

A Local Mean Value Theorem for Analytic Functions Author(s): Ake Samuelsson Source: The American Mathematical Monthly, Vol. 80, No. 1 (Jan., 1973), pp. 45-46 Published by: Mathematical Association of America Stable URL: <u>http://www.jstor.org/stable/2319258</u> Accessed: 30/03/2010 04:24

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

MATHEMATICAL NOTES

A LOCAL MEAN VALUE THEOREM FOR ANALYTIC FUNCTIONS

ÅKE SAMUELSSON, University of Göteborg

The classical mean value theorem of differential calculus does not extend to the complex plane. The purpose of this note is to establish a local counterpart for analytic functions.

THEOREM. If f is analytic in a domain containing z_0 then there is a neighborhood N of z_0 such that if z_1 is any point in this neighborhood then there exists a point z with

$$\left| z - \frac{1}{2}(z_0 + z_1) \right| < \frac{1}{2} \left| z_1 - z_0 \right|,$$

such that $f(z_1) - f(z_0) = (z_1 - z_0)f'(z)$.

A slightly weaker version of this theorem has been proved by J. M. Robertson [1]. As a matter of fact, with the additional assumption that $f''(z_0) \neq 0$, Robertson's proof yields our theorem.

Proof. We may assume that f has the form

$$f(z) = f(z_0) + (z - z_0)f'(z_0) + (z - z_0)^{k+1}h(z),$$

where $k \ge 1$ is an integer and $h(z_0) \ne 0$.

We may also assume, without loss of generality, that throughout the domain of analyticity we have

$$|h(z)| \ge \frac{1}{2} |h(z_0)|$$
 and $|h'(z)| \le 1$.

It suffices to show that if the neighborhood $N = \{z; |z - z_0| < r\}$ is chosen so that $0 < r \le |h(z_0)|/2(k+2)$ and $z_1 \in N$, then the function

$$f'(z) - \frac{f(z_1) - f(z_0)}{z_1 - z_0}$$

has exactly one zero in the domain

$$D = \left\{ z; \left| z - \frac{1}{2}(z_0 + z_1) \right| < \frac{1}{2} \left| z_1 - z_0 \right|, \quad \left| \arg \frac{z - z_0}{z_1 - z_0} \right| < \frac{\pi}{k} \right\}.$$

A direct computation shows that

$$f'(z) - \frac{f(z_1) - f(z_0)}{z_1 - z_0} = \Phi(z) + h(z_1)\psi(z),$$

where $\Phi(z) = (z - z_0)^{k+1} h'(z) + (k+1)(z - z_0)^k (h(z) - h(z_1))$ and

$$\psi(z) = (k+1)(z-z_0)^k - (z_1 - z_0)^k$$

If $z \in \partial D$, the boundary of D, then

$$\begin{aligned} \left| \Phi(z) \right| &\leq \left| z - z_0 \right|^{k+1} \left| h'(z) \right| + (k+1) \left| z - z_0 \right|^k \left| \int_{z_1}^z h'(\zeta) d\zeta \right| \\ &\leq (k+2) \left| z_1 - z_0 \right|^{k+1}. \end{aligned}$$

If z is on the circular arc of ∂D , i.e., if $z = \frac{1}{2}(z_0 + z_1) + \frac{1}{2}(z_1 - z_0)e^{i2\theta}$, $|\theta| \leq \pi/k$, then

$$|\psi(z)|^2/|z_1-z_0|^{2k} = 1 + (k+1)((k+1)\cos^k\theta - 2\cos k\theta)\cos^k\theta.$$

Using the inequality

$$(k+1)\cos^k\theta - 2\cos k\theta \ge 0$$
 for $|\theta| \le \pi/k, k = 1, 2, \cdots,$

readily established by induction, we see that $|\psi(z)| \ge |z_1 - z_0|^k$. If k > 2, then the boundary ∂D contains two line segments, namely $z = z_0 + t(z_1 - z_0)e^{\pm i\pi/k}$, $0 \le t \le \cos \pi/k$. On these line segments we have

$$|\psi(z)| = (1 + (k+1)t^k) |z_1 - z_0|^k \ge |z_1 - z_0|^k.$$

We have shown that $|\psi(z)| \ge |z_1 - z_0|^k$ on ∂D . Hence, for $z_1 \in N$ and $z \in \partial D$,

$$\left|\frac{\Phi(z)}{h(z_1)\psi(z)}\right| \leq \frac{k+2}{|h(z_1)|} |z_1 - z_0| < \frac{|h(z_0)|}{2|h(z_1)|} \leq 1.$$

By Rouche's theorem we conclude that the functions $\Phi + h(z_1)\psi$ and ψ have equally many zeros in D, namely one. This proves our theorem.

Reference

1. J. M. Robertson, A local mean value theorem for the complex plane, Proc. Edinburgh Math. Soc. (2) 16 (1968/69), 329-331.

A THEOREM ON SET INCLUSION IN METRIC SPACES

JAMES A. HEINEN, Marquette University, and ALBERT WILANSKY, Lehigh University

Let A and B be subsets of a metric space (X, d). We shall show that under certain (essentially sharp) conditions, A will be contained in B if $\partial A \subset B$. This result has applications in the study of the stability properties of certain differential equations and to, the variation of the spectrum of a Banach algebra element.

For any set A in a metric space (X, d), let A' denote the complement of A, C(A) the closure of A, and ∂A the boundary of A.

THEOREM 1. Suppose A and B are relatively compact (i.e. C(A) and C(B) are compact) subsets of a non-compact metric space (X,d) with B' connected. Then the condition $\partial A \subset B$ implies $A \subset B$.

46

[January

....