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1973] MATHEMATICAL NOTES 45
A LOCAL MEAN VALUE THEOREM FOR ANALYTIC FUNCTIONS
AKE SAMUELSSON, University of Géteborg

The classical mean value theorem of differential calculus does not extend to the
complex plane. The purpose of this note is to establish a local counterpart for
analytic functions.

Turorem. If f is analytic in a domain containing z, then there is a neighbor-
hood N of z, such that if z, is any point in this neighborhood then there exists
a point z with

,Z_%(ZO‘FZ))l <4_fl Zy “Zol,-
such that f(z,) — f(zo) = (2, — z0)f'(2).

A slightly weaker version of this theorem has been proved by J. M. Robertson [1].
As a matter of fact, with the additional assumption that f”(z,) # 0, Robertson’s
proof yields our theorem.

Proof. We may assume that f has the form
f(2) = f(zo) + (z — 20)f"(20) + (z — 2)* " 'h(2),

where k = 1 is an integer and h(z,) # 0.
We may also assume, without loss of generality, that throughout the domain

of analyticity we have
|h(z)| = | h(zo)] and |h'(2)] 1

It suffices to show that if the neighborhood N = {z:]|z — zo| <r} is chosen so
that 0 < r < | h(zo)|/2(k +2) and z; € N, then the function

f(zy) = f(z0)

f( ) =z ’—~_'_TO__
has exactly one zero in the domain
z T
D = {z;lz—%(zo+:1)l<~%|z1 ’arg—z———_z—0 <E}'
1 0

A direct computation shows that

f(z) — f@E) =G L iy 4 hiz (o),

Z, — 2

where ®(z2) = (z — zo)* " 'h'(2) + (k + 1)(z — zo)"(h(2) — h(z,)) and

W(z) = (k + 1) (z — 20" = (21 — 20)".
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If zedD, the boundary of D, then

|0()| < |z =2[**" W] +(k+ D]z~ z[* f h'(odc]

s (k+ 2)] Zy — ZolkJrl .
If z is on the circular arc of dD, i.e., if z = $(zo + z,) + ¥(z, — zo)e™*, | 0| < n/k,
then

[W(2)|?] 24 — 2o/ = 1+ (k + 1)((k + 1) cos*0 — 2 cos kf)cos* 0.
Using the inequality
(k + 1)cos*0 — 2 coskd = 0 for | 0] < n/k, k = 1,2,,

readily established by induction, we see that |y(2)| = |z, — zo|*. If k>2, then
the boundary 0D contains two line segments, namely z = z, + t(z, —z,)e*™*,
0 <t £ cosn/k. On these line segments we have

V(@) = A+ (k+ DMz, — 20| 2 |z, — z]".
We have shown that [z,b(z)| > ' z, —zO|" on dD. Hence, for z,e N and zedD,

| h(z0)] <

O(z) k+2 - )|
2[h(z)| =

ewe) € [hzr)

By Rouche’s theorem we conclude that the functions @ + h(z,)y and i have equally
many zeros in D, namely one. This proves our theorem.

"Zl_zol

Reference

1. J. M. Robertson, A local mean value theorem for the complex plane, Proc. Edinburgh Math.
Soc. (2) 16 (1968/69), 329-331.

A THEOREM ON SET INCLUSION IN METRIC SPACES
JaMES A. HEINEN, Marquette University, and ALBERT WILANSKY, Lehigh University

Let 4 and B be subsets of a metric space (X, d). We shall show that under certain
(essentially sharp) conditions, 4 will be contained in B if 4 < B. This result has
applications in the study of the stability properties of certain differential equations
and to,the variation of the spectrum of a Banach algebra element.

For any set A in a metric space (X,d), let A’ denote the complement of A4,
C(A) the closure of 4, and 0A the boundary of 4.

THEOREM 1. Suppose A and B are relatively compact (i.e. C(A) and C(B) are
compact) subsets of a non-compact metric space (X,d) with B’ connected. Then
the condition 0A = B implies A < B.
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