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We investigate the utilization of external magnetic field for the manipulation of the quantum states in a
two-electron double quantum dot. The singlet and triplet states are coupled through the hyperfine interaction
between the electrons and surrounding nuclei. When the magnetic field is changed as a function of time, the
singlet-triplet transition is possible for certain values of magnetic field, when the singlet state becomes degen-
erate with the triplet state. The transition probability depends on the sweeping speed of the magnetic field
through the averaged Landau-Zener formula. We evaluate proper time scales for efficient control of the
quantum dot, evaluate the singlet probabilities for different time-dependent magnetic fields, and study the
average of the final singlet probability, averaged over the orientations of the nuclear spins surrounding the
quantum dot.
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I. INTRODUCTION

A setup of electrons confined in quantum dots1 has
emerged during recent years as one of the most interesting
alternatives for quantum computing architecture.2–4 For the
construction of a working quantum computer, complete con-
trol of the qubit must be achieved in order to enable success-
ful performance of quantum operations. For the time being,
several alternative control schemes have been studied. The
control of a single-electron quantum dot has been performed
using resonant radio-frequency electrical pulses,5 ultrafast
optical pulses,6,7 and by manipulating the dot shape using
electric fields.8 Theoretical investigations of the control of
single-electron quantum dots have been made on optimized
laser pulses,9,10 photon polarization,11 and by manipulating
the electric field.12

For two-electron double quantum dots, control has been
realized by manipulating the exchange interaction using elec-
tric fields,13 which may be used to construct quantum gates.14

Recently there have been studies of control schemes for two-
electron double quantum dots regarding microwave pulses15

and the use of time-dependent electric fields in order to pro-
duce desired final state for the quantum dot.16,17 A control
scheme for double quantum dot, which enables control of the
nuclear polarization in the vicinity of the quantum dot, has
also been presented.18

In this paper, we study the control of a two-electron
double quantum dot using magnetic field. The lowest-lying
energy states of the two-electron double quantum dot are the
singlet state �S� and the triplet states �T−�, �T0�, and �T+�. The
singlet state has degeneracy points with all or some triplet
states, depending on the interdot distance �see Fig. 1�. In a
GaAs quantum dot, the hyperfine interaction between the
spins of the electrons in the quantum dot and the spins of the
surrounding nuclei couples the singlet and triplet states at the
degeneracy points. By varying the sweeping speed of the
magnetic field over the degeneracies, the final state of the
double quantum dot may be controlled. Depending on the
sweeping speed, the transitions at the singlet-triplet degen-
eracy points are diabatic, adiabatic, or a combination of both

these possibilities. This behavior is explained by the Landau-
Zener formula.19–21 We analyze the system using a 4�4
Hamiltonian matrix, derived by Coish and Loss,22 and evalu-
ate numerically the probabilities of the singlet and triplet
states as a function of time. In addition, we calculate the final
singlet probability as a function of the sweeping time for a
single singlet-triplet transition using the Landau-Zener for-
mula and average it over the hyperfine field realizations.

II. MODEL

We model the two-electron system with the Hamiltonian

H = �
i=1

2 ��− i��i −
e

c
Ai�2

2m�
+ V�ri,si�	 +

e2

�r12
, �1�

where the effective mass m�=0.067me and permeability �
=12.7 are material parameters for GaAs. The external poten-
tial V is a sum of two different potentials,
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FIG. 1. The energy difference �E between the singlet state S
and triplet states T−, T0, and T+ as a function of the external mag-
netic field. In the calculation of these energies, the hyperfine field is
set to zero. The dark �light� gray lines correspond to dot distance 40
�50� nm.
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V = VC + VZ. �2�

The first part in the external potential is a two-minima para-
bolic confinement potential

VC�r� =
1

2
m��0

2 min
�
j=1

2

�r − L j�2� , �3�

where the confinement strength is ��0=3.0 meV and L j
give the positions of the minima of the confinement poten-
tial. The second part, VZ, is the potential caused by the Zee-
man interaction

VZ�r,s� = g��BB�r� · s , �4�

where the Lande factor of GaAs is g�=−0.44. The magnetic
field can be divided into a homogeneous external magnetic
field Bext and an inhomogeneous random hyperfine field
h�r�.

We discretize the Hamiltonian using finite difference
method and determine its eigenvalues using Lanczos diago-
nalization. The difference between the energies of the singlet
and triplet states is denoted with �E. The strength of the
hyperfine field h is determined from a fit to singlet-triplet
decoherence measurements.23,24 The eigenenergies of the
singlet and triplet states depend on the external magnetic
field. In Fig. 1, the energy differences between the singlet
and triplet states are shown as a function of the magnetic
field for two dot distances, 40 and 50 nm. As the magnetic
field increases, the energy differences diminish and for the
40 nm distance, all three energy differences change sign.
This means that the singlet state has a degeneracy with all
the triplet states, making a transition from singlet state to
triplet states possible. For larger distances, the exchange en-
ergy is smaller. Then the Zeeman term is dominant and the
�S�− �T+� energy difference does not change sign. Finally,
when the distance is so large that the exchange energy van-
ishes, the energies depend linearly on the magnetic field as
the energy difference is given by the Zeeman energy.

In this setup, the energies of the states above the four
lowest-lying states are considerably larger than their cou-
pling with the lowest-lying states induced by the hyperfine
field. Hence, we approximate the dynamics of the system
using a 4�4 Hamiltonian, constructed on the basis of the
singlet and three triplet states. For brevity, we introduce
variables22 that depend on the hyperfine fields around the
two electrons h1,2

hi =
1

2
�h1

i + h2
i �, �hi =

1

2
�h1

i − h2
i � , �5�

h� = hx � ihy, �h� = �hx � i�hy . �6�

Using these variables, the Hamiltonian matrix Heff takes the
form22

�
0 − �h+/�2 �hz �h−/�2

− �h−�2 J + �Z + hz h−/�2 0

�hz h+/�2 J h−/�2

�h+/�2 0 h+/�2 J − �Z − hz
	 ,

where �Z=g��BBz.

III. SPIN DYNAMICS

A. Generalized Landau-Zener approach

We analyze the evolution of the system when the mag-
netic field is swept over such values that each triplet eigenen-
ergy becomes degenerate with the singlet state. In the vicin-
ity of the crossing points of the singlet and triplet energies,
the dynamics of the system is effectively described by a 2
�2 Hamiltonian on the basis of the crossing singlet and
triplet states

H = �0 �

� �E
� , �7�

where � is the off-diagonal matrix element coupling the de-
generate singlet and triplet states and �E is the energy dif-
ference between these states. Because the coupling is typi-
cally small, we may use perturbation theory and the matrix
elements are calculated from space integrals, e.g., in the case
of �S�− �T0� crossing,

� = S�Hhf�T0� =
1

2
� � dr1dr2	S

��r1,r2�

� �B1
z − B2

z�	T�r1,r2� . �8�

The wave function 	 is expressed using the expansion coef-
ficients of the degenerate states 
1 and 
2 as

	 = �
1


2
� . �9�

From the Schrödinger equation �we denote �=1� i �	
�t =H	,

we obtain a differential equation for 
1,

−
1

�

�2
1

�t2 = �
1 + i
�E

�

�
1

�t
. �10�

When the magnetic field is changed as a function of time, the
time dependence of the energy difference �E�t� is rather
complicated �see Fig. 1�, making this differential equation
difficult to solve. However, the hyperfine coupling of the
singlet and triplet states is weak. Thus, the singlet probability
changes only in the vicinity of the singlet-triplet degeneracy,
where we may approximate �E�t� using a linear function
�E=Kt. Substituting �E=Kt, we get the differential equa-
tion

�2
1

�t2 + iKt
�
1

�t
+ �2
1 = 0. �11�

Starting from the singlet state, having initial condition �
1�t
=−���2=1, we evaluate the asymptotic value of the singlet
probability �
1�t=���2. We do not have to solve this differ-
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ential equation in order to obtain it, as the asymptotic prob-
ability is given by the famous Landau-Zener formula for
nonadiabatic transitions19–21

�
1�t = ���2 = exp�−
2��2

�K� � . �12�

The finite temperature of the hyperfine spins causes fluctua-
tions in the random hyperfine field. Thus, a measurement of
the singlet probability is effectively made over an ensemble
of different hyperfine fields. Hence, it is interesting to calcu-
late the average of the asymptotic singlet probability over the
hyperfine-field realizations. We define the off-diagonal ele-
ment � as a randomly distributed complex number, having
mean �0 and variance 2. Both the real and imaginary parts
of � are normally distributed, hence we obtain the average of
the singlet probability PS� from the integral �we denote x
=Re��� and y=Im����

PS� = �
−�

� �
−�

�

exp
−
�x − x0�2

22 �exp
−
�y − y0�2

22 �
�exp
−

2��x2 + y2�
�K� �dxdy , �13�

which gives

PS� = exp�−
2���0�2

�K� + 4�2� 1

1 + 4�
2

�K�

. �14�

One can see, that the Gaussian form of Landau-Zener for-
mula is modified and multiplied with a Lorentzian function.

Figure 2 illustrates the asymptotic singlet probabilities for
different values of the mean and variance of the hyperfine
field as a function of 1 /K, where K is the time derivative of
the energy difference. The singlet probability diminishes rap-
idly as the slope of the energy difference decreases, because
the slow change in the energy difference keeps the energy
difference longer in the vicinity of zero, enabling the decay
of the singlet state. If either the polarization or the variance

of the hyperfine field is increased, resulting curves have
similar shapes, as the two lowermost curves in Fig. 2 indi-
cate. This makes it difficult to determine the hyperfine field
polarization from the measurements.25

We calculate the variance of the asymptotic singlet prob-
ability in a similar fashion as above, using the relation
2�PS�= PS

2�− PS�2, which yields

2�PS� = exp�−
4���0�2

�K� + 8�2� 1

1 + 8�
2

�K�

− exp�−
4���0�2

�K� + 4�2� 1

�1 + 4�
2

�K��
2 . �15�

We observe that the variance approaches zero in the limits
�K�→0 and �K�→�.

B. Numerical analysis

In the following, we study the evolution of the quantum
dot states by using numerical methods. The wave function of
the system is written on the basis of the four singlet and
triplet states, and the singlet and triplet probabilities are cal-
culated from the squares of the absolute values of the respec-
tive basis functions. We calculate numerically the wave func-
tion of the system using the relation 	�t�=exp�−iHefft�	�0�.
The magnetic field is changed linearly as a function of time,
which causes a time dependence in the energy difference �see
Fig. 1�. Due to this, the effective Hamiltonian changes at
each time step. The magnetic field is changed rapidly �in
55 �s� in Fig. 3�a� and slowly �in 550 �s� in Fig. 3�b�. The
distance of the dots is 40 nm, which makes all three singlet-
triplet transitions possible. Figure 3 shows that the probabil-
ity of the singlet state changes very rapidly when the �S�
− �T−� crossing point is reached. Once the energy difference
has changed sign and its absolute value increases, the de-
crease in the singlet probability stops and it remains con-
stant. Similar stepwise decrease is observed at the �S�− �T0�
and �S�− �T+� crossing points. The probabilities of the triplet
states �T0�, �T+�, whose crossing point is reached later, have a
smaller probability than �T−� state, because the singlet prob-
ability diminishes and the conservation of the total probabil-
ity restricts the probabilities of the other triplet states. We
notice that the time interval of the singlet-triplet transitions is
less than 1 �s. The value of the off-diagonal matrix element,
which couples the respective singlet and triplet states, effects
the spin dynamics only during the transition. Outside the
transition points, the nonzero singlet-triplet energy difference
does not allow transition. As the time scale of the fluctua-
tions of the hyperfine field is around 10–100 �s,4 the off-
diagonal matrix elements may be considered constant during
the simulation. The value of each off-diagonal matrix ele-
ment should be interpreted to be the value the element has at
the moment of the singlet-triplet transition.

If the magnetic field is changed rapidly �Fig. 3�a��, the
energy difference is in the vicinity of zero for a shorter time.
Thus, the singlet probability does not have time to change
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FIG. 2. �Color online� Probabilities PS of the singlet state S as a
function of the inverse of the time derivative K of the energy dif-
ference for different values of the mean �0 and variance 2 of the
hyperfine field.
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much, making the steps of the singlet probability smaller.
The oscillations of the singlet and triplet states are invisible
in Fig. 3, because the damping of the oscillations is remark-
ably fast. Only the peaks at the singlet-triplet crossing points
are observed. In Fig. 1, the slopes for the energy differences
�S�− �T0� and �S�− �T+� are smaller than for �S�− �T−�, which
would give these triplet states larger probabilities according
to Eq. �14� but the remaining singlet probabilities before the
respective singlet-triplet crossings are smaller, which limits
the value of the triplet probability giving these states almost
equal probabilities. If the distance of the dots is increased to
50 nm, the �S�− �T+� energy difference is always positive.
Hence, there would be only two steps of the singlet probabil-
ity in this case and the probability of the �T+� state would
remain zero. We may choose different velocities for different
singlet-triplet crossings, and by crossing certain point slowly,
and another point rapidly we may produce various final
states for the quantum dot.

For different realizations, the time dependence of the sin-
glet and triplet probabilities varies considerably. The values
of the singlet probabilities during the magnetic-field sweep-
ing for a large number of realizations are represented in Fig.
4. The three different times, for which the probability distri-
bution is shown, are selected to be after each Landau-Zener
transition. In Fig. 4�b�, all probability distributions have a
peak at PS=0, because for slower transition there is a large

probability for total disappearance of the singlet probability.
The probabilities of the second and third transition are re-
stricted by the probability after the first transition, which
naturally cannot be exceeded. In Fig. 4�a�, the peaks of the
distributions are closer to PS=1. As in Fig. 4�b�, the distri-
butions of the probabilities after two or three transitions have
a flatter shape than the first due to the conservation of the
total singlet probability. The forms of these three distribu-
tions resemble the gamma distribution. The Landau-Zener
transition has an analogy with a Poisson process, where �2

corresponds to the event probability in a time unit. Gamma
distribution is related to probabilities of several independent
Poissonian events. In our case, the Landau-Zener transitions
are not independent of each other, because the total change in
the probability is restricted to 1. In the faster magnetic-field
sweeping, this restriction has smaller effect on the probabil-
ity distribution and the shapes of the distributions are quite
close to gamma distributions.

As Fig. 3 shows, the value of the singlet probability after
the sweeping of the magnetic field depends strongly on the
speed of the process. We calculate the singlet probability in
the case where the magnetic field is changed from 0.75 to
0.95 T in time � �interdot distance is 40 nm and the hyperfine
field has zero mean�. Now only the �S�− �T−� degeneracy
point is crossed. Because there is only one singlet-triplet
transition, the asymptotic singlet probability is given by Eq.
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FIG. 3. �Color online� Probabilities P of the singlet state S and triplet states T−, T0, and T+ as a function of time averaged over 1000
realizations. In the left �right� figure the magnetic field is switched from 0.75 to 1.35 T in 55 �550� �s. Distance of the dots is 40 nm.
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FIG. 4. The probability distribution of the singlet probability PS for large collection of nuclear-field realizations. Panel �a� is for the case
shown in Fig. 3�a� and �b� is for Fig. 3�b�. The times are 22 �220� �s for circles, 39 �390� �s for squares, and 55 �550� �s for asterisks.
The data points are connected with lines for clarity.
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�14� and its variance by Eq. �15�, where �0=0. Figure 5
shows the asymptotic singlet probability as a function of �,
averaged over 1000 realizations. The shadings in Fig. 5 in-
dicate the mean given by Eq. �14� and the variance of the
mean, obtained from Eq. �15� for 50 and 1000 realizations.
The numerical values of the asymptotic singlet probability
are situated inside the light-gray area and roughly half of the
points inside the dark-gray area as should. We can see that
the change in the magnetic field from 0.75 to 0.95 T should
be made in 0.1–1.0 ms in this setup in order to have singlet
probabilities that differ from 0 and 1. If the sweeping is

faster than 0.1 ms, the singlet probability does not have time
to change. For sweeping times larger than 1 ms, the singlet
probability approaches zero. The variance has a maximum
around �=0.2 ms, for larger � variance diminishes slightly.

IV. SUMMARY

In summary, we have studied control of a two-electron
double quantum dot using external magnetic field. We calcu-
lated the eigenenergies of the four lowest-lying �singlet and
three triplet� states and analyzed the evolution of the singlet
and triplet states of the quantum dot. We used a 2�2 matrix
model Hamiltonian, which led to a second-order differential
equation for the singlet probability. The transition probability
from the singlet state to the triplet state was obtained from
the Landau-Zener formula. Numerical simulations of the
evolution of the states showed that the singlet probability
changes only at the vicinity of the singlet-triplet crossing and
behaves according to the Landau-Zener formula. We ana-
lyzed the distribution of the singlet probability for different
realizations and the dependence of the final singlet probabil-
ity on the sweeping speed of the external magnetic field. Our
results indicate, that the quantum states of the double quan-
tum dot can be controlled by applying time-dependent exter-
nal magnetic field.
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