves 80 as to extract both model-independent 
and model-dependent thermodynamic data for transitions of any molecularity. The general 
equations and methods of analysis described in this paper should be of particular interest to  
laboratoria that currently are investigating association and dissociation processes in nucleic acids 
that exhibit molecularitiea greater than two. 

INTRODUCTION 

We have learned a great deal about the sequence-dependent conformational 
s t a h  present in naturally d g  DNA and RNA polymers from studies on 
specially designed and synthesized olig~nucleotides.~-~ Particular attention 
has been focused on thermodynamically characterizing the secondary struc- 
tures formed by these oligomeric model systems through investigations of 
their temperature-dependent “melting” behavior. In fact, the results obtained 
from these model systems have provided databases from which thermody- 
namic libraries have been established that characterize all ten Watson-Crick 
nearest-neighbor interactions in both DNA6 and RNA.’-’ These thermody- 
namic data now provide an empirical basis for predicting the stability (AGO) 
and temperature-dependent melting behavior (AH’) of any DNA or RNA 
duplex region by inspection of its primary 

To date, the overwhelming majority of oligomer systems studied have 
modeled secondary structures formed by monomolecular (e.g., hairpins) and 
bimolecular (e.g., duplexes) associations of oligomer ~ t r a n d s . l O - ~  (Also see 
other work cited in Refs. 4 and 5). The equations required to extract thermo- 
dynamic data from melting studies on oligomer systems exhibiting these two 
molecularities are already published and are reasonably well k n ~ w n . ~ - ~  (See 
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Ref. 39 for an excellent anthology and discussion of the original papers 
describing the early development of the theory of helix-coil transitions in 
biopolymers.) Undoubtedly, future modeling of biologically important struc- 
tures will involve oligomer associations well beyond the bimolecular level. In 
fact, recent efforts to model cruciform formation by immobile junction struc- 
tures have required oligomer association processes at  the tetramolecular 
l e ~ e l . ~ ~ - ~ l  Consequently, it  would be useful to derive the general forms of the 
equations required to extract thermodynamic data from melting studies on 
oligomer systems of any mokcularity. In this paper, we derive the relevant 
equations and describe how they can be used to calculate thermodynamic 
parameters from experimental data. We also describe a useful method for 
extracting complete thermodynamic profiles from calorimetric measurements 
in the absence of optical data. As part of an independent and concurrent 
effort, Privalov and Potekhin also have derived general equations that they 
use to analyze calorimetric heat capacity curves for protein t ran~i t ions.~~ 
Although their and our formulations for analyzing calorimetric data differ 
significantly, the information content of the two sets of equations is similar. 
Significantly, however, in contrast to Privalov and Potekhin, we explicitly 
include a concentration-dependent term in several of our formulations. Such a 
term is important when using noncalorimetric techniques to characterize 
thermodynamically association or dissociation processes for relatively short 
oligomers. 

ANALYZING THE SHAPE OF AN EQUILIBRIUM MELTING 
CURVE TO CALCULATE AH, 

A thermally induced order-disorder transition in any nucleic acid can be 
monitored by following, at  an appropriate wavelength, the increase in uv 
absorption with increasing temperature. The resulting absorption vs tempera- 
ture profile commonly is called a “uv melting curve.” Figure l(a) shows a 
typical experimental curve. The shape of this curve, as well as other equi- 
librium melting profiles (e.g., viscosity vs temperature, heat capacity vs 
temperature, etc.), can be analyzed to yield a value for the van’t Hoff 
transition enthalpy. Below we describe how this analysis can be accomplished 
for a uv absorption vs temperature curve. However, keep in mind that the 
protocol is general and therefore can be used to analyze the temperature 
dependence of any equilibrium property that is directly related to the con- 
centrations of the two equilibrating species. 

If we define (Y as equal to the fraction of single strands in the duplex state, 
then any experimental absorbance vs temperature curve can be converted into 
an (Y vs temperature profile by assuming that the fractional change in 
absorbance at any temperature monitors the extent of reaction. “his conver- 
sion is accomplished graphically, as illustrated in Fig. 1, by taking the ratio at  
each temperature of the height between the upper baseline and the experi- 
mental curve (x) and the height between the lower and upper baselines 
( x  + y). We now have constructed the curve in Fig. l(b), which expresses how 
an equilibrium property (Y varies with temperature. Alternatively, we could 
have plotted (Y vs the reciprocal of the temperature 1/T to obtain the curve 
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Fig. 1. (a) A typical absorbance vs temperature melting curve. X corresponds to the distance 
between an upper baseline and the curve, while Y represents the distance between the lower 
baseline and the m e .  @) A plot of a vs T, where a equals the fraction of single strands in the 
duplex state. This m e  is derived from (a) as described in the text. (c) A plot of a vs 1/T where 
a equals the fraction of single strands in the duplex state. 
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shown in Fig. l(c). Since the equilibrium constant K for any transition can be 
expressed in terms of a, the curves shown in Fig. l(b and c) reveal how K 
varies with T and 1/T. This knowledge of the temperature dependence of 
K allows us to calculate the transition enthalpy using either form of the 
van’t Hoff equation shown below: 

d l n K  
A H W = R T 2 [ 7 ]  or AHvH= - R  

Obviously, to complete the calculation of AHvH, K must be expressed in 
terms of a. For this purpose, one generally assumes that the transition 
proceeds in a two-state (all-or-none) manner. When this condition prevails, 
the general expression for the equilibrium constant K ,  and its value at  the 
melting temperature K(T,), will depend on the molecularity of the transition 
and the nature of the d a t i n g  sequences (self-complementary vs non-self- 
complementary). In the sections that follow, we derive the general expressions 
for the equilibrium constant and explain how they can be used to calculate 
thermodynamic data. 

Equilibria Involving Non-Self-Complementary Sequences 

Consider the general equilibrium shown below for the association of non- 
self-complementary sequences to form an n-mer structure 

A ,  + A ,  + A ,  + * + A ,  A1A2A3 * - * An 

where n is the molecularity of the reaction, which equals the number of 
strands that associate to form the final n-mer complex. The general expression 
for the corresponding equilibrium constant K, in terms of a and n, is 

(2) 
for non-self-complementary 

associations 

a - - 
(c , /n)”-’( l  - a), 

where C, equals the total strand concentration and each strand is present in 
equal concentration; namely, C,/n. This expression is applicable to the 
general case in which the associating strands all are non-self-complementary. 
The special case in which the associating sequences all are self-complementary 
is described in the next section. 

We now have an expression for the equilibrium constant in terms of 
experimentally accessible parameters; namely, n, C,, and a. If we define the 
melting temperature T,, as the temperature at which a = 1 / 2 ,  then the 
general expression for the equilibrium constant shown in Eq. (2) reduces to 
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This expression allows calculation of K at the T, for an association reaction 
of any molecularity between non-self-complementary sequences. 

We also can derive a general e x p d o n  for calculating the transition 
enthalpy. To accomplish this, we substitute Eq. (2)  into the first form of the 
van't Hoff expression (Eq. l),  differentiate, and solve for AH, at the T, 
where a = 1/2. These manipulations yield 

AH, = (2 + 2n)RT,( 2) 
T- T, 

Since a ( l / T ) / a T  = -1 /T2,  Eq. (4a) also can be written as 

aa [ a ( l / T ) ] l ' - T m  
AH, = -(2 + 2n)R 

We could have obtained this expression directly by substituting Eq. (2 )  into 
the second form of the van't Hoff expression shown in Eq. (1). Many of the 
equations presented below can be reformulated in a similar manner. 

Either general form of the van't Hoff expression derived above [En. 4(a) or 
4(b)] allows calculation of AHvH for an association reaction of any molecular- 
ity simply by evaluating the slope of an a vs T or an a vs 1/T melting curve 
at T,. The resulting value of ( G a / S T ) T - T ,  or [aa/a(l/T)]~-~, and the 
known molecularity n of the reaction are then plugged into Eq. (4a) or (4b) to 
calculate AHvH. [Equation (4a) or (4b) is derived for an association reaction. 
The same expression with the opposite sign can be used for dissociation 
processes.] These expressions [Eq. (4a) or (4b)] allow calculation of AH, for 
any equilibria involving mn-self-complemntuv sequences. In the next sec- 
tion, we demonstrate that the same expressions [Eqs. (4a) or (4b)I also can be 
used to calculate AH, for equilibria that involve structures formed from 
self-complementary sequences. 

Equilibria Involving Self-complementary Sequences 

For an amxiation reaction involving s t r u c t m  formed from self-comple- 
mentary sequences, the general equilibrium can be written as 

nA - A ,  

For this special case, the general expression for the equilibrium constant K, in 
terms of a and n, is 

Note that this expression for the equilibrium constant for an association 
reaction between self-complementary sequences is not identical to the corre- 
sponding expression for non-self-complementary sequences. [Compare Eqs. (2) 
and (ti).] This disparity reflects the statistical differences between these two 
classes of equilibria. 
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If we define the melting temperature T, as the temperature at  which 
a! = 1/2, the general expression for K shown above reduces to 

This expression allows calculation of K at the T, for an association reaction 
of any molecularity between self-complementary sequences. 

We also can derive a general expression for calculating the transition 
enthalpy for self-complementary associations. To accomplish this, we sub- 
stitute Eq. (5) into the van't Hoff expression (Eq. l), differentiate, and solve 
for AHvH at the T, where a! = 1/2. These manipulations yield equations for 
calculating AH,, which are identical to those derived above for the associa- 
tion of non-self-complementary sequences [Eqs. (4a) and (4b)l. This identity 
reflects the fact that the statistical differences between processes involving 
these two classes of sequences does not influence the expression used to 
calculate AHvH. 

Calculating AHm from Melting Curves 

Equation (4a) can be used to calculate a van't Hoff transition enthalpy for a 
process of any molecularity. To date, bimolecular (e.g., duplex to single 
strands) and monomolecular (e.g., hairpin to single strand) processes represent 
the two most commonly studied classes of nucleic acid transitions. For a 
monomolecular process (n = l), the leading coefficient in Eq. (4a) is 4 while 
for a bimolecular process (n = 2) the corresponding coefficient is 6. These two 
reduced forms of Eq. (4a) are well known and have been used by many 
investigators to extract van't Hoff transition enthalpies from the temperature 
dependence of various equilibrium properties for mono- and bimolecular 
processes. By contrast, the use of Eq. (4a) to extract van't Hoff transition 
enthalpies from processes exhibiting molecularities greater than 2 is much less 
common in the literature. 

However, the recent use of multistrand oligomer systems to model more 
complex biological structures has resulted in studies on processes that exhibit 
molecularities greater than 2. Consequently, it is useful to examine the 
reduced forms of Eq. (4a) required to extract van't Hoff transition enthalpies 
from such studies. One example of a thermodynamic analysis on a higher 
molecularity process is described in the paper that follows. In this work, a 
cruciform is modeled by an immobile junction structure that forms through 
association between four 16-mer ~equences.~~ To extract thermodynamic data 
from the melting curves associated with this tetramolecular process (where 
n = 4), the reduced form of Eq. (4a) shown below was used: 

In the paper that follows, a critical appraisal of the AHw data obtained from 
this equation is provided by comparison with directly measured calorimetric 
data. 
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In summary, Eq. (4a) or (4b) allows one to calculate AHw for any 
assOciation reaction for which the temperature dependence of an equilibrium 
property has been monitored. One simply needs to know the molecularity n of 
the reaction and then graphically determine the value of ( & X / ~ T ) ~ = ~ ~  from 
the experimental melting curve. Note that the same equation with the 
opposite sign can be used to evaluate dissociation or melting processes. 

CALCULATING AH- FROM THE CONCENTRATION 
DEPENDENCE OF THE MELTING TEMPERA- 

The formation or dissociation of complexes of molecularity greater than one 
will result in a concentration-dependent equilibrium. Such equilibria therefore 
can be characterized by determining the concentration dependence of the 
melting temperature. This approach represents a second method for extract- 
ing thermodynamic data from experimental melting profiles. The relevant 
equations in general form are derived below. 

Concentration-Dependent Equilibria Involving 
Non-Self-Complementary Sequences 

Consider the general equilibrium reaction shown below for the association 
of non-seZf-compZemntury sequences to form an n-mer structure: 

A , + A , + A 3 +  ..- +A,-A,A2A3 - - -  A, 

Since, for any process at equilibrium, AGO = - RT ln K ,  and AGO = AH" - 
TAS", we can derive an expression for K ,  in terms of AH" and AS" by 
equating these two expwsions for AGO to yield 

- R T h K = A H " - T A S "  (7) 

Equation (3) provides us with an expression for K at T, in terms of n and CT 
when non-self-complementary strands associate. Plugging this expression into 
the equality given above yields 

+ R T , ~ I ( C , / ~ ~ ) " - ~  = AH" - T,AS" 

Upon rearrangement, this expression becomes 

( n  - l)RTmlnCT - ( n  - 1)RTmln2n = AH" - T,AS" 

Dividing by T, AH" and rearranging the terms yields 

1 ( n - 1 ) R  [ASo - ( n  - 1)Rln2n] for essociations of 
non-self-complementary 

AH" 
- =  h C T  + 
Tm AH" 
( Y )  (m) ( x )  ( b )  

(8) 

As emphasized by the symbols in parenthesis, this equation corresponds to 
a straight line when the reciprocal of the melting temperature ( l /T,)  is 
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1/T, = (slope) In CT + Intercept 

I '  \ (n-1) R 
\ 

I \!Ope = AH 

I.. A,. - (non-self-complementary) 

AS - (n-1) R In 2 + R In n 
AH 

(self-complementary) 

In CT 
Fig. 2. A plot of 1/T, vs In C,. This plot reveals the concentration dependence of the melting 

temperature. The slope is inversely proportional to the transition enthalpy while the X-axis 
intercept is proportional to the transition entropy. The equations describing the specific relation- 
ships are shown in the plot BS well as described in the text. 

plotted against the natural logarithm of the strand concentration (In CT). The 
slope (m) of such a plot is equal to [( n - l)R]/AH" and the intercept (b)  is 
equal to [(l/AH")/(AS" - (n - l)R In2nI. Figure 2 shows a typical l/Tm vs 
InC, plot in which these features are emphasized. 

Concentration-Dependent Equilibria Involving 
Self -Complementary Sequences 

For the case in which the associating sequences all me self-complementary 
rather than non-self-complementary, the equilibrium constant expression 
shown in Eq. (5) rather than Eq. (2) is used to derive the appropriate 
relationship between T !  and hCT.  Paralleling the procedure outlined above, 
one obtains the expression shown below, which is similar to but different from 
Eq. (8): 

1 ( n - l ) R  [AS" - (n - 1)RIn2 + R h n ]  
AH" 

-5i InC, + Tm AH" 

) (9) 
for assoCations of 

self-complementary strands 

Note that Eqs. (8) and (9) have the same expression for their slopes, but 
different expressions for their intercepts. This disparity reflects the statistical 
difference between these two classes of equilibria. Significantly, it  should be 
noted that this statistical factor only influences the intercept and not the 
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slope. Thus, the statistical differences between self-complementary and non- 
self-complementary equilibria do not influence the enthalpy term. As with Eq. 
(4), our derivation of Eq. (8) or (9) assumes a two-state transition and a 
temperature-independent enthalpy. However, this method for determining 
AHw is much less sensitive to the choice of baselines when analyzing 
experimental melting curves. This feature results from the fact that the slope 
of a 1/T, vs lnC, line results from differences in the T, values obtained 
from several melting curvm. Consequently, as long as the baselines for a 
family of concentration-dependent melting curves are selected in a consistent 
manner, the slope of the resulting 1/T, vs ln C, line provides a good measure 
of the van't Hoff enthalpy for transitions that proceed in a two-state manner. 
Any deviations of the selected baselines relative to the " true" baselines simply 
produce a parallel line that has a different intercept but the same slope, 
thereby altering AS" but not AHw. 

The method of data analysis described above is uniquely applicable to 
relatively short oligomer transitions where the concentration dependence of 
the melting temperature can be observed. For long oligomers and polymers, 
this approach cannot be applied, since the monomolecular helix growth steps 
dominate the bimolecular helix initiation step, thereby producing an artifi- 
cially reduced concentration dependence or a pseudo-first-order equilibrium 
for which the melting temperature is concentration independent. 

Calculating AHm from the Concentration Dependence of T, 
for Some Common Transitions 

Clearly, the melting temperature of a monomolecular process (e.g., hairpin 
formation) will not exhibit a concentration dependence. This feature is il- 
lustrated by the fact that when n = l, Eq. (8) or (9) reduces to 1/T, = 
AS"/AH". This simpWed form of Eq. (8) or (9) for the n = 1 case shows that 
for a monomolecular process the melting temperature T,, depends only on 
AS" and AH", and is independent of C,. Consequently, to obtain a value for 
A Hn from a melting curve of a monomolecular process requires application 
of Eq. (4). 

Equation (8) or (9) can be used to evaluate any process that exhibits a 
molecularity of 2 or above. For example, for the bimolecular duplex formed 
between two strands of a self-cornplementu~ sequence, Eq. (9) reduces to the 
well-known expression 

1 for a bimolecular association of two 
self-complementary strands h C T $ -  ( 

1 R 
-I- 

T, AH" AH" 

However, if the two strands that associate are mn-self-cornplementury 
rather than self-complementary, then the intercept 0, term) includes an 
additional factor to account for the entropic differences between these two 
association reactions. Consequently, when analyzing a bimolecular association 
between non-self-complementary rather than self-complementary strands, Eq. 
(8) reduces to the expression 

for a bimolecular assoCiation of two 
non-self-complementary strands 

R -- _ -  1 
T, AH" 
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Analyzing the Shape of a Differentiated Equilibrium 
Melting Curve 

An approach very similar to the one just described can be used to obtain a 
van’t Hoff transition enthalpy from a differentiated melting curve. Figure 3 
shows a tracing of a typical differentiated melting curve where a a / a ( l / T )  is 
plotted against T. Such a curve can be derived from the temperature depen- 
dence of any equilibrium property or obtained directly from techniques such 
as temperaturejump measurements. As originally shown by Gralla and 
Crothers for mono- and bimolecular transitions,16 the full width or the 
half-width of a differentiated melting curve at the half-height is inversely 
proportional to the van’t Hoff transition enthalpy. For a general equilibrium 
of the form 

n A - A ,  

the relevant general forms of the van’t Hoff equation are 

for the upper half width B‘ ( at the half-height AHm = 
( l / ~ m . ¶ J  - (w2) 

where T,, is the temperature at the maximum, and TI and T2 correspond to 
the lower and upper temperatures, respectively, at which the change in the 
observable with temperature is equal to one-half of [ a a / d ( l / T ) ] ,  (see Fig. 
3). Both B and B’ are constants that depend on the molecularity of the 

T1 
Fig. 3. A typical differentiated melting curve. Several reference temperature points are 

specifically dehed in the figure and described in the text. 
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TABLE I 
Values of the Constants B and B' in Eqs. (10) and (11) for kosocation Reactions Exhibiting 

Molecularitia (n) Between 1 and 5. B and B' in cal/K-mol. 

n - B  - B' 

7.00 
10.14 
12.88 
15.40 
17.79 

3.50 
4.38 
5.06 
5.63 
6.14 

process under investigation. Specific values of B and B' are given in Table I 
for processes involving several different molecularities. The detailed deriva- 
tions of Eqs. (10) and (11) are given in the appendix. Examination of these 
derivations reveals that this method of analyzing differentiated melting curves 
still incorporates the assumption of a two-state transition and a temperature- 
independent enthalpy. However, when Eq. (11) is employed, only the high- 
temperature half of the transition need be obtained experimentally (between 
T,, and T.). Consequently, this approach provides a means of circumventing 
the lower baseline problem that one frequently encounters in the analysis of 
the overall shapes of integral absorbance vs temperature curves. Specifically, 
for transitions with low T's, where it is difficult to define the lower baseline 
(or even to obtain the lower half of the melting curve), this method of data 
analysis permits a transition enthalpy to be calculated from just the upper 
half of a melting profile (see Fig. 3). 

When a differentiated melting curve is obtained directly from temperature- 
jump experiments, the problem of baseline selection may be reduced further. 
If the molecular events that give rise to the sloping baselines correspond to 
processes that are very fast, then the temperature-jump experiment provides a 
means of kinetically resolving the relatively slow, cooperative helix melting 
from these fast baseline effects.16*" In such a case, one obtains a differentiated 
melting curve that is kinetically filtered of the baseline problems encountered 
with integral melting curves. 

CALORIMETRIC DETERMINATION OF 
TRANSITION ENTHALPIES 

Differential scanning calorimetry (DSC) also can be used to detect and 
follow thermally induced order-disorder transitions in oligonucleotides and 
other thermally labile molecules. However, with DSC the excesa heat capacity 
(AC,) rather than the change in absorbance of the solution is monitored. 
Experimentally, one obtains a AC, vs T melting profile, as illustrated in Fig. 
*a). Since AHo = /ACpdT, the area under such a calorimetric transition 
curve is equal to the transition enthalpy. 

In contrast to the model-dependent (usually two-state) AHw values indi- 
rectly derived from the temperature dependence of an equilibrium property, 
the calorimetrically determined transition enthalpy does not depend on the 
nature of the transition. As with optical studies, with calorimetry one first 
must define an experimental baseline to analyze for the transition of interest. 
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Temperature 

(4 

Temperature 
(b) 

Fig. 4. (a) A typical calorimetric transition Curve, which shows how the heat capacity ACp, 
changes with temperature. The area under this curve is equal to the transition enthalpy. (b) A 
AC,/T vs temperature curve, which can be derived from the experimental calorimetric transition 
curve shown in (a). The area under this curve is equal to the transition entropy. 

One then measures the total energy required to go from the initial to the final 
state from the area under the curve and above the baseline. The shape of the 
curve, which does depend on the nature of the transition, need not be 
analyzed as is done with optical and other noncalorimetric data. Thus, the 
calorimetric measurement provides a direct, model-independent determination 
of the transition enthalpy. For this reason, a comparison of the model-depen- 
dent van’t Hoff transition enthalpy and the model-independent calorimetric 
transition enthalpy provides insight into the nature of the transition, as 
explained in the next section. Calorimetry also provides a direct measure of 
the heat capacity change AC; accompanying the transition. Consequently, 
one need not assume that AC; is zero, as usually is done when analyzing 
optical data. Interestingly, in contrast to proteins, our DSC studies do not 
detect significant heat capacity changes accompanying thermally induced 
transitions in DNA molecules. In an independent and concurrent effort, 
Privalov and Potelchin also recently have derived equations that express the 
dependence of calorimetric enthalpies on n, the reaction m~lecularity.~~ How- 
ever, their formulation is quite different from the one presented here. 

It is of interest to note that a van’t Hoff transition enthalpy also can be 
calculated from the calorimetric data. In a manner paralleling the analysis of 
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a differentiated melting curve, the shape of a calorimetric heat capacity curve 
can be analyzed using Eq. (10) or (11) to yield a van't Hoff transition enthalpy 
that we designate as AH&. Values obtained in this manner do not always 
agree with the corresponding optical AH, derived from Eqs. (4), (8), or (9). 
For bimolecular transitions we have observed the largest differences between 
AH% and AH, for longer oligomer~.~ This result suggests that the thermal 
and the optical windows may not always equivalently monitor the extent of 
reaction. For the tetramolecular transition of an immobile junction, we also 
observe disparities between the AH, data derived by the different methods 
described above. A critical discussion of the potential origins of these dispari- 
ties is presented in the paper that follows. 

NATURE OF THE TRANSITION 
The methods d d b e d  above for extracting thermodynamic data from the 

tempexature dependence of an equilibrium property only can be applied 
rigorously to transitions that proceed in a two-state (all-or-none) manner. For 
transitions in which intermediate states are significantly populated, any 
integral or Merentiated equilibrium melting curve will be broadened. Accord- 
ing to Eqs. (4), (lo), (ll), this broadening will lead to a reduced AH, relative 
to the true calorimetric value. By contrast, as noted earlier, the calorimetri- 
cally determined transition enthalpy is derived directly from the area under 
(rather than the shape of) a heat capacity curve. Thus, A Hd is independent 
of the nature of the transition, as one would expect for a state function. 

Comparison of the model-dependent AH, and the model-independent 
AHd allows -one to conclude if the transition proceeds in an all-or-none 
fashion, thereby providing a test for the applicability of the two-state model 
to a given transition. If AH, < AHd, then the transition involves a signifi- 
cant population of intermediate states. However, if AH, = AH,,, then the 
transition proceeds in a two-state manner and meaningful thermodynamic 
data can be obtained by monitoring the temperature dependence of an 
equilibrium and by using the equations presented in this paper. 

A quantitative comparison of the van't Hoff and calorimetric transition 
enthalpies provides further insight into the nature of a transition. Specifically, 
the ratio AHdAH,, provides a measure of the fraction of the structure that 
melts cooperatively; in other words, the size of the cooperative unit. This 
ability to define the size of the cooperative unit represents an important and 
unique advantage of the calorimetric measurement. In the paper that follows, 
we employ this approach and discuss its potential limitations when applied to 
complex structures such as immobile junctions. 

CALCULATING AGO AND AS" FROM MELTING 
CURVE DATA 

As described above, a van't Hoff transition enthalpy (AHw) can be 
determined by analyzing the shape of an integral or differentiated melting 
curve using either Eq. (4), (lo), or (11) which each assume a two-state model. 
By contrast, a model-independent calorimetric transition enthalpy (AH,",) 
can be determined directly by evaluating the area under an experimental heat 
capacity curve. The free energy and entropy changes (AGO and ASo) that 
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correspond to these transition enthalpies (AHw and AH&) then can be 
determined by one of the methods described below. 

Calculating AGO and AS" from Noncalorimetric Melting Curves 

Method 1 

We have shown by Eqs. (2) and (5) that the equilibrium constant K for any 
two-state association reaction can be expressed in terms of the molecularity of 
the process n and the extent of association a (which corresponds to the 
fraction of single-stranded molecules in the complexed state). Consequently, 
we can evaluate K for a process of any molecularity at  any value of a. 
Usually, a value of K is determined at the melting temperature T,, where 
a = 0.5 [see Eqs. (3) and (S)]. This K(T,) value then is extrapolated to some 
reference temperature T (usually 298 K) using the experimentally measured 
melting temperature T,, the calculated van't Hoff transition enthalpy AHw 
(assumed to be temperature independent), and the integrated form of the 
van't Hoff equation shown below: 

Using the calculated value of K ( T ) ,  one can determine the Gibbs free 
energy change for the transition using the standard thermodynamic relation- 
ship AGO = - RT In K(T) .  The corresponding entropy change then can be 
calculated from the standard equation 

AGO = AH" - TAS" (13) 

It should be emphasized that if AH" is not known exactly and (T, - T )  is 
large, the required temperature extrapolation can introduce serious errors. 

For a monomolecular process such as hairpin formation, In K(T,) = 0 since 
K = 1 at the melting temperature. Consequently, for monomolecular Bssocia- 
tions, the integrated form of the van't Hoff equation reduces to 

Multiplying both sides by RT yields 

- R T I n K ( T ) = A H "  1 - -  =AGO ( :I 
This simplified expression for monomolecular processes can be used to calcu- 
late the transition free energy AGO at any temperature of interest T from the 
experimentally measured values of T, and AHm. The corresponding AS" 
value then can be calculated using Eq. (13). Significantly, this simplified 
expression for monomolecular processes also can be used to evaluate melting 
curves of polymer complexes that formally have molecularities greater than 
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one, This possibility exists because polymer complexes melt in a pseudomono- 
molecular manner since the growth steps that are monomolecular dominate 
the bimolecular initiation steps. This pseudomonomolecular behavior is re- 
flected by the fact that the melting temperatures of polymer complexes are 
concentration independent. 

Method 11 

If a van't Hoff transition enthalpy is determined from concentration-depen- 
dent melting studies, a more direct procedure can be employed to determine 
AGO and AS". Inspection of Eq. (8) or (9) and Fig. 2 reveals that, while the 
slope of a 1/T, vs lnC, plot yields A H w ,  the intercept permits calculation 
of AS". These two thermodynamic parameters then can be used to calculate 
AGO by application of the standard thermodynamic relationship shown in Eq. 
(13). In principle, for a two-state transition this method should be equivalent 
to Method I described above. However, since transition enthalpies calculated 
by Method I are more sensitive to baseline assignments, the thermodynamic 
profiles calculated by Method I1 probably are more reliable. 

For a monomolecular assOciation or dissociation process n = 1. Thus, at the 
melting temperature, Eq. (8) or (9) reduces to 

Thus, the free energy change AGO at the T, can be calculated from AS" and 
AH",  and extrapolated to any temperature of interest Using Eq. (14). 

Significantly, all of the methods outlined above for calculating thermody- 
namic parameters from equilibrium melting curves are applicable only to 
transitions that proceed in a two-state manner. Such a characterization of the 
nature of a transition is not possible based exclusively on the temperature 
dependence of an equilibrium property. Consequently, additional independent 
information concerning the nature of a transition is required before the 
approaches described above can be applied to a given oligomer. 

Calculating AGO and AS" from Calorimetric Melting Curves 

Method 111 
As noted earlier, a single calorimetric transition curve gives a direct, 

model-independent measure of both the heat capacity and enthalpy changes 
accompanying a thermally induced conformational change. Frequently, these 
calorimetric data have been used in conjunction with independent equilibrium 
measurements of AGO to calculate complete thermodynamic profiles. Signifi- 
cantly, however, as described below, this dependence on noncalorimetric data 
is not necessary. 

In a given DSC experiment, one directly obtains a heat capacity (ACp) vs 
temperature (T) curve [see Fig. 4(a)]. This ACp vs T curve can be converted 
into a ACJT vs T curve [see Fig. 4(b)]. Since A S o  = j (ACJT) dT), the area 
under such a curve provides a "direct" measure of the entropy change. Thus, 
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from a single calorimetric transition curve one can obtain ACp, AH”, and ASo. 
Using these data, the corresponding value of A G O  can be calculated at  any 
temperature. This calorimetric approach has two significant advantages rela- 
tive to optical methods. First, one obtains a model-independent measure of 
the transition enthalpy and entropy rather than the “two-state values” 
obtained from analysis of optical data. Second, the calorimetric experiment 
provides a direct measure of ACp so that the temperature-dependent stability 
can be assessed. We have used this calorimetric method to characterize 
thermodynamically the transitions of many oligomers and have compared 
these results with the corresponding data obtained indirectly from optical 
melting curves. Significantly, we find that, for transitions that proceed through 
multiple states, the optically derived values can seriously deviate from the 
calorimetrically determined values. Only for two-state transitions do the 
optical methods of analysis described above yield meaningful thermodynamic 
data. By contrast, the calorimetric method yields meaningful thermodynamic 
data regardless of the nature of the transition. 

Calculating Melting Temperatures 

One of the primary practical applications of thermodynamic data is its use 
in calculating melting temperatures. This generalization particularly applies 
to molecular biologists who frequently need to predict the thermal stabilities 
(T,) of probe-gene complexes or other local DNA duplex domains. A melting 
temperature can be calculated for any transition by application of Eq. (8) or 
(9). One simply needs to know the molecularity of the transition n, the total 
strand concentration C ,  (when n =- l), and the transition enthalpy and 
entropy. The latter two thermodynamic parameters can be obtained experi- 
mentally or calculated using published nearest-neighbor 

CONCLUDING REMARKS 

In this paper we have derived the general forms of equations that can be 
used to extract thermodynamic data from experimental results obtained by 
either calorimetric or noncalorimetric techniques. We believe these equations 
will be of widespread interest considering the large increase in efforts designed 
to characterize thermodynamically the molecular forces that dictate and 
control the structural preferences of nucleic acids in solution. 

Significantly, the protocols described in this work can be used to evaluate 
association and dissociation reactions of any molecularity. This feature is 
particularly important since the modeling of more complex biological struc- 
tures will involve equilibria well beyond the simple bimolecular level. An 
example of more complex modeling is illustrated in the paper that follows, 
where a tetramolecular association reaction is employed to form an immobile 
junction structure designed to model cruciform formation. 

APPENDIX 

In this appendix, we present the derivation of the general equation that can 
be used to calculate AH,  for any equilibrium process by evaluation of the 
width of a dfferenntiated melting curve. 
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We begin by considering the general equilibrium in which n single strands 
asS0cat.e to form a n-mer complex: 

A, + A 2  + A ,  + - - *  +A, * A n  
( n  single strands) (a n-mer complex) 

As described in the text, if the equilibrium  occur^ in a two-state manner, we 
can derive two general expressions for the equilibrium constant. If the associ- 
ating strands are self-complementary (e.g., identical), the appropriate expres- 
sion is given in the text as Eq. (5). By contrast, if the associating strands are 
non-self-complementary (e.g., nonidentical) then the relevant expression for 
the equilibrium constant is given in the text as Eq. (2). In these general 
expressions [Eqs. (2) and (5)], a is the fraction of single strands in the helical 
state and C ,  is the total concentration of single strands. Consequently, we 
can write a general expression for a as 

n [ n-mer complex] 
a =  

CT 

Equations (2) and (5) in the text express how the equilibrium constant varies 
with C ,  and a. The variation of the equilibrium constant with temperature is 
given by the van’t Hoff expression [Eq. (l)]. Integration of this equation 
between two arbitrary temperatures TI and T2 yields the form of the 
van’t Hoff equation shown in the text as Eq. (12). Solving Eq. (12) for AHw 
yields 

Since the expression in the numerator is a constant for any given values of TI 
and T2, we can set it equal to B and write 

Thus, AHw can be calculated by dividing the appropriate value of B by 
the difference between the reciprocals of any two reference temperatures T, 
and T2. For a process of anymolecularity, the specific value of the constant B 
can be calculated as described below. 

We begin by differentiating Eq. (2) or (5) of the text with respect to (l /T) 
to obtain an expression for a In K / d ( l / T ) .  Note that the differential ob- 
tained is the same for either Eq. (Al) or (M).  The resulting expression then 
can be incorporated into the van’t Hoff expression [Eq. (l)] to yield 

This expression describes how the temperature dependence of any observ- 
able [ aa/a(l/T)] is related to the van’t Hoff transition enthalpy. In other 
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words, Eq. (A3) relates the shape of a differentiated melting curve with A Hw. 
Clearly, if a is known at any two temperatures (TI and T2) a value for B can 
be defined and AHw can be calculated using Eq. (A2). Thus, we describe 
below how values of a can be determined at  two experimentally convenient 
temperatures to yield specific values of B. 

The temperature corresponding to the maximum of a differentiated melting 
curve (T-) provides a convenient temperature at which to calculate a. The 
value of a at T,, can be determined by recognizing that, at the maximum of 
a differentiated melting curve, [ a  2a/a(l/T)2] = 0. Thus, by taking the 
second derivative of Eq. (A3) and setting it equal to zero we obtain 

Thus, at T = T,, a, = 1 / ( 6  + 1). 
By selecting two temperatures, TI, and T2 at which da /a ( l /T )  is equal to 

one half of [aa/a(l/T)],, we have two additional convenient points at  
which to calculate a. Thus we can write 

This Eq. (A5) reduces to 

1 
2(1 + 6 ) a 2  - (3 + 6 ) a  + ___ -0 - 

6 + 1  

Solving for a, we obtain 

(3 + 6) k /(n + 6 6  + 1) 

4(1 + 6) (A7) a* = 

where a, = a1 at Tl and a- = a2 at T2. 

yields 
Substituting these values of a into Eq. (2) or (9, and then into Eq. (Al) 

Comparison of Eqs. (A8) and (A2) allows us to conclude that 

This general expression can be used to calculate a specific value of B for a 
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reaction of any moldar i ty  n. We have listed some of these values in Table I. 
B valuea should be used when the full width of the curve at the half-height is 
evaluated between TI and T,, while B' values should be used when only the 
width of the upper half of the curve is evaluated at the half-height between 
T,, and T,. 
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Charles and Johanna Busch Memorial Fund, the Research Corporation, and the Rutgers Re- 
search Council. 

References 
1. Cantor, C. R. & Schimmel, P. R. (1980) Biophysical Chemistry, Part Z. The Conformation 

2. Bloomfield, V. A, Crothers, D. M. & Tinoco, I. (1974) Physical Chemistry of Nucleic Acids, 

3. Ts'o, P. 0. (1974) Basic pnnnples in Nucleic Acid Chemistry, Vol. ZZ, Academic Press, New 

4. Hinz, H. (1974) in Biochemical T h e d y m k s ,  M. N. Jones, Ed., Elsevier Scientific, The 

5. Breslauer, K. J. (1985) in T h e d y m i c  Data for Biochemistry and Biotechmbgy, H .  

6. Breslauer, K. J., Frank, R., Blocker, H. & Marky, L. A. (1986) Proc. Nutl. A d .  Sci. USA 

7. Tinoco, I., Jr., Uk$enbeck, 0. & Levine, M. D. (1971) NutLCre 230, 363-367. 
8. Tinoco, I., Jr., Borer, P. N., Dengler, B., h e ,  M. D., Uhlenbeck, 0. C., Crothers, D. M. & 

9. Freier, S. M., Kienek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T. & 

of BiobgicaZ Macromolecule, W. H. Freeman, San Francisco, chap. 6. 

Harper & Row, New York, chap. 6. 

York. 

Netherlands, pp. 116-168. 

Hinz, Ed., Academic Press, New York, pp. 377-394. 

83, 3746-3750. 

Gralla, J. (1973) Nature New Biol. 246,40-41. 

Turner, D. H. (1986) Proc. Nutl. A d .  Sci. USA 83,9373-9377. 
10. Martin, F. H., Uhlenbeck, 0. C. & Doty, P. (1971) J.  MoZ. BWZ. 67,201-215. 
11. Uhlenbeck, 0. C., Martin, F. H. & Doty, P. (1971) J. MoZ. BWl. 67,217-229. 
12. Craig, M. E., Crothers, D. M. & Doty, P. M. (1971) J. Mol. Bwl. 62, 383-401. 

14. Appleby, D. W. & Kallenbach, N. R. (1973) Biopolymem 12,2093-2120. 
15. Porschke, D., Uhlenbeck, 0. C. & Martin, F. H. (1973) Biopolymers 12, 1313-1335. 
16. Gralla, J. & Crothers, D. M. (1973) J. Mol. BioZ. 73, 497-511. 
17. Gralla, J. & Crothers, D. M. (1973) J. Mol. BioZ. 78, 301-319. 
18. Borer, P. N., Dengler, B., Tinoco, I., Jr. & Uhlenbeck, 0. C. (1974) J. MoZ. Biol. 86, 

13. Craig, M. B., C r ~ t h c ~ ~ ,  D. M. & Doty, P. (1971) J .  Mol. BWl. 62, 383-401. 

843-853. 
19. Pohl, F. M. (1974) Ew. J.  Biochem. 42,495-504. 
20. Breslauer, K. J., Sturtevant, J. M. & Tinoco, I., Jr. (1975) J. Mol. BWZ. 99, 549-565. 
21. Felsenfeld, G. & Miles, H. T. (1967) Ann. Rm. Biochem. 36,407-448. 
22. Marky, L. A., Canuel, L., Jones, R. A. & Breslauer, K. J. (1981) Biophys. Chem. 13, 

23. Albergo, D., Marky, L. A., Breslauer, K. J. & Turner, D. H. (1981) Biochemistry 20, 

24. Breslauer, K. J. & Bodnar, C. M. (1979) Biopolymers 18,2167-2174. 
25. Martin, F. H. & Tinoco, I., Jr. (1980) Nrccleic Acids Res. 8,2295-2299. 
26. Breslauer, K. J. &Sturtevant, J. M. (1977) Biophys. Chem. 7,205-209. 
27. Marky, L. A., Blumenfeld, K. S., Kozlowski, S. A. & Breslauer, K. J. (1983) Bwpolymers 22, 

28. Freier, S. M., Burger, B. J., Alkema, D., Neilson, T. & Turner, D. H. (1983) Biochemistry 

29. Freier, S. M., Alkema, D., Sinclair, A., Neilson, T. & Turner, D. H. (1985) Biochemistry 24, 

30. Freier, S. M., Petersheim, M., Hickey, D. R. &Turner, D. H. (1984) J. BiomoZ. Struct. Dyn. 

141-149. 

1409-1413. 

1247- 1257. 

22,6198-6206. 

4533-4539. 

1, 1229-1242. 



MARKY AND BRESLAUER 

31. Nelson, J. W., Martin, F. H. & Tinoco, I., Jr. (1981) BWpZymem 20,2509-2531. 
32. uhlenbeck, 0. C., Borer, P. N., Dengler, B. & Tinoco, I., Jr. (1973) J. MoZ. BWZ. 73, 

33. Patel, D. J., Kozlowski, S. A., Marky, L. A., Broka, C., Rice, J. A., Itakura, K. & Breslauer, 

34. Ikuta, S., Chattopadhyaya, R., Ito, H., Dickerson, R. E. & Keams, D. R. (1986) Biochem- 

35. keier, S .  M., Burger, B. J., Alkema, D., Neilson, T. &Turner, D. H. (1983) Biochemistry 

36. Haasnoot, C. A., G., de Bruin, S. HY., Berendsen, R. G., Janssen, H. G. J. M., Binnendijik, 
T. J. J., Hilbers, C. W., van der Marel, G. A. & van Boom, J. H. (1983) J. BWmZ. Strut .  Dyn. 1, 

483-496. 

K. J. (1982) BW~hemktry 21, 428-436. 

istry 26,4840-4849. 

B, 6198-6206. 

115-129. 
37. Scheffler, I. E., Elson, E. & Baldwin, R. L. (1970). J.  Mol. BWZ. 48, 145-171. 
38. Elson, E., Schaer, I. E. & Baldwin, R. L. (1970). J. Mol. BioZ. 64, 401. 
39. Poland, D. & Scheraga, H. A. (1970) Theo~y of Hekc-Coil Transitions in Biopolymers, 

40. Zimm, B. H. & Kallenbach, N. R. (1962) Ann. Rev. Phys. Chem. 13, 171. 
41. Wang, A. C. & Kallenbach, N. R. (1971) J. MoZ. BWZ. 62, 591-607. 
42. Kallenbach, N. R. (1974) in QwlnaUn Statistical Mechanics in the Natural Sciences, 

43. Applequist, J. & Damle, V. (1965) J. Am. Chem. SOC. 87,1450-1458. 
44. Poland, D., Vournakis, J. N. & Scheraga, H. A. (1966) BiopoZpwrs 4,223-235. 
45. Vournakis, J. N., Poland, D. & Scheraga, H. A. (1967) BiopoZymrs 5,403-415. 
46. Seeman, N. C. (1982) J. Theor. BWl. 99, 237-247. 
47. Seeman, N. C. & Kallenbach, N. R. (1983) Biophys. J. 44, 201-209. 
48. Kallenbach, N. R., Ma, R.-I. & Seeman, N. C. (1983) Nature 305,829-831. 
49. Seeman, N. C., Maestre, M. F., Ma, R.-I. & Kallenbach, N. R. (1985) in The Molecular 

50. Wemmer, D. E., Wand, A. J., Seeman, N. C. & Kallenbach, N. R. (1985) Biochemistry 24, 

51. Marky, L. A., Kallenbagh, N., McDonough, K. A., Seeman, N. C. & Brslauer, K. J. (1987) 

52. Privalov, P. L. & Potekhin, S. A. (1986) in Methods in Enzymology, Adenine Press, New 

53. Breslauer, K. J. & Bina-Stein, M. (1977) Biophys. Chem. 7, 211-216. 

Adenine Press, New York. 

Kursunoglu, B., Mintz, S. L. & Widmayer, S. M., Eds., Plenum Press, New York, pp. 95-118. 

Basis of Cancer, Rein, R., Ed., Alan R. Lin, Inc., New York, pp. 99-108. 

5745-5749. 

B i o p o l ~ ~  !X, 1621-1634. 

York, pp. 4-51. 

Received December 15, 1986 
Accepted April 8, 1987 


