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It is shown here how the lifetimes and energies of resonance states can be calculated by applying the
complex scaling transformation to the nonlinear Schrödinger equation. It is essential to first apply the complex
scaling transformation to the full Hamiltonian and to subsequently derive from the result the correct complex
scaled nonlinear Schrödinger equation. The latter equation is physically relevant and amenable to numerical
calculations. To analyze the results obtained by solving this equation, it is necessary to realize the close
association of resonance phenomena with fragmentation of the system. As an illustrative example, we apply
this theory to the Gross-Pitaevskii nonlinear equation to calculate the tunneling lifetime of a condensate inside
an external �either optical or magnetic� trap. We show that by varying the scattering length, the external
potential acts like a “selective membrane” which controls the direction of the flux of the cold atoms through the
barriers and, thereby, controls the size of the stable condensate inside the trap.
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I. INTRODUCTION

The nonlinear Schrödinger equation �NLSE� appears in
different fields of physics. In nuclear physics, the NLSE has
usually been employed in relativistic mean-field and/or
effective-field theory �1�. In nonlinear optics, the NLSE is
associated with self-focusing and self-defocusing phenomena
�2� and in atomic physics with the Gross-Pitaevskii �GP�
equation for the dynamics of Bose-Einstein condensates
�BECs�, see for example �3–7�. In this work we focus on two
subjects. The first one is on the calculations of resonance
energies and lifetimes by applying the complex scaling trans-
formations to the NLSE. This study is related to all fields in
physics where the system has a finite lifetime and as time
passes the system breaks up to subsystems which can be
elementary particles, atoms, or photons.

The second subject we discuss in this paper is the frag-
mentation phenomenon which results from the bound-to-
resonance transition. As an illustrative numerical example
we study the resonance phenomena of a condensate in an
external potential. The shape of the external potential is a
quite general one. The potential parameters we have used are
those that have been used before for studying new theories
and computational methods for calculating resonance posi-
tions and widths, i.e., inverse lifetimes.

Tunneling of a BEC through a dynamical potential barrier
has been demonstrated in the experiments of Phillips’ group
�8� and of Raizen’s group �9�. The tunneling oscillations ob-
served in Ref. �8� occurred by a two-state mechanism which
is equivalent to the periodic transitions of particles from one
potential well to a second one via a dynamical potential bar-
rier. The experiments carried out by Raizen’s group show
that transitions of cold atoms from one potential well to an-
other can result from a three-state process �9�. Recently, it
has been shown that the tunneling of cold atoms can be

controlled from full suppression to strong enhancement by
varying slightly the experimental parameters �10�. Here, we
address ourselves to the tunneling through a static potential
barrier rather than a dynamical one. In principle, the under-
lying mechanisms should be closely related to those de-
scribed in Refs. �8–10�. However, unlike the previous studies
where the tunneling takes place between one bound state to
another bound state, e.g., oscillatory transitions of the con-
densate from one potential well to another in Phillips’ experi-
ment, we discuss here the tunneling of a BEC from a poten-
tial well to the continuum through a static potential barrier.
In all BEC experiments, the condensates are trapped inside
an open external potential well. Therefore, in the case of a
positive scattering length, i.e., repulsive atom-atom interac-
tions, a given external open potential well cannot trap a con-
densate with more than a critical number of atoms, Nc. The
value of Nc can be determined on classical arguments like the
overflow of the condensate out of the finite-sized open po-
tential well. In magnetic traps the potential well is embedded
in between potential barriers the size of which depend on the
experimental parameters. Consequently, as the number of at-
oms N is increased, fractions of the condensate can tunnel
through the potential barriers. What is the lifetime of the
trapped condensate as N is increased? Can the condensate be
stabilized inside the potential well as a fraction of it tunnels
out through the potential barriers? Can we control the num-
ber of the atoms in the condensate by varying slightly the
scattering length?

In order to answer these questions, we first have to find
out how one can calculate resonance positions and lifetimes
by solving the NLSE. This will be done here using the math-
ematically well-established method of complex rotation of-
ten also referred to as complex scaling �11–14�. As we will
show in the next section, it is essential to apply the complex
scaling transformation before the application of the mean-
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field approximation that leads to the NLSE and not after-
ward. This is a crucial point in our application of complex
scaling to the NLSE. Our theory is presented in Sec. II. As an
illustrative numerical example, we apply in Sec. III the com-
plex scaling method in the framework of the GP to a one-
dimensional problem that describes a condensate captured in
an optical and/or magnetic trap which consists of a well em-
bedded in between two potential barriers.

We show in Sec. IV that by letting a fraction of the con-
densate tunnel through the potential barriers out of the trap,
the residual reduced-in-size condensate is stabilized inside
the external potential well “forever.” However, when the re-
pulsive scattering length is appropriately chosen, it is pos-
sible to increase the number of the atoms in the condensate
trapped in the well by letting cold atoms tunnel through the
potential barriers from a reservoir of cold atoms located out-
side the trap into the potential well in the trap. In this sense,
the external potential acts like a selective controlled “mem-
brane.” In Sec. V, we conclude our findings.

II. RESONANCE SOLUTIONS OF THE NONLINEAR
SCHRÖDINGER EQUATION

A. Resonance states of condensates

For a condensate with N cold atoms in an external trap,
Vext, the GP equation is given by �15�

�−
�2

2M
�2 + Vext�r�� + U�N��2�r�����r�� = ��N���r�� . �1�

The nonlinear parameter, U�N�, is defined as

U�N� = U0�N − 1� =
4�a0�2

M
�N − 1� , �2�

where a0 and M are the scattering length and the atomic
mass, respectively. To simplify our discussion we assume,
without loss of generality, that the solution � is a real func-
tion and, therefore, the nonlinear “potential” term is �2�r��
rather than ���r���2.

The external trap is always an open trap. For example, a
one-dimensional trap can be described roughly as a potential
well embedded in between two potential barriers. Let us de-
note the threshold energy of the external potential by �c.

By increasing the number of the atoms in the condensate
which consists of N atoms with a positive scattering length,
a0�0, the nonlinear parameter U�N� acquires larger values
and, thereby, the effective potential, Vext�r��+U�N��2�r��, be-
comes more shallow. Therefore, one might expect that as the
number of atoms in the condensate is increased, the chemical
potential ��N� increases as well. For a critical number of
atoms in the condensate, N=Nc, the nonlinear parameter
takes on a critical value Uc=U�Nc� and the chemical poten-
tial arrives at its threshold value �c. If N is further increased,
Q atoms tunnel through the potential barrier out of the po-
tential well to stabilize the system. That is, only a fraction of
XN atoms remains inside the potential well where �1−X�
=Q /N is the fraction of atoms that have tunneled out through
the potential barriers. The question we address here is how

the decay rate of the condensate can be calculated. The frag-
mentation phenomenon as described above is associated with
the resonance phenomenon. This fragmentation occurs as a
bound state of the condensate arrives at the threshold energy
of the external potential. By increasing the value of the non-
linear parameter U�N�, this bound state of the condensate
penetrates into the continuum and becomes a resonance state,
i.e., a metastable state.

In conventional quantum mechanics the resonances are
associated with wavepackets embedded in the continuum
which are localized in the interaction region and cannot be
associated with a single eigenstate of the system. However,
the resonances are uniquely defined by imposing outgoing
boundary conditions on the solutions of the time-independent
Schrödinger equation �16�. A resonance state is associated
with an eigenfunction of the Hamiltonian with an asymptote
which has a zero amplitude for the incoming particles. That
is,

�res → exp�+ ik�resr�� . �3�

Since the ratio of the amplitudes of the outgoing wave and
the incoming wave defines the scattering matrix elements,
the resonances are associated with the complex poles of the
scattering matrix �17�. In the present case of a condensate,
this implies that the chemical potential

�res�N� =
�2

2M
kres

2 �4�

and the total energy associated with the resonance take on
complex values. In this work we shall apply the complex
scaling method to compute the resonances of a condensate.
This method is briefly reviewed in Sec. II B.

Let us briefly discuss the physical meaning of the com-
plex chemical potential �complex�N� and the complex total
energy E. The complex chemical potential can be expressed
as

�complex�N� � ��N� −
i

2
��N� . �5�

The real part of the chemical potential is the energy which is
required to take an atom out of the well in the optical and/or
magnetic trap. The energy of the external potential at infinite
distance defines the threshold value of the chemical poten-
tial, which we denote as the threshold chemical potential,

�c � �threshold = Vext�r → �� . �6�

At a fixed value of U0, the chemical potential ��N� arrives at
�c when N arrives at the critical number Nc of bosons. Nc is
the maximal number of atoms that can be trapped inside the
potential well. We may, therefore, also call �c=��Nc� the
critical value of the chemical potential. If N is increased
beyond Nc, the chemical potential becomes complex. The
imaginary part of the chemical divided by �

��N�
�

=
− 2 Im �complex�N�

�
�7�

is inversely proportional to the lifetime of a single boson in
the condensate.
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The complex energy per particle of the BEC reads

E
N

� E�N� −
i

2
	�N� . �8�

In general, E is determined as the complex eigenvalue of the
full Hamiltonian. In the context of the NLSE, the energy is
the expectation value of the Hamiltonian in the state �
=��r�1���r�2� . . .��r�N�. The information on the energy of the
condensate and its lifetime inside the potential well are re-
spectively associated with the real and the imaginary parts of
the complex energy E�N�. The lifetime of the condensate in
the potential well is given as usual by


lifetime�N� =
�

	�N�
, �9�

where 	�N� is the total rate of decay per boson. The quantity
	 is a linear combination of partial widths,

	�N� = 	
n

	�n��N� , �10�

which describes the rate of decay of the condensate in the
available open channels. The nth open channel is associated
with n cold atoms that tunnel out of the well in the trap
through the potential barriers. One may, therefore, expect
that 	�N����N�.

B. Brief account of complex scaling

The complex scaling method is based on rigorous math-
ematical ground �11,12� and has been used before for calcu-
lating the lifetimes of metastable states in atomic, molecular,
and nuclear physics �13,14�. Let us briefly describe the idea
which stands behind this method.

As mentioned in Sec. II A, a resonance solution is asso-
ciated with an eigenfunction of the Hamiltonian with an as-
ymptote which is an outgoing wave with a complex momen-
tum, �k�res. Without loss of generality, let us assume for the
sake of simplicity that the resonance wave function has a
spherical symmetric symmetry. In such a case, �res�r�
→exp�ikresr�, where kres= �kres�exp�−i�res�. Therefore, the
resonance wave function diverges exponentially for 0�res
�� /2,

�res�r� → exp�+ i�kres�cos��res�r�exp�+ �kres�sin��res�r� → �

�11�

and does not belong to the Hilbert space. In such cases the
resonance wave function is not embedded in the Hermitian
domain of the Hamiltonian and is associated with a complex
eigenvalue. By carrying out the complex scaling transforma-
tion �13,14�,

r → re+i�, �12�

the resonance wave function becomes square integrable,

�res�r exp�i��� → exp�+ i�kres�cos�� − �res�r�

�exp�− �kres�sin�� − �res�r� → 0,

�13�

for

�res � � �
�

4
. �14�

The upper bound of � results from the effect of the complex
transformation on the kinetic energy operator,

−
�2

2M
�̂r

2 → − e−2i� �2

2M
�̂r

2. �15�

A bound state is associated with an asymptote of an out-
going wave with purely imaginary momentum �kbound
= i��kbound�. It is clear that a bound state remains square inte-
grable under the complex scaling transformation,

�bound�r exp�i��� → exp�+ i�kbound�cos���r�

�exp�− �kbound�sin���r� → 0, �16�

and is associated with the same real eigenvalue as obtained
by solving the Schrödinger equation as usual when the
Hamiltonian is Hermitian and the eigenfunctions are in the
Hilbert space. For a more detailed discussion of the complex
scaling transformation including its impact on the con-
tinuum, see Refs. �13,14�.

In practice the transformation �12� leads to a complex
scaled Hamiltonian, H���. The resonance states are uncov-
ered in the lower half of the complex energy plane as the
eigenvalues of H��� as � is increased. The associated reso-
nance eigenstates are square integrable.

Before closing the brief description of the complex scal-
ing method, let us emphasize that while the density of states
in the continuum of the Hermitian Hamiltonian is nonmono-
tonic and contains information about the resonance decay
process, the continuum of the complex scaled Hamiltonian is
a “white” continuum and varies monotonically with the en-
ergy. The entire information about the resonance decay pro-
cess is in the resonance eigenfunctions that under the com-
plex scaling transformation become square integrable.

C. Direct application of complex scaling to the GP equation

By applying the complex scaling transformation �12� to
the GP equation as defined in Eq. �1�, we obtain the follow-
ing nonlinear problem �which will be found later to be the
wrong equation�,

�−
�2

2M
e−2i��2 + Vext�ei�r�� + U0�N − 1���

2���

= �complex�N���. �17�

In Eq. �17� ��
2 is a complex function due to the complex

scaling transformation given in Eq. �12�. Unlike the terms in
the complex scaled Hamiltonian which are � dependent, any
physical measurable quantity should be � independent once �
fulfills the relation �14�. However, as we shall see below
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there is no way to get the resonance solutions by solving Eq.
�17�.

Why does the direct application of complex scaling to the
GP equation fail? The answer to this question is embedded in
the idea that the GP equation can be viewed as a linear
Schrödinger equation with an effective potential, Vef f
=Vext�r��+U�2�r��, where ��r�� is the resonance solution. As
discussed in Sec. II B, the motivation behind the complex
scaling of Vef f is the wish to change the asymptote of the
resonance wave function from an exponentially diverging to
an exponentially decaying behavior. The problem in this di-
rect approach is that before applying the complex scaling
transformation the resonance wave function is not square in-
tegrable as shown in Eq. �11�. Therefore, the effective poten-
tial

Vef f�r�� = Vext�r�� + U�res
2 �r�� → � �18�

diverges. In such a case, Vef f supports bound states only. We
have here a paradox. If the solution of the GP equation is a
resonance state which is associated with an outgoing asymp-
tote, then Vef f should have a continuum spectrum as reso-
nances are metastable states embedded in the continuum.
However, if � is a resonance wave function which exponen-
tially diverges, then Vef f supports bound states only. The so-
lution to this problem is clear. It is impossible to derive the
GP equation when the solution of the full problem is associ-
ated with a resonance wave function which diverges expo-
nentially.

A few brief remarks are in order. Because of the above, it
is plausible that one cannot find the numerically resonant
solutions of Eq. �17�. Indeed, our numerical studies using Eq.
�17� failed. In a previous study, the use of a complex absorb-
ing potential which has been added to the GP effective po-
tential has been attempted rather than the complex scaling
transformation �18�.

It is well known that the complex scaling transformation
is only rigorously applicable to potentials which are dilation
analytic �11,12�. The analysis of nonlinear self-consistent
equations has demonstrated that the underlying effective po-
tentials are generally non dilation analytic because of the
self-consistency involved �19�. This finding is a further indi-
cation that the complex scaling transformation cannot be ap-
plied directly to the GP equation. Since all bosons reside in a
single orbital ��r��, which is computed self-consistently in
the GP equation, it becomes clear that the dilation analyticity
of the potential is more severely violated than in the Hartree-
Fock equation for fermions, where each fermion resides in its
own orbital and the impact of self-consistency is less dra-
matic. In Sec. II D, the problems addressed above are solved
by first applying the complex scaling transformation to the
full Hamiltonian from which, subsequently, the nonlinear GP
equation is derived.

D. Derivation of NLSE from the complex scaled full
Hamiltonian

Assuming a contact interaction between the N atoms in
the condensate, the complex scaled full Hamiltonian is given
by

�−
�2

2M
e−2i�	

j=1

N

� j
2 + 	

j=1

N

Vext�ei�r� j�

+ U0	
j=1

N

	
j��j

���r� j − r� j����� = E�complex���,

�19�

where the � function is presented as a Gaussian with vanish-
ing width and its complex scaled version takes on the fol-
lowing appearance

���r� j − r� j�� = lim
�→0

� 1

��
�D/2

exp
−
exp�i2���r� j − r� j��

2

�
� .

�20�

D=1,2 ,3 is the dimension of the BEC.
Note that in order to avoid the mathematical complica-

tions which result from the high singularity of a multidimen-
sional � function, we will take the limit of �→0 only after
the application of the Hartree approximation which leads to
the GP nonlinear equation. The method described in this
work can be applied to any potential and is used here for
�-potentials for transparency only.

Eq. �20� can be rewritten to give

���r� j − r� j�� = exp�− i�D� lim
�̃→0

� 1

�̃�
�D/2

exp
−
�r� j − r� j��

2

�̃
� ,

�21�

where

�̃ = exp�− i2��� , �22�

and

0 � � 
�

4
. �23�

The latter relation leads to

Re �̃ � 0. �24�

Here we proved that under the constrains given in �23� the
complex scaled �� function is equal to

���r� j − r� j�� = exp�− i�D���r� j − r� j�� . �25�

The usual GP nonlinear equation, Eq. �1�, is obtained
from the full Hamiltonian of the system by assuming that all
atoms occupy the same orbital �15�. By analogy, we derive a
NLSE starting from the complex scaled full Hamiltonian in
Eq. �19� by assuming that the variational solution is given by

���. . .r� j, . . . ,r�N� = �
j=1

N

���r� j� . �26�

Using our above results for the complex scaled �� function
we arrive at the correct expression for the complex scaled
GP nonlinear equation
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�−
�2

2M
e−2i��2 + Vext�ei�r�� + U�N�e−i�D��

2���

= �complex�N���, �27�

which clearly differs from the one in Eq. �17� obtained by
applying the complex scaling transformation directly to the
usual GP equation. The complex energy of the BEC, E, as
defined in Eq. �8�, is the expectation value, E= ��

*�H�����.
Here we use the c-product rather the conventional scalar
product since �� is a complex function only due to the ro-
tation of the internal coordinates of the Hamiltonian into the
complex coordinate plane �20,21�. E is associated with the
complex chemical potential as follows:

E
N

� E�N� − i/2	�N� = �complex�N� −
U�N�

2
e−i�D� ��

4dr� .

�28�

The complex chemical potential is defined by Eq. �27�; see
also Eq. �5�. The quantity E in Eq. �28� provides the GP
complex mean-field energy of the condensate. Of course, this
quantity is only an approximation to the exact energy in Eq.
�19� which is associated with a complex eigenvalue of the
full Hamiltonian �i.e., beyond the GP approximation�.

III. ILLUSTRATIVE EXAMPLE FOR CALCULATING
RESONANCES BY SOLVING THE COMPLEX

GP EQUATION

The complex version of the GP equation derived in Sec. II
is applied here to a simple one-dimensional potential which
qualitatively describes an external trap. We chose a model
potential that has been used before in test-case studies of new
theories and methods for calculating resonance lifetimes and
energies �14,20,22–24�. The model potential is given by
Vext�x�= �x2 /2−0.8�exp�−0.1x2� and is shown in the inset of
Fig. 1. Assuming that the atoms in the diluted BEC do not
interact with one another, the atoms can be found either
trapped inside the central potential well in the ground bound
state or in one of the metastable states. The lifetime of a
metastable state is equal to � /	 where 	 is the resonance
width �one resonance state and the only bound state are in-
dicated in the inset of Fig. 1�. When the system is prepared in
a metastable state then the survival probability S�t�= ���t
=0� ���t���2 decays exponentially in time, S�t�=exp�−	t /��,
where ��t� is the solution of the time-dependent Schrödinger
equation. The bound and resonance states shown in Fig. 1
were first calculated for noninteracting cold atoms using the
complex scaling method. The real eigenvalue associated with
the bound state and the complex eigenvalue associated with
the resonance state were found to be uneffected in more than
eight significant figures when the complex scaling parameter
� �called the rotational angle� is varied between
0.1 to 0.75 rad underlying the stability of the numerical pro-
cedure involved.

Unlike the failure to find the stable complex solutions of
Eq. �17� �see also discussion in Sec. II C�, the complex so-
lutions of the newly derived NLSE, Eq. �27�, were extremely

stable with respect to small variations of the complex scaling
parameter �. The bound and the resonance chemical poten-
tials as well as the energies obtained in our calculations are �
independent for ��0 and ��0.3 rad in the case of the
bound state and resonance state, respectively. We used 400
particle-in-a-box basis functions as a basis set with a box size
of L=50 a.u. In each step of the calculations, we carried out
iterative calculations to arrive at self-consistent converged
results in eight digits of significant figures where the scaling
angle � has been varied from 0.3 rad to 0.7 rad. By solving
Eq. �27�, we calculated the complex chemical potential �
− i /2�, and by solving Eq. �28�, we calculated the complex
energy per particle E /N=E− i /2	. In Fig. 2, we present the
results obtained from the calculations of the complex chemi-
cal potential as a function of the rotational angle �. As one
can see from the results presented in Fig. 2, very stable con-
verged values for the position and width of the chemical
potential were found and similar stable results were obtained
for the complex energy of the condensate by applying the
complex scaling transformation to the GP equation as intro-
duced above in Sec. II D.

In Fig. 1, we present our numerical results for ��N� and
	�N� as function of U�N�=U0�N−1�. We mark by an arrow
the critical value Uc=0.8279 for which the bound-to-
resonance transition occurs. That is, for U�N��Uc, one has
�=0 and both ��N� and 	�N� acquire positive values when
U�N��Uc. From Fig. 1, one can see that 	�N� increases
more rapidly than ��N� as the nonlinear coupling term U�N�
is increased. In Fig. 3, we present the chemical potential
��N� and the energy E�N� as functions of U�N�. As one can
see at the critical value of Uc where the resonances are
“born,” the chemical potential is equal to zero, �c=��Uc�
=0. This is an expected result. The chemical potential is
calculated by solving the NLSE, which determines the

FIG. 1. �Color online� The rate of decay � of a single atom
�associated with the imaginary part of the chemical potential� and
the rate of decay per atom 	 �associated with the imaginary part of
the complex energy of the condensate� as a function of the nonlin-
ear parameter U. The inset shows the external potential, Vext�x�
= �x2 /2−0.8�exp�−0.1x2� and its bound and resonance energy levels
when it is assumed that the cold atoms in the condensate do not
interact with one another.
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atomic orbital �, and this equation is an effective one-atom
equation.

From the shape of the external potential presented in Fig.
1, we see that the threshold energy of the external potential is
equal to 0. We may interpret � as the energy needed to take
an atom of the condensate out of the potential well, and ��N�
as the corresponding rate of decay. The total rate of decay
per particle of the condensate from the external potential
well through the potential barriers into the continuum is
	�N�. The threshold energy of the BEC, which consists N
atoms, i.e., the energy per particle at which the bound-to-
resonance transition occurs, is about Ec�−0.249 a.u. For
U�N� below the critical value Uc=0.8279, the BEC is
trapped “forever” inside the well of the external potential
trap. When U�N� exceeds this critical value, the condensate

is found in a metastable state �i.e., resonance state� and the
condensate tunnels out of the trap through the barriers of the
external potential. Why does the bound-to-resonance transi-
tion occur at a negative energy Ec? The physical explanation
lies in the many-body character of the problem. When a frac-
tion of the N-particle repulsive BEC consisting of �1−X�N
atoms tunnels out of the potential well into the continuum, a
stabilization of the XN atoms, which remain inside the trap,
takes place. The energy Ec is the energy per particle of the
XN atoms, which remain in the trap.

The GP equation is an effective one-atom equation and
describes only a single open channel of decay. In reality, the
number of open channels is equal to the number of atoms
that can tunnel through the potential barriers. This number
depends on the energy of the condensate. However, within
the framework of the GP mean-field approximation, the non-
linear parameter is U�N��a0N and, therefore, one cannot
distinguish between the number of atoms N in the condensate
and the s-wave scattering length a0, and, in particular, one
cannot tell at a given value of U, which fraction of N will
tunnel. As shown in Sec. IV, we can clarify this problem by
taking into consideration the idea that the best mean field for
condensates is not always obtained when all identical bosons
of the condensate reside in a single one-particle function �a
so-called orbital� �25–27�.

IV. FRAGMENTATION AND STABILIZATION OF THE
CONDENSATE WHEN THE EXTERNAL POTENTIAL

ACTS AS A SELECTIVE “MEMBRANE”

Let us assume that the mean-field description of the inter-
acting system �BEC with positive s-wave scattering length�
is given by the ground state wave function �, which is a
product of two types of spatial orbitals � and �. There are n1
atoms which occupy the � orbital, whereas n2=N−n1 atoms
which occupy the � orbital. Since the bosons are identical,
the product should be symmetrized such that �25,26�

��r�1,r�2, . . . ,r�N� = S��r�1���r�2� . . . ��r�n1
��

��r�n1+1���r�n1+2� . . . ��r�N� . �29�

We associate the n1 atoms in the orbital � with the fraction
of the condensate X=n1 /N, which is located in the well, and
the n2 atoms in the orbital � with the fraction �1−X�=n2 /N,
which has tunneled through the barriers into the continuum.
Consequently, � is located in the trap and � well outside the
trap where Vext=0, and we may consider these two orbitals to
not overlap. Let E��X ,U� be the energy per atom in the trap.
Analogously, the energy per atom in the continuum is given
by E���1−X� ,U�. The resulting energy per atom of the whole
system at a given U and X is thus

EBEC�X,U� = XE��X,U� + �1 − X�E���1 − X�,U� . �30�

We notice that E��X ,U� is nothing but E�XU�, which is the
energy per particle which we obtain by solving the GP equa-
tion, where the nonlinear parameter U=U0�N−1��U0N is
replaced by the value XU=n1U0. Because our condensate is
repulsive, the energy E� is known to be equal to zero �15�
and we obtain the final result,

FIG. 2. �Color online� The real and the imaginary parts of
the complex chemical potential as functions of the complex scaling
parameter. The solid �black� line shows �̄= ��−0.360 45�105

and the dashed �red� line shows �̄=−�1+5�104��. � and � are
associated with the complex chemical potential: �=Re �complex and
�=−2 Im �complex. The nonlinear parameter is U�N�=2.

FIG. 3. �Color online� The chemical potential, �=Re �complex,
and the energy of the BEC, E=Re E, as function of U=U0�N−1�.
The critical value Uc is indicated by a broken vertical line. For
U�Uc, the quantities �complex and E take on complex values �see
Fig. 1�.
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EBEC�X,U� = XE�XU� , �31�

which makes clear that EBEC�X ,U� can be derived from the
curve E�U� in Fig. 3. In complete analogy, the rate of decay
into the continuum per atom corresponding to EBEC�X ,U� is
given by X	�XU� and can thus also be deduced from the
curve 	�U� in Fig. 1.

While for a given value of U, the Gross-Pitaevskii energy
E�U� is just a number and does not provide us with the
knowledge of how many atoms have tunneled, EBEC�X ,U� is
the key to this information. In Fig. 4, we show the energy per
atom of the condensate as a function of X for different values
of U. The curves at the bottom of the figure are for small
values of U, those at the top are for larger values of U. Each
of the curves exhibits a minimum at Xc�U� and these minima
play a central role in the understanding of the tunneling pro-
cess. These minima are marked by solid dots. Let us consider
a single curve in Fig. 4 for which Xc is smaller than 1 �the
value X=1 is marked in the figure by a vertical line�. X=1
implies that we have put N atoms in the condensate and,
thus, is our starting point. Because of the variational prin-
ciple, the condensate will minimize its energy by letting a
fraction 1−Xc of its atoms tunnel into the continuum and
keep the fraction Xc in the well at which EBEC takes on its
minimum. Particles tunnel inside the condensate for small
repulsive interactions due to the fact that a particle has less
energy inside the well than in the continuum. The larger U is,
the stronger is the interaction and with it the curvature of the
energy curve in Fig. 4 around its minimum.

How does this appealing picture relate to the decay rate
X	�XU�? We know already from the scaled mean-field ap-
proach that 	�U� changes from being zero to nonzero at the

bound-to-resonance transition point Uc. Therefore, for a
given value of U, we find a particular value of X such that
XU=Uc, and this X tells us at which fraction of the conden-
sate the system is just still bound. If this is the case, there
should be an intimate relation between this particular value
of X and Xc at which EBEC has its minimum. Indeed, we find
that both values of X are identical, i.e., Xc=Uc /U. Using the
value Uc=0.8279 found above, one readily reproduces the
values of X at which any curve EBEC�X ,U� takes on its mini-
mum for a given U. In particular, EBEC�X ,Uc�—which is the
blue curve in Fig. 4—exhibits its minimum at Xc=1. This
value implies that for Uc the condensate with N atoms is
bound, while for U�Uc the fraction 1−Xc tunnels to make
the remaining fraction Xc1 bound.

It is essential to note that the critical values Xc and Uc can
be determined from the above analysis without using the
complex scaled mean-field results. The curves EBEC�X ,U�
shown in Fig. 4 can be computed via Eq. �31� for all values
of U from X=0 up to Xc using bound state calculations only.
This is a success of the two-orbital picture �25,26� used
above to derive Eq. �31�.

Once U�Uc, increasing the s-wave scattering length a0,
for instance, by applying an external magnetic field to adjust
the relative energy of different internal states of the atoms
�28�, leads to an increase of U and hence to a reduction of
the number of atoms inside the potential well �see Fig. 4�. On
the other hand, if we decrease the scattering length a0, the
trap can accommodate more atoms. Consequently, if there is
a reservoir of cold atoms outside the trap, some of them can
tunnel through the barriers into the trap thus increasing the
number of atoms inside the trap. Note that in Fig. 4 the
minima of EBEC for UUc are at Xc�1, i.e, the condensate
inside the trap is further stabilized if atoms are added. In this
way, the size of the trapped condensate can be controlled and
the trap acts as a “controllable membrane” by varying the
s-wave scattering length �or by varying the depth of the trap
potential�. We hope that these fascinating results will stimu-
late new experiments.

V. CONCLUDING REMARKS

In this work the complex scaling method has been applied
to NLSEs with particular emphasis on the GP equation,
which is very popular in the field of condensates. We have
shown that a very ill-behaved equation results if the complex
scaling method is applied directly to the GP operator. The
correct complex scaled NLSE is obtained by first applying
the complex scaling method to the full Hamiltonian of the
system. From this complex scaled full Hamiltonian, it is then
possible to determine the correct complex scaled NLSE in
the same way as the GP equation is usually determined from
the regular full Hamiltonian.

We discuss explicitly the tunneling of a condensate using
an illustrative numerical example. The lifetime of the con-
densate is computed and the results are analyzed in terms of
fragmentation of the condensate. It is shown that one can
control the tunneling and even the direction of the flux of
cold atoms by varying the scattering length or the parameters
of the trap potential.

FIG. 4. �Color online� The energy per atom of the BEC assum-
ing two sets of orbitals �Eqs. �29�–�31��. Shown is the energy EBEC

as function of X=n1 /N, which is the fraction of the condensate that
remains trapped inside the well of the external potential as a frac-
tion �1−X� of the condensate has tunneled to the continuum through
the potential barriers shown in Fig. 1. Each curve is associated with
a different value U=0.5+0.05�j−1��a0N of the nonlinear param-
eter, j=1,2 ,3 , . . . counting j from the bottom. The vertical line at
X=1 passes through the minimum of the energy curve for which
U=Uc=0.8279 shown as a dashed �blue� line.

RESONANCE SOLUTIONS OF THE NONLINEAR… PHYSICAL REVIEW A 72, 033605 �2005�

033605-7



As indicated here, the resonance phenomenon results
from the fragmentation of the BEC. Note, however, that frag-
mentation might happen also in bound systems as already
indicated in the literature �25–27�. The fragmentation at open
optical and/or magnetic traps occurs as the nonlinear param-
eter U�N� takes on a critical value at which the bound-to-
resonance state transition takes place. As we show here, the
conditions for fragmentation and thus for the bound-to-

resonance transition can be obtained using bound state cal-
culations only.
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