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We investigate the population and dephasing kinetics of a quantum dot coupled by Auger and phonon
scattering processes with a femtosecond-pulse-excited electron-hole plasma in a quantum well or wetting layer.
For the two-dimensional �2D� plasma we treat the quantum kinetics of the Coulomb scattering processes with
a two-time-dependent screened Coulomb interaction potential. Additionally the scattering with LO phonons is
included. For ultrashort pulse excitations close to the band edge of the plasma we obtain a slow decay of the
polarization of the quantum dot with superimposed oscillations whose frequency is given by the energetic
distance of the quantum dot levels and the 2D band edge. For two-pulse excitations we calculate the absorption
spectrum of the probe pulse for various delay times and pump pulse intensities. One sees, e.g., the buildup of
gain for a strong pump pulse in the spectral regions below the dot absorption line and below the band edge of
the plasma. In the calculated four-wave-mixing signal we find in addition to long dephasing times, which
decrease with increasing 2D plasma densities, also oscillations due to the beating of the quantum dot and the
band edge transitions.
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I. INTRODUCTION

Quantum dots can be seen as the ultimate limit of quan-
tum confinement. The translational degrees of freedom are
quenched in all three directions resulting in a zero-
dimensional nanostructure which can also be considered as
an artificial atom. Because the coupling of the dots to the
environment is relatively weak, for low excitation levels
relatively long dephasing times are expected and observed
by four-wave mixing �FWM�,1 particularly at low
temperatures.2 For weak excitation in the surrounding two-
dimensional �2D� layer the transfer of carriers from the
plasma continuum to the dot levels is at higher temperatures
determined by the electron–LO-phonon interaction. Bayer
and Forchel3 measured for a single quantum dot the homo-
geneous linewidth for both resonant and nonresonant excita-
tion. In the low-excitation regime they found at room tem-
perature a dephasing time of about 220 fs. At higher
excitation levels the measured relaxation time for the carrier
capture process measured in terms of the rise time of the
photoluminescence4 become shorter with increasing excita-
tion power Pexc, which points to Auger transitions between
the 2D continuum and the dot levels. Above the threshold for
the onset of Auger processes the capture time has been found
to decrease as �r�1/ Pexc �Ref. 5� while in Ref. 6 a relaxation
time has been measured which is inversely proportional to
the density of the excited carriers in the quantum well. In this
range the observed capture times are independent of tem-
perature. In Ref. 7 a decrease of the Auger capture cross
section with increasing quantum well carrier density has
been measured and explained in terms of an increasing dot
level population. Betz et al.8 obtained from observations of a
few quantum dots shifts of the dot ground state which de-
pend on the delay between the pump and probe pulse. These

measurements provide indirect information about the intra-
dot relaxation process. Pulizzi et al.9 studied in particular the
dependence of the relaxation time on the nonresonant exci-
tation frequency.

Bockelmann and Egeler10 studied the carrier relaxation by
Auger processes already in 1992, emphasizing that in such a
treatment the continuum states and the dot states have to be
orthogonalized. More detailed calculations of the relaxation
and dephasing due to Auger processes have been published
in Refs. 11 and 14–18. Schneider et al.17 used a quantum
kinetic analysis with a free-particle generalized Kadanoff-
Baym ansatz, but stationary populations. All the other treat-
ments are based on a semiclassical Markovian kinetics with
an equilibrium form of the screening of the Coulomb inter-
action by the free carriers in the 2D layer. So far, a complete
study of the time evolution of the reduced density matrix of
the quantum dot after an ultrashort pulse excitation in the
plasma has not been given to our knowledge.

It is known19 that the semiclassical kinetics has to be re-
placed by a non-Markovian quantum kinetics if the relevant
time interval, i.e., the pulse width, is comparable to or
shorter than the period of a plasma or phonon oscillation. In
specific cases such as the exactly solvable model with only
one representative phonon mode the coherent quantum ki-
netic regime can extend even to time intervals considerably
longer than the phonon period.12 Thus for femtosecond exci-
tations with intensive pulses a quantum kinetic treatment of
the relaxation and dephasing is needed. On these short time
scales the screened Coulomb potential cannot be taken in its
equilibrium form, but has to be calculated self-consistently
as a function of two times from its Dyson equation.20 The
polarization bubble will be determined in a time-dependent
self-consistent random phase approximation �RPA�. Because
the RPA is not a conserving approximation one is faced in
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the general two-time formulation with a long-wavelength
divergence.21 This problem can be avoided by using the
weak-coupling generalized Kadanoff-Baym approxi-
mation19,22 which expresses the two-time propagator
G��t , t�� by a product of the retarded Green’s function and
the reduced density matrix,

G��t,t�� = �− Gr�t,t����t�� for t � t�,

��t�Ga�t,t�� for t � t�,
� �1�

where Gr and Ga are the retarded and advanced Green’s
functions, respectively, and � is the density matrix. Using
this approximation the two diverging contributions cancel21

so that a well-behaved interband polarization is obtained.
Dealing with the kinetics of Auger trapping processes—in
which two electrons of the 2D continuum scatter one into a
dot level and one up in the continuum—the trapping of an
electron and a hole occur successively. Thus charged states
of the quantum dot occur at least as intermediate states, al-
though the probability, say, for a hole trapping is certainly
increased if an electron is already trapped on the dot previ-
ously. The charged dots will induce surface charges and po-
larize the surrounding plasma. In order to describe this situ-
ation one has to deal with a spatially inhomogeneous plasma.
Both the charged dot states with their Coulomb Hartree
terms and the spatially inhomogeneous plasma would com-
plicate a quantum kinetic description considerably. We will
therefore disregard the effects of charged states on the quan-
tum kinetics, which is valid—at least in a mean-field
description—only for symmetric conduction and valence
bands with equal electron and hole masses. Naturally for
GaAs quantum dot systems the effective electron mass is
about an order of magnitude smaller than the hole mass. In
such an asymmetric system the electron and hole capture
rates are different, resulting in charged dot states. However,
electrodynamic forces will compensate these localized
charges by polarizing the 2D plasma of excited carriers
around the quantum dot, so that at the end more or less
correlated capture processes will take place even in an asym-
metric situation. In this sense it is hoped that our
simplified—but consistent—model will provide results that
are qualitatively similar to those for more complex realistic
models.

It should be noted too that the spin degrees of freedom are
not included in the present treatment. Again the electron and
hole spin may have interesting influence as is known from
the observed Kondo resonances in transport23 or the obser-
vations of quantum dot trions with an electron spin singlet or
triplet structure.24

In the following the quantum kinetic equations for the dot
and the surrounding 2D plasma will be treated considering
Coulomb and LO-phonon interactions in the symmetric band
model. We will solve these equations for an excitation with
one and two femtosecond pulses, respectively. For the two-
pulse excitation we calculate the absorption spectrum of a
delayed weak probe pulse for various pump pulse intensities,
which yields information about the relaxation kinetics. Fur-
thermore, we calculate the time-integrated four-wave-mixing
signal and study the dephasing due to the Coulomb and LO-

phonon scattering. The obtained dephasing times decrease
with increasing 2D plasma densities. For short pulses a beat-
ing between plasma edge and quantum dot transitions is ob-
tained.

II. QUANTUM KINETIC EQUATIONS FOR A DOT IN A
2D WETTING LAYER

A. The Coulomb Hamiltonian

The Hamiltonian of the considered quantum dot �D� in a
quantum well or wetting layer �W� with Coulomb interaction
between the carriers and the interaction with a coherent light
field is

H = H0 + He-e + Hex,

with the free-particle Hamiltonian �with free-particle ener-
gies ���

H0 = �
�

��a�
†a�,

the dipole interaction Hamiltonian with the dipole matrix
element d�	 and the amplitude E0�t� and frequency 
 of the
laser field,

Hex = −
1

2
E0�t� �

�1�2

�d�1�2
ac,�1

† av,�2
e−i
t + H.c.� ,

and the Hamiltonian for the Coulomb interaction,

He-e =
1

2 �
�1�2�3�4

V�1�2�3�4
a�1

† a�4

† a�3
a�2

.

The quantum numbers �i describe all D and W states. The
Coulomb matrix elements are given by

V�1�2�3�4
=� d3r1d3r2��1

* �r1���4

* �r2�V�r1 − r2���3
�r1���2

�r2�

= �
q

Vn1n2n3n4

b1b2 �q��b1b3
�b2b4� d2�1
l1

b1��1�*e−iq�1
l3

b3

���1� � d2�2
l4

b4��2�*eiq�2
l2

b2��2� . �2�

Here ni and li are the quantum numbers for the
z-dependent part and the in-plane components of the wave
functions, and bi is the band index. The in-plane Coulomb
matrix elements are28

Vn1n2n3n4

b1b2 �q� = V2D�q� � dz1dz2�n1
b1�z1�*�n4

b2�z2�*

�e−q�z1−z2��n3
b1�z1��n2

b2�z2� , �3�

where V2D is the 2D Fourier transformation of the Coulomb
potential.

Considering this Hamiltonian, we assume only one state
per dot for the electron and hole, respectively. This assump-
tion is certainly a strong idealization, but small quantum dots
with a relatively weak confinement potential have only very
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few levels. In particular natural quantum dots25 that occur at
interface fluctuations of narrow quantum wells are dots in
which a single exciton transition is well resolved.26 Other
few-level dot systems occur in self-assembled InGaAs quan-
tum dots.27

As discussed above, a completely symmetric model will
be treated for electrons and holes in the plasma and also in
the dot in order to avoid charged states. A coupling between
different dots is not taken into account.

Assuming the dots are contained in W with infinitely po-
tential barriers, the in-plane Coulomb matrix elements are
identical and can be computed analytically:

V�q� =
8�e2

�0Aq
�8�4�e−Lzq + Lzq − 1� + 5�2Lz

3q3 + 3Lz
5q5/4

Lz
2q2�4�2 + Lz

2q2�2 	 .

�4�

B. Orthogonalization of the wave functions

Before we can continue with the derivation of the quan-
tum kinetic equations we have to orthogonalize the quantum
dot and quantum well wave functions.10,11,14 The 2D plane
wave 
k��� is orthogonalized to the quantum dot state 
d

with

�
k
 =
1

Nk
��
k

0
 − �
d�
k
0
�
d
� . �5�

Nk is a normalization factor, and 
k
0=eik� /�A is the 2D plane

wave state in the absence of the QD, where A is the normal-
ization area of the quantum well. If an ensemble average
over random dot positions is taken, the renormalized14 2D
states remain orthogonal to each other.

C. Derivation of the quantum kinetics

We will derive the quantum kinetic equations for the re-
duced density matrix from the Dyson equation of the elec-
tron propagator G��t , t�� following the procedure described
in Ref. 19. These propagators which describe the kinetics are
defined as

G�1�2

� �t1,t2� =
i

�
�a�2

† �t2�a�1
�t1�
 ,

G�1�2

� �t1,t2� = −
i

�
�a�1

�t1�a�2

† �t2�
 . �6�

The band off-diagonal elements of GDW
b1b2 will be ne-

glected. Spatial homogeneity has been assumed so that
Gk1k2

=�k1,k2Gk1
.

The equation of motion for the propagators in the equal-
time limit can be written as

�

�t
G�1�2

� �t,t� = 
 �

�t
G�1�2

� �t,t�

coh

+ 
 �

�t
G�1�2

� �t,t�

scatt

, �7�

where the coherent part is given by the free evolution and a
mean-field contribution due to the Coulomb exchange inter-
action and the interaction with the coherent light field:


 �

�t
G�1�2

� �t,t�

coh

= −
i

�
���1

− ��2
�G�1�2

� �t,t�

−
i

�
�
�3

���1�3

� �t�G�3�2

� �t,t�

− G�1�3

� �t,t���3�2

� �t�� , �8�

with the instantaneous mean-field self-energy

��1�3

� �t� = �ex + �HF = − dE�t��1 − ��1�2
�

+ i�V�1�2�3�4
G�3�4

� �t,t� . �9�

The scattering part can be expressed in terms of the scat-
tering self-energies �� and ��,


 �

�t
G�1�2

� �t,t�

scatt

= −
i

�
�
�3

�
−�

t

dt����1�3

� �t,t��G�3�2

� �t�,t�

− ��1�3

� �t,t��G�3�2

� �t�,t�

− G�1�3

� �t,t����3�2

� �t�,t�

+ G�1�3

� �t,t����3�2

� �t�,t�� , �10�

where the scattering self-energy will be taken in the self-
consistent GW approximation with a two-time-dependent
screened Coulomb scattering potential v� and v� and with a
phonon propagator D� and D�:

��1�2

� �
�� �t,t�� = i� �

�3�4

�v�1�2�3�4

� �
�� �t�,t� + g�1,�3

D�1�2�3�4

� �
��

��t�,t�g�4,�2
�G�3�4

� �
�� �t,t�� . �11�

The matrix elements for the interaction of electrons and LO
phonons are denoted as g�1,�2

. Note that for simplicity we
have neglected the screening for the electron-phonon self-
energy.

D. Screened coulomb potential

The screened Coulomb potential has to be calculated from
its Dyson equation:

w�1�2�3�4
�t,t�� = V�1�2�3�4

�t − t�� + �
�i

� dt1dt2V�8�2�5�4

��t − t1�L�5�6�7�8
�t1,t2�w�1�7�3�6

�t2,t�� ,

�12�

where L is the polarization function, which in the time-
dependent RPA is given by

L�1�2�3�4
�t,t�� = − i�c1G�1�2

�t,t��G�3�4
�t�,t� �13�

and the Coulomb matrix elements for the screened interac-
tion
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w�1�2�3�4

=� d3r1d3r2��1

* �r1���4

* �r2�w�r1,r2���3
�r1���2

�r2�

= �
q

wn1n2n3n4

b1b2 �q��b1b3
�b2b4

�
l1

b1�e−iq·�1�
l3

b3


��
l4

b4�eiq·�1�
l2

b2
 �14�

with the in-plane matrix elements

wn1n2n3n4

b1b2 �q� =� dz1dz2�n1
b1�z1�*�n4

b2�z2�*w�q,z1,z2�

��n3
b1�z1��n2

b2�z2� . �15�

We assume in the following that the screening is solely
due to the 2D carriers. We then obtain the Dyson equation
for the in-plane matrix elements:

w�q,t,t�� = V�q,t − t�� +� dt1dt2V

��q,t − t1�L�q,t1,t2�w�q,t2,t�� ,

where L�q , t1 , t2� is given by

L�q,t1,t2� = − i�c1 �
k,b1b2

Gk
b1b2�t1t2�Gk−q

b2b1�t2t1��Fk�,k�−q��2.

�16�

Here F is defined by

�
k�eiq·��
k�
 =� d2� 
k����*eiq�
k�
� ��� = �k�−q�−k�

� Fk�,k�
� .

�17�

The Coulomb matrix elements are calculated through

w�1�2�3�4
�t,t�� = �

q

w�q,t,t���
l1
�e−iq·��
l3


�
l4
�eiq·��
l2


 .

�18�

E. Phonon propagators

We will assume that the optical phonons are those of the
bulk GaAs medium. With this approximation we disregard
localized phonon modes around the quantum well layer and
in particular around the quantum dot. It is known that these
evanescent modes reduce the number of freely traveling
modes and that the remaining plane wave modes together
with the evanescent modes have in total a comparable effect
on the electrons as the unperturbed bulk modes. It is further
assumed that the LO phonons form a thermal heat bath. With
this approximation we neglect the effects of coherent phonon
modes and polaron effects. This assumption seems justified if
the areal dot density is low and if the polaron coupling is
weak as is the case for GaAs-type materials. However, an
exactly solvable model in which the phonons are represented
as a single Einstein oscillator12 has shown that nonthermal

phonons play an important role if the pulse width is of the
same order as the phonon period. Magneto-optical studies of
Hameu et al.13 suggest that in quantum dot systems strong-
coupling polaron effects may be present even for weak
Fröhlich coupling constants. In II-VI compound quantum dot
systems the polaron effects are stronger and require one to
treat also the quantum kinetic equations for the LO phonons
�see, e.g., Refs. 14 and 16�. We are not addressing the effects
of nonthermal phonons because in our studies the pulse
width is much shorter than the phonon period. Polaron ef-
fects are also omitted because in our treatment we consider
weak-coupling materials and because the phonon scattering
kinetics is only used to supplement the dominating Coulomb
kinetics, e.g., by providing a cooling mechanism which
carrier-carrier scattering alone cannot provide.

In analogy with the Coulomb potential discussed above,
the phonon propagators of �11� and the interaction matrix
elements are

g�1,�3
D�1�2�3�4

� �
�� �t�,t�g�4,�2

= �
q

gq
2D� �

���q,t,t���
l1
�e−iq·��
l3




��
l4
�eiq·��
l2


 , �19�

with the free-phonon propagators19

D��q,t,t�� = − i�
±

Nq
±e±i
0�t−t�� and

D��q,t,t�� = − D��q,t,t��*, �20�

where Nq
±=N+ 1

2 ± 1
2 with the Bose phonon distribution

N=1/ �e
0/kBT−1�. The Fröhlich interaction matrix element is
given by

gq
2 =

�
0

2
� �0

��

− 1	Vq, �21�

where Vq is given in �4�. For GaAs this polar coupling is
rather weak, corresponding to a dimensionless polaron cou-
pling constant of �=0.06. Note that we now use the screen-
ing constant �� in the Coulomb potential because the LO
phonons are treated explicitly.28

F. Final quantum kinetic equations

The resulting quantum kinetic equations take the follow-
ing forms.

Coherent part.


 �

�t
Gm,cv

� �t,t�

coh

= −
i

�
�em,c�t� − em,v�t��Gm,cv

� �t,t� + i�m�t�

��Gm,vv
� �t,t� − Gm,cc

� �t,t�� ,


 �

�t
Gm,cc

� �t,t�

coh

= − Im�i�m�t�Gm,cv
� �t,t�*� , �22�

where the subscript m refers to either quantum well �labeled
by vector k� or quantum dot �denoted by 0� states, and the
renormalized energies
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e0,b�t� = �0,b + i�V00kk��bv

i�
+ Gk,bb

� �t,t�	 �b = c,v� ,

ekb�t� = �k�b + i��
k�

Vkkk�k���bv

i�
+ Gk�,bb

� �t,t�	
+ i�Vkk,00��bv

i�
+ G0,bb

� �t,t�	
and the renormalized Rabi frequencies

��0�t� = dE�t� − i�V00,kkGk,cv
� �t,t� ,

��k�t� = dE�t� − i��
k�

Vkkk�k�Gk�,cv
� �t,t� − i�Vkk00G0,cv

� �t,t�

are introduced.
Scattering part. Note that the scattering part contains two-

time-dependent propagators and self-energies. Thus the ki-
netic equation is not closed as it should be:


 �

�t
G0,b1b2

� �t,t�

scatt

= −
i

�
�
b3

�
−�

t

dt���0,b1b3

� �t,t��G0,b3b2

� �t�,t�

− �0,b1b3

� �t,t��G0,b3b2

� �t�,t� − G0,b1b3

� �t,t���0,b3b2

� �t�,t�

+ G0,b1b3

� �t,t���0,b3b2

� �t�,t�� , �23�


 �

�t
Gk�,b1b2

� �t,t�

scatt

= −
i

�
�
b3

�
−�

t

dt���k�,b1b3

� �t,t��Gk�,b3b2

� �t�,t�

− �k�,b1b3

� �t,t��Gk�,b3b2

� �t�,t� − Gk�,b1b3

� �t,t���k�,b3b2

� �t�,t�

+ Gk�,b1b3

� �t,t���k�,b3b2

� �t�,t�� . �24�

The scattering self-energies � are given by

�0,b1b3

� �
�� �t,t�� = i��

k1

w00k1k1

� �
�� �t,t��Gk1,b1b2

� �
�� �t,t��

and

�k,b1b3

� �
�� �t,t�� = i��

k1

wkkk1k1

� �
�� �t,t��Gk1,b1b2

� �
�� �t,t��

+ wkk00
� �

�� �t,t��G0,b1b2

� �
�� �t,t�� .

As mentioned above we will use the generalized Kadanoff-
Baym approximation in order to express the two-time propa-
gators in terms of spectral Green’s functions and the reduced
density matrix:

Gk,0
� �t,t�� � − Gk,0

r �t,t���k,0�t�� for t � t�, �25�

with

Gk,0
r �t,t�� � −

i

�
��t − t��e−�i/���k,0�t−t��.

In the following the ground-state wave function of the dot

0���=� /��e−�1/2��2�2

are used in the orthogonalization of
the wave functions and in the calculation of the Coulomb
matrix elements. Here � is given by �e,h=�me,hEHO

e,h /�2 �Ref.
11�, where EHO

e,h is the energy difference between the local-
ized electron �hole� and the continuum. The orthogonal-
ized wave function takes the form 
k���=1/Nk�eik�·��

−2��k�e−�1/2��2�2
� with ��k�=e−k2/�2�2� and Nk

=�1−N��
k
0 �
0
�2 with the number of quantum dots N. We

get then the Coulomb matrix elements

w00kk�t,t�� =
4�N

�2Nk
2A

�
q

w�q,t,t�����k� − q��2

+ ��k�2e−q2/�2�2� − 2��k���k� − q��e−q2/�4�2��
�26�

and

wk1k1k3k3
�t,t�� = w�k3 − k1,t,t���Fk1,k3

�2

=
1

Nk1
Nk3

w�k3 − k1,t,t��

��1 −
2�N

�2A
��k1�2 −

2�N

�2A
��k3�2

+
2�N

�2A
��k1���k3�e−�k3 − k1�2/4�2	2

. �27�

Note that in the large limit N /A remains constant and will be
replaced by the quantum dot density nD. With these formulas
the kinetic equations are closed provided the spectral Green’s
functions Gr�t , t�� and Ga�t , t�� can be taken in the simple
free-particle approximation �26�.

III. NUMERICAL RESULTS

In the following we will use first a single femtosecond
laser pulse in order to study the general features of the cal-
culated density matrix of the dot. In order to make predic-
tions for two-pulse experiments, we will consider both dif-
ferential transmission spectroscopy and four-wave-mixing
type setups.

A. Excitation with a single femtosecond pulse

We assume a 20 fs Gauss pulse tuned to the band edge of
the 2D continuum. The dot obtains the electron and hole via
Coulomb Auger processes and scattering processes with pho-
non emission. The lattice temperature is assumed to be T
=300 K. All material parameters are taken for GaAs except
that we treat equal band masses mh=me=0.098m0. With
these equal masses the exciton Bohr radius is that of GaAs.
The dot levels are assumed to be EHO=27.5 meV below the
conduction and above the valence band edge, respectively.
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The 2D density of quantum dots in the well is nD=0.5
�1011 cm−2.

In Fig. 1 we see the evolution of the dot populations
ne=nh=n for three excitation intensities. The steady state of
the dot population is reached faster at higher plasma densi-
ties as one would have assumed. At the lowest density n1 it
takes about 800 fs to reach steady state, while at the highest
density n3 it takes only about 200 fs.

The off-diagonal matrix elements of the density matrix,
which yield the optically induced polarization of the dot, are
shown in Fig. 2 for four excitation intensities. The dot polar-
ization follows closely the pump pulse. After about 50 fs the
decay of the remaining polarization is superimposed by beat-
ing oscillations whose period is given by the energetic dif-
ference between the band gap and the energy difference be-
tween the two dot levels. At the highest excitation intensity
these beats are lost; instead a sharp minimum occurs indicat-
ing a nearly complete Rabi flop. The beating oscillations
disappear for laser pulses with duration larger than 60 fs.

B. Simulations for excitations with two femtosecond pulses

While the response to one pulse only yields a first quali-
tative insight, one can get much closer to actual experiments
by considering a pump pulse followed by a delayed probe
pulse. We will first calculate the absorption spectrum of a
weak test pulse delayed by 200 fs with respect to the strong
pump pulse. The width of the pump pulse was again 20 fs,
while the test pulse has been assumed to be 10 fs to get
sufficient spectral width. Figure 3 shows the absorption spec-
tra for various stationary plasma densities of the dot and the
higher-lying 2D continuum again for the symmetric band
model. At the two lowest densities one sees the considerable
excitonic enhancement of the band edge and the redshifting
absorption line of the dot. Such redshifts with increasing
pump intensity have been observed in luminescence.29 A cor-
responding redshift of the dot absorption line has been cal-
culated before by Schneider et al.17 in a time- and frequency-
dependent formulation of quantum kinetics. At the highest
densities gain develops both below the dot line and below
the band edge of the continuum.

The delay time dependence of the absorption spectra
is shown in Fig. 4 at a steady-state plasma density of n
=8.5�1011 cm−2. One sees that the original dot absorption
changes after slightly more than 100 fs into gain, while at
that time the gain of the continuum is not yet developed.

Finally we calculate for two equally strong pulses travel-
ing in the directions k�1 and k�2 the FWM signal by projecting
out the polarization in the direction 2k�2−k�1 with the tech-
nique described, e.g., in Ref. 19. The calculated time-

FIG. 1. �Color online� Computed distribution function for a
quantum dot. n1=0.45�1011 cm−2, n2=2.0�1011 cm−2, and n3

=8.5�1011 cm−2.

FIG. 2. �Color online� Polarization function for a quantum dot.
The numbers show by what factor the corresponding polarization
curve has been multiplied. The steady-state plasma densities after
the pump pulse are n0=0.45�1010 cm−2, n1=0.45�1011 cm−2, n2

=2.0�1011 cm−2, and n3=8.5�1011 cm−2.

FIG. 3. Absorption spectrum for densities n=0.45�1011 cm−2,
n=2.0�1011 cm−2, n=4.0�1011 cm−2, n=8.5�1011 cm−2, and n
=1.1�1012 cm−2.
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integrated FWM signal is shown for four steady-state plasma
densities in Fig. 5. After a steep decay one sees an approxi-
mately exponential decay with the dephasing times of 170,
135, 74, and 35 fs for the increasing excited densities n0, n1,
n2, and n3. The dephasing time of 170 fs at the lowest con-
sidered density is mainly determined by LO-phonon scatter-
ing and may approach about 200 fs in the limit of very low
intensities. A phonon dephasing time of about 250 fs has
been measured by Borri et al.1 for resonant excitation, where
the role of the wetting layer is of minor influence. One has to

consider that the dephasing time decreases with increasing
detuning frequency for nonresonant excitation as shown by
Bayer and Forchel.3 For high temperatures they obtained for
resonant excitation again a dephasing time of the order of
200 fs. Dephasing times similar to the measured ones have
been calculated by Uskov et al.30 also for resonant excita-
tion.

The inverse density-dependent dephasing time can be
written as a power law 1/�=1/�0+cnx as seen from Fig. 6.
The constants of the best fit are �0�200 fs, c=3.2�10−9,
and an exponent x=0.77. The result resembles the density-
dependent relaxation time �not dephasing time� measured by
Morris et al.6 in the form 1/�r�n. Superimposed on the
FWM signal of Fig. 5 are the beating oscillations of the band
edge and dot transitions. At the highest density the beating
oscillations are nearly lost.

In conclusion, we have investigated the quantum kinetics
of a dot embedded in a 2D continuum with time-dependent
screened Coulomb interaction and phonon scattering. We
have calculated the resulting density matrix after a 20 fs
pulse excitation and studied the femtosecond dynamics of
the dot polarization dephasing and the buildup of the dot
population for Auger and phonon processes coupling the
continuum and the dot. For two-pulse excitation configura-
tions, we have calculated the absorption spectra of the de-
layed weak test pulse and shown how the original absorption
spectra of the dot and the continuum change into gain spectra
at high excitation levels. Finally the FWM signal has been
calculated yielding dephasing times which decrease increas-
ing excitation intensity in the range from 170 to 35 fs at the
highest intensities. Superimposed on the decaying FWM sig-
nal oscillations have been obtained due to the beating of
band edge and dot transitions.
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