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All stationary solutions to the one-dimensional nonlinear Sdimger equation under box or periodic bound-
ary conditions are presented in analytic form for the case of attractive nonlinearity. A companion paper treated
the repulsive case. Our solutions take the form of bounded, quantized, stationary trains of bright solitons.
Among them are two uniquely nonlinear classes of nodeless solutions, whose properties and physical meaning
are discussed in detail. The full set of symmetry-breaking stationary states are describeChyctiz@acter
tables from the theory of point groups. We make experimental predictions for the Bose-Einstein condensate,
and show that, though these are the analog of some of the simplest problems in linear quantum mechanics,
nonlinearity introduces surprising phenomena.

PACS numbgs): 03.75.Fi, 05.30.Jp, 05.45.Yv

I. INTRODUCTION [—N2E—[F(3) 2+ V()1 () =mf (%), D

In a recent experiment the dilute-gas, attractive, Bosewhere f(x) is the dimensionless wave function describing
Einstein condensa{®BEC) was created for lithiunp1-3]. As  oycitations alond., %e[0,1], v(;() is a dimensionless po-
predicted by the nonlinear Schfiager [4,5] equation tential representing the boundary conditionsy
(NLSE) for three dimension$6], the condensate collapsed _— 2me2h?) u, andr=¢/LxN~Y2 s the ratio of the heal-
when the number of particles became large. However, in ONfhg length to the box and ring length. We remind the reader

or quasi-one-dimension, no collapse is predidtéll and in [13] that 5251/(877;|a|), wherea is the scattering length
one dimension the NLSE has a wide application in fiber_ —

: ' andp is the mean particle density.
opt|cs[i_3] as well as other f'eld@__lz]' . For comparison with experiment we list the conversion
In this paper we present stationary solutions to the ON€: tor from the unitlesss to u in uK. Using the formula
dimensional1D) NLSE for attractive nonlinearity under pe- X 10 p 7 M — %14 3
riodic and box boundary conditions. In the preceding papeffo™ the previous papgd3], for ‘Li with p=10""cm™* and

[13] we solved the analogous problem for repulsive nonlin-o_ <42 N, the conversion factor is 0.125. Since the unit-
. ) : less chemical potentials we find will be on the order-of
earity. Although we will place our results in the context of

. S : . to — 10 this gives a sense of the energy scale of the solutions,
attractive atomic interactions in the BEC, they are equallyy, the order of 0.1-1.Q.K. We also note that throughout

applicable to wave phenomena in many physical situationsyyr presentation we will use a reasonable test scala of
as, for example, ring lasefa4]. _ . ~ =1/25 for illustrative purposes.

We define the BEC to be in the quasi-one-dimensional aq|f(x)|2 is the longitudinal portion of the single particle
regime when its transverse dimensions are on the order of ii§ensity, we require the normalization condition
healing length, and its longitudinal dimension is much longer
than its transverse ones. In this case the 1D limit of the 3D J1d7<|f(§<)|2= 1 )
NLSE is appropriate, rather than a true 1D mean-field theory 0

[15], as would be the case for a transverse dimension on the o )
order of the atomic interaction length or the atomic size it-0€ Satisfied together with the NLSE) and such boundary

self. Under these criteria the condensate is well out of th&onditions as we will describe below. These are the equa-

Thomas-Fermi limit; i.e., the kinetic energy in the transversé°"S We will solve.
dimensions is very high. It is this hlgh-klnetlc-energy which _ Il. BOX BOUNDARY CONDITIONS
prevents the condensate from collapsing. We have numeri-
cally illustrated the stability of the condensate in quasi-1D The key concept underpinning the approach taken in this
elsewherd7]. paper is that in a region of constant potential the NLSE is
As shown in the previous pap&l3], in the quasi-1D integrable. This was utilized in our companion pap&s],
regime the solutions are approximately separable, and thand virtually all the techniques applied there to the case of
dimensionless NLSE may be written repulsive nonlinearity apply here as well, though they lead to
the identification of different particular solutions.
Specifically, it was shown in the previous pap&8] that
* Author to whom correspondence should be addressed. solutions of the stationary NLSE on the unit interval, subject
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to the box boundary conditions B
-
f(0)=f(1)=0 (3) e 0 25 0 1)
iy 1 _ e — —
can be expressed, without loss of generality, by purely real IS 6% ~
functions. Such solutions are given in terms of Jacobian el- = I \\ — —
liptic functions, whose properties were reviewed in the pre- L4 \ <C =
vious paper. This result holds independent of the sign of the \5/ N ST
nonlinearity. For the case of repulsive nonlinearity, it was a2 =
established that the sn function provides all possible solu- B
tions. For the attractive case, both the cn and dn functions 5 0 25 5 7.5 10 12.5 15
offer solutions. However, the dn function has no real zeros, - — logyy(1 — m)
so the cn function provides all solutions which satisfy box ) ] ] )
boundary conditions. FIG. 1. This graphical solution of E7) shows that for a given

scale and number of nodes the real solution to the stationary NLSE
under box or periodic boundary conditions is unigueés the scale,

A. Solutions and spectra andj—1 withje{1,2,3...} orjwith je{2,4,6 ...} is the num-

The most general form of the solution is ber of nodes, respectively. The three curved lines are plots of Eq.
(7) solved for the number of nodgswith A "'=L/£=10, 25, and
f(x)=Acn(kx+ &|m), (4)  50. The left-hand side of the plot is tie=0 linear limit, while the

right-hand side exponentially approaches the1 bright soliton
where 0=m=1 is the parameter of Jacobian elliptic func- limit. Solutions are found where these lines intersect with the hori-
tions.k and & will be determined by the boundary conditions zontal lines ofj. Note the rapid convergence mo=0 in the highj
below, while A andm will be determined by substitution of limit, so that for largg the solutions are in the linear regime.
Eq. (4) into the NLSE and by normalization.

Since the quarter period of cn is the complete elliptic These solutions are in one-to-one correspondence with
integral of the first kindK(m), and since cn(fn)=1, we  those of the 1D particle-in-a-box problem in linear quantum
find that k=2jK(m) and o6=-K(m), where j  mechanics. Plots of the wave function for the ground state
€{1,2,3...}. The physical meaning gf—1 is the number and the first three excited states are shown in Fig. 2. In Fig.
of nodes in the cn function. We will give a more general3 the chemical potential spectrum of this solution type is
meaning toj below. We then solve Eql) by substituting plotted as a function ok ~2, the number of healing lengths

Eq. (4), using Jacobian elliptic identities, and setting coeffi-per box length quantity squared. The leftmost portion of the
cients of equal powers of cn equal. This results in equations

for the amplitude squared?, and the chemical potentiglk, (@) , ©
¥y 8 % A
A2:2m[2jK(m)]2)\2, (5) f(x) ) f(x) 2 A ,’,\ j\
1 H
~ 0 Do
p=—[2]K(M)PA%(2m-1), ®) : - v
-2
Substituting Eq(5) into Eq.(2), utilizing Jacobian elliptic 5o s s BT o 0
identities, and noting that the integral ovef @an be defined X Pt

in multiples of the quarter periok(m), we obtain the nor-

()]
. . . vy 4 i %) 2 y", I,\\
malization condition - J\ A oo A 0 /\ £
0 /’ \\ 0 // \\ ’I \\\

2(2))*\*K(m)[E(m) — (1-m)K(m)]=1, )

-2 -1
where E(m) is the complete elliptic integral of the second -4 \[ -2 \/ V

kind. Equation(4) then becomes 0 0.20409608 1 0 0.2040¢6058 1
X X
f(x)= VZm[ZjK(m)])\cn(K(m)(ij—1)|m). (8) FIG. 2. Real stationary solutions to the NLSE under box and

periodic boundary conditions. The solid lines show solutions in

. . one-to-one correspondence with those of the analogous particle-in-
thn 8 determlned up to'the parametgrand the scala. In a-box and particle-on-a-ring problems in linear quantum mechanics.
Fig. 1 a graphical solution of Eq7) is shown. The plot g gashed lines show uniquely nonlinear, nodeless solutions found
demonstrates that the solutions are unique. Note that the Nogqyy on the ring. Both solution types may be characterized as bright
malization condition requires to be much closer to 1 than  sgjiton trains. Box: the solid lines ite)—(d) are the ground state

in the repulsive case, as may be seen by comparing Fig. 1 tnd first three excited states. Ririg) nodeless, symmetry-breaking
the corresponding figure in the previous papks]. It fol-  ground statenote that the solid line has overwritten the dashed
lows that the numerics of the attractive case are more diffione. (b)—(d) Symmetric and antisymmetric solutior(s) Only the

cult than those of the repulsive one, as may be seen in somfashed line is a solution. All plots are for the test scaletkif

of the figures. =1/25.

This leaves the chemical potenti@) and the wave func-
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! that it is negative. One may also obtain this result from first-

i 4r ‘\ solitorn train E)lrg]er perturbation theory, as shown in the previous paper
\ .
2t N e plane wave
~
C. Bright soliton limit

Of ~— - LTI One may add a peak without disturbing another peak,
--------- provided that adjacent peaks have opposite phases and that

-2t the overlap between them is exponentially small in the ratio

of their separation to their healing length. In this limit we
—4] ought to recover a series of equally spaced sech solutions of

) ) ) - ) ) , alternating phase to within exponentially small factors, as
0 100 200 300 400 500 600 shown, for example, in Figs.(8 and Zc). Sech solutions
(L/§)2 are also called bright solitons. The sech function is ithe
— 1" limit of the cn function in the solutiofEq. (4)].

FIG. 3. Chemical potential spectra of real stationary states with  Bright solitons solve the free NLSE. Thus we should find
nodes, as a function of inverse scdlé, with stationary plane- that the wave function and chemical potential no longer de-
wave spectra shown for comparison. Dashed lines: showmare pend on the box length. In this limit the solitons must have
=0, 1, 2, and 3, wherais the phase quantum number of the plane 3 different length scale than, which depended oh. The

wave on the ring. Solid lines: real stationary states of the NLSE inso|iton width is proportional to the parameter
a box and on a ring are soliton trains. Shown jrel, 2, 3, and 4,

with j—1 the number of nodes in a box apd 2 and 4 the number A
of nodes on a ring. The linear regime to the far right corresponds to n= W’
the bright soliton limit in which the peaks are well separated, while

tlhe.far left corresponds to the particle-in-a-box or particle-on-a—ring‘,\,hereAt is the transverse area of the box. In the soliton
limit. literature[8], 7 is usually set to 1 by renormalizing the wave
S o ] function.
plot corresponds to the particle-in-a-box limit and the right-  \ne now consider the limih —0, which corresponds to
most portiqn to the bright soliton limit. We now discuss ,_, 1~ Physically, this means that the peaks become highly
these two limits. separated and the interaction between them becomes expo-
nentially small. By using Taylor expansions in-In of the
complete elliptic integrals in Eq(7) we find that Eq.(6)
ICpecomes

(11)

B. Particle-in-a-box limit

High chemical potential states in which the peaks overla
become particle-in-a-box type solutions, as can be seen in

Fig. 2(d). This is both the zero density, linear limit, and the ZLI _ L (12)
highly excited-state limit. Mathematicallyp—0* and cn 16j2\2
—co0s. PhysicallyjA>1. In this limit K(m)— #[1/2+m/8 _
+0(m?)] andm—1/(j w\)?, so that Eq(6) becomes while Eq. (8) becomes
- 3m ~ 1 -
M:JZWZKZ(l—T"'O(mz)), f(x)= 5N ten| = (2jx—1)|m|. (13
274 8]°\
3 ( 1 Putting back in the units we find
~_ 2. 2y2
=j“mNe| 1— +0 , 9
'LL J 2j2772)\2 j4)\4 hz 1 1
| | | FT amaey "
or, putting back in the units,
. f(x) 11
2,252
jemh 3m ) —=W—cn[(.— x—5(L)‘m}, (15
= —_—— . 4
" 2ML2( 5> +0(m?) |, JL o 2% 7 [\ 4jn
where (L) is an offset which depends on the box length.
j2m2h2 12aNL L2N2 _But asL— the offset becomes arpitrary, so that we can set
n= Sl —= - | (100 it to zero. Note that we put back in the units of the wave
2ML A ] function f(x) which we took out in making the separation of

variables in the quasi-1D approximation.
which clearly converges to the well-known linear quantum As the reader may verify, for the case in whigch 1 this
mechanics particle-in-a-box chemical potential. Note that thés indeed the chemical potential and wave function of the
first order correction is identical to the repulsive case excepsech solution to the free 1D NLSE:
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f(x)y 1 1 1
T: ZT/ZZSEC’{(E (16) Of the two Jacobian elliptic functions having different
physical forms and solving the NLSE for attractive nonlin-
We have found that this limit suffices to calculate chemi-&&rity, only one could be used for the box, the cn function.
cal potentials for whichj <1/(5\) to better than 1%. This The dn funqtlon satisfied the NLSE.k.)ut, as it never va_nlshed,
estimate assumes an overall scale size 6 per peak. The failed to _sat|sfy box boquary conditions. But on the ring thg
L-independent chemical potentials for the 1, 2, and 3 so- dﬁ function poses no difficulty, becau;e the boundary gondl—
lutions shown in Fig. 2 satisfy this criterion, for example, astions are periodic. Thus two real solution types are available.
do any ground states for a healing length smaller than 1/1d-00king at the plot of the Jacobian elliptic functions in the
Note that Eq(14) is identical in form to that of the Ryd- Appe.nd|>.< fo th_e previous pa_pélB], we observe thgt R
berg formula for the energy levels of the Hydrogenic atom_functlon' is antisymmetric with respect to translanqn by the
Thus to leading order we have found stationary state energy@!-Period &K (m), while the dn function is symmetric under
levels for which the quantum number scales #sarmonic ~ 2uch a translation.
oscillatoy [13], j2 (particle in a box, andj ? (Rydberg
formula). This is an impressive illustration of the complexity

B. Real symmetry-breaking solutions
X|.

1. Analog to box boundary condition solutions

of solution types for stationary states of the NLSE. As we have exchanged the ring for the box, E.is the
real solution. One simply changes from 2jK(m) to
Ill. PERIODIC BOUNDARY CONDITIONS 4jK(m) in order to satisfy Eqs(17) and (18), i.e., from

multiples of the half-period to multiples of the whole period.

There are four solution types for periodic boundary con-The number of nodes will bej2rather thanj—1, wherej
ditions. There are constant amplitude solutions which are={1,2,3...}. We temporarily keep set to 0. But note that,
plane waves; real, antisymmetric, symmetry-breaking soluunlike for box boundary conditions, under periodic boundary
tions, similar to those found in Sec. II; real, symmetric, conditionss is arbitrary.
symmetry-breaking solutions; and a class of complex Then all the results from Sec. Il hold with the ndwhby
symmetry-breaking solutions. The former two are in one-to4etting j — 2j in all equations. The energy and wave function
one correspondence with particle-on-a-ring solutions in lin-are determined uniquely by graphical solution of Fig. 1. In
ear quantum mechanics; the latter two aoglelessand are Figs. 2b) and 2d) we show the first two states. Both the
found only in the presence of nonlinearity. As the ring isjinear quantum mechanics particle-on-a-ring limit and the
rotationally invariant, the symmetry-breaking solutions will pright soliton limits are reproduced. In the latter the same
have a high degeneracy, in analogy with vortices in two dikind of nonoverlapping criterion applies as before.

mensiong16]. The periodic boundary conditions are We found real solutions by setting=0. If we instead let
HOV=f(1 1 6 vary arbitrarily, we obtain the degeneracy inherent in these
(0)=1(2), 17) symmetry-breaking solutions. The entropy associated with a

pair of peaks depends logarithmically on the box length
and, since there are approximataly* possible positions for
a peak, the entropy isl3,16

f/(0)=f"(1). (18)

A. Constant amplitude solutions

~ 1
If we assume that (x)=const, then we obtain constant S~ kB'”(—-) (21)
amplitude solutions of the form 10A
f(}):elhr&, (190  Where the factor of 10 comes from 5 for each of the two

peaks. This is consistent with the non-overlapping criterion
wherene{0,+1,%2, ...}. The amplitude is constrained by used in obtaining Eq14).
normalization to be 1. Substituting E(L9) into Eq. (1), we

find the chemical potential 2. Nodeless solutions
_ ) To find the dn solutions, we follow the same method as
p=—1+(N2mn)". (200 outlined in Sec. Il. The most general solution is

Unlike for the case of repulsive nonlinearity, where the
ground state on a ring was the constant solutiomfe0, the
ground state of the attractive BEC_ breaks symmetry at S.omeubject to the NLSE(1), the normalization(2), and the
scales, so that the constant amplitude solutions are a high - .

. S ) . oundary condition$l7) and(18). From these we obtain the
excited state. This will be discussed further in Sec. V A. For . ) S . i

S . chemical potential, normalization, and amplitude:
n+0 each solution is twofold degenerate,rasan be either
positive or negative.

f(x)=Adn(kx+ §|m), (22)

Note that these states could also be termed angular mo- p=—[2jK(m*\*(2—m), (23)
mentum eigenstates or quantized vortices, as for example in
the work of Matthewset al.[17]. 2(2j)>\°K(m)E(m)=1, (24)
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f(%)=V2[2jK (m)INdn(K(m)(2jx—1)[m),  (25) 2mey — 1

o« —
Mcn(mcn) E[mcn]_(l_mcn)K[mcn], (29)
wherej refers to the number of peaks rather than nodes in the
dn function, since the dn function is nodeless. Note that Egs. ~ 2—mMyn
(23)—(25) are only valid form#0. Them=0 case is dis- Hean (Mgp ) ¢ — E[mg ]’ (30

cussed in Sec. IVA.

The dn function has a period oKZm), not 4K(m) as did  wherem,, is found by solving Eq(7) numerically, andng,
the cn function. Plots of the amplitude for the first four en-is found by solving Eq.24) numerically. This gives the
ergy levels are shown in Fig. 2. The lowest state, shown irexact percent splitting:

Fig. 2(@), appears identical to the lowest state in Sec. Il.

Becauseamis very close to 1 for the test scale o 1/25, dn Tan(Mgn) = fen( Mer)

—~ Y%sp)it=100——= = (31
sech and cn~ sech, so that cr- dn. Had we chosen a split L T Mar) + Fren( Mer)|”

scale at which the peaks came near to the boundaries, the two 2 | Medrt Tldn) T Mert Ten

ground-state solutions would have looked quite different. ToWhich falls off exponentially agn.. m.s1-
make clear the extent to which s singular at this scale, the . P Y a8en, Mdn '

numerical solution to Eq(24) for a single peak is (£ m) _In linear quantum mecham_cs Itis k”OW!" that for.the spa-
~0(10 %) tial wave functions of two particles the antisymmetric super-

The particle-on-a-ring limit for the dn solution is a plane position is higher in energy than the symmetric superposi-

wave. Asm—0*, dn—1. In this case the amplitude is con- tion. The exact opposite is true in the NLSE. Numerical

. T . studies of Eq.(31) show that the symmetric, nodeless, dn
strained to be 1 by the normalization, and the chemical POSolutions arehigher in chemical potential than the antisym-

tential ispu=—1. metric cn solutions. But just as in linear quantum mechanics,

In the bright soliton limit Eq.(24) may be expanded in  the more the wave functions overlap the higher the splitting.
(1—m) to yield the same result for the chemical potential

and amplitude as was found for the cn solutions in a box: C. Complex symmetry-breaking solutions

52 1 1 Our treatment is identical to that of the repulsive case
p=——— (26)  [13]. By the same arguments used there, all intrinsically
2m 16j2 47 complex solutions to Eqi1) may be written as a sum over
standard elliptic integrals by the use of appropriate Cayley
£(x) 11 1 transf_o_rmation$18]. _
T = 237 ; dr{ (W)X_ S(L) m}, (27 Writing the wave function as
]

f(x)=r(x)e'*™, (32
where the same criterion as was used for the cn solutions in
a box may be applied to the validity of the use of the limit one may divide the NLSE into real and imaginary parts:
here.

As with the cn solutions, we found the nodeless dn solu-
tions by settingd=0. If we instead le® vary arbitrarily, we
obtain the degeneracy inherent in these symmetry-breaking
solutions. The entropy associated with a peak depends loga- o
rithmically on the box lengtt., and, since there are approxi- ==, (34)
mately\ ~! possible positions for a peak, the entropy is S

1, 2pu
(81)2:_2 PS?’—F )\—/;LSZ_BS+2(12 ’ (33)

wherea andB are undetermined constants of integration and
S kB'”( 1 ) 28) S=r(x)? is the single-particle densityf (x)|2.
T2\ From substituting Eq(32) into Eqgs.(17) and (18), and
again taking real and imaginary parts, four boundary condi-

where the factor ofr\2 will be explained in Sec. IV A. tions are obtained, the important one being phase quantiza-
tion

3. Energy splittings

(1) = ¢(0)=2mn, (35
Because the dn solutions are symmetric and the cn solu-
tions are antisymmetric, we expect that for even numbers ofvheren is an integer which we will call the phase quantum
peaks the chemical potentials of the two solution typeswumber. Thus for the complex solutions, E¢33) and (34)
should be very close. For odd numbers of peaks there are meplace the NLSE as the equations to solve, together with

cn solutions. four boundary conditions, of which phase quantization is the
Removing all factors in common to the two chemical po-most important, and the normalizatipEg. (2)].

tentials we find from Eq46) and(7) for the cn solution and In Secs. llIB1 and llIB2, we showed that the real

from Egs.(23) and(24) for the dn solution: symmetry-breaking solutions have a density proportional to
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cr? and dr, respectively. The former of these vanishesjgt 2 . @ . ©
. . . . r(x) 3 1(x)
points around the ring, while the latter is nodeless. We look "™, § 2
for complex solutions which effectively interpolate between 2 1.5
these two real solution types. The motivation for such a so- 1'? 1
lution will become clear in Sec. IVB. Using our physical 0.5 0.5
intuition, we are again able to bypass the use of Cayley ol St e e L R DY BN B AR
transformations, as we did in the repulsive case. T X %
We remind the reader of the Jacobian elliptic function o3 ® o @
identity: m [ | o, — /[
_ 1 _ 0.6 - 0.6 —
cré(x|m)= —[dré(x|m)—(1—m)]. (36) 0.4 ) 0.4 —
m 0.2 _J 0.2 J
0 0
We thus generalize the real symmetry-breaking solutions 0 0.20406608 1 0 0.20.406038 1
X X

[Egs.(4) and(22)] as follows:
- - FIG. 4. Two intrinsically complex, stationary, bright soliton
r2(x)= A2 dre(kx+ 8lm) — y(1—m)]. (37  train solutions on a ringj is the number of peaks) is the phase
o guantum number, and all plots are for the test scalé/bf= 1/25.

When y=0 the dn solution is recovered; wher=1 the cn (3 Amplitude and(b) phase/2r of the j=3, n=1 solution. (c)

solution is recovered. As in the repulsive case, we tempoamplitude and(d) phase/r of the j=4, n=1 solution. Note that

rarily set5=0. | is to be interpreted as the number of peaksthese solutions are twofold degenerate, as the chemical potential

in the densityr (X)2. We will consider the case of gener@l  depends om?.

and thus degeneracy, later.

Using the solution methods as outlined in the repulsiveat all. We find numerically that outside of these splittings
case[13], kis set to 3K (m) in order to satisfy the boundary becomes purely imaginary. This would invalidate the hy-
conditions. The solution then becomes: pothesis that the phase is real. Thus to find the complex

_ _ solutions one need only scan the valuesrobetweenmg,
r2(x)=A2[drA(2jK (m)x|m)—y(1—m)]. (38)  andmy,, so that the algorithm is quite straightforward.
. . If there are an odd number of peaks then there is no cn

The chemical potential and the parametgrsA®, anda  solytion. In this case we just consider the odd-peaked cn

are then solution for the box, and treat it as a limiting case of the
~ 5 oo S ) 5 complex solutions. By symmetry of the ring,can be either
p=— 3+ 1IN EMK(mM) —4j5(2—m)NK(m)%, positive or negative, so that each solution is twofold degen-

(39  erate, just as we found for the constant amplitude solutions.
In Fig. 4 we show the lowest two solutions. We have
— 72\ T2+8E(m)K(m) plotted the amplitude above the phase to make it apparent
8(1—m)K(m)>2 ' (40 that the phase is nearly constant over the peaks, and jumps
sharply between them. When the troughs go to zero, the
A2=8j2\2K(m)?, (42) phase becomes a step function and the height of each step
approachesr, which recovers cn-type solutions. As a con-

1 sistency check, we note that all of the chemical potentials
a=—[\"2([—1+8j°A2E(m)K(m)—8j%(1—m) and other parameters in the complex case approached the
V2 values found in the real case as-0" andy—1~, respec-

5 2 2. 2 5 4\ 4 2 2 tively. If 6 is generalized so that it is arbitrary, a similiar
XATK(M)ZH{1+8]“NK(m)“+ 64]"A"E(m) “K (m) degeneracy to what was found in E¢&1) and (28) is ob-

— 16E(m)[j2N2K(m)+ 4]\ *K (m)3]H) V2 (42)  tained,

fy:

This leaves the constant of integratianin Eq. (34), the 1
interpolation parametey, the prefactor to the densitg?, S~ ksln< ) (43
and the chemical potential, determined up to the number T2\
of peaksj, the scalex, and the parameten. For a given\

andj we then numerically integrate E¢34) and adjustm  where the factor ofr2 will be explained in Sec. IVA.
until the phase is quantized on the ring, i.e. umtils an

integer.
All parameters are monotonic m. Furthermoren has an D. Spectra
extremely limited range. Because soluti@®) was designed We show the chemical potential spectra as a function of

to interpolate between the two real solution types, outside ok ~2 for the four types of stationary states on the ring: real
the small splitting between the value wiffor the real cn and  with nodes, constant amplitude, real without nodes, and in-
dn solutiongsee Sec. Il A 3there are no complex solutions trinsically complex. In Fig. 3 the two lowest real spectra are
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. - . S . . . FIG. 6. Minimum inverse scale fgrpeaks to become available.
0 100 200 300 400 500 600 The lower curve is odd; the upper curve is even Note that in
(L/§)2 general there are many more odd solutions than even solutions
available. The ordering of the solutions i$=(1,2,3,5,4,
FIG. 5. Chemical potential spectra for symmetry-breaking,7,9,6,11,13...).
nodeless solutions on the ring. These solutions have no analogue
with the particle-on-a-ring solutions in linear quantum mechaijics. A. Bounds

is the number of peaks is the phase quantum number, dod is . L
the number of healing lengths per box length. Dashed lijes: Box-type stationary states ,Car_] have an arbitrarily large
=1,2 3, 4 and 5 from left to right. Solid lines:],f) number of nodes. But the excitation level of nodeless solu-

=(3,1), (4,1), and5,1) from left to right. The spectra are nearly tions is limited. We set three bounds on the nodeless station-
linear, because when the peaks overlap appreciably they no long@fy states: the maximum chemical potential; the minimum

solve the nonlinear Schdinger equation, so that they only existin @and maximum phase quantum number; and the minimum
the bright soliton regime. scale to obtain notches. As a consequence of these bounds

there are some scales at which no nodeless solutions exist.

h F . h laid the f | Mathematically, the maximum number of peaks that can
shown. -or comparison we have overial e four lowest, on the ring is obtained from the lower limit on the period

constant amplitude spectra on the same figure. In Fig. 5 W8 the dn function in solutiori38). When the peaks overlap

show the spectra of the nodeless solutions: the three loweg{, 1 uch they are no longer solutions to the NLSE. The dn
for the complex ones and the five lowest for the real ones. f,nction approaches its minimum period mfasm—0". In

The spectra in Fig. 5 are nearly linear because they are ifhjs |imit Eq. (39) becomes
the bright soliton regime. As soon as the peaks overlap ap-
preciably these two solution types no longer become avail- max= — 5 +2j2\%m2. (44)
able. However, for the cn spectra shown in Fig. 5 both the
bright soliton limit, to the far right, and the particle-on-a-ring  In this same limit the amplitude approaches a constant
limits, to the far left, hold. which the normalization constrains to be 1. From E&4)

For the experimentally reasonable test scale\ef1/25 and(42) we find a relation between the maximum number of
the ground state is the single-peaked, nodeless dn solutiopeaks, the phase quantum number, and the scale
The first excitation is the two-peaked antisymmetric cn solu-

tion, the second is the two-peaked dn solution, the third is the 1 45
three-peakech=+1 complex solution, the fourth is the NS . 45
three-peaked dn solution, and so forth. TN 2| max— 8N

Since the real solutions are limiting cases of the comple B . -
solutions, the three symmetry-breaking types scale in th_f n=0 the dn SOlu“O'j IS recovered.. SUbSt'EJtmg £45)
same way and their energy levels do not cross, as will bé't0 Ed. (44) and Se.ttlngn=0,. we find thatuma,=—1. '
further explained in Sec. IV. But the constant amplitude so- herefore, the chemical potential of the plane wave solution

lutions depend differently on the scale, so their energy level& @0 upper bound for all nodeless solutions.
can cross with those of the other solutions. We can set a bound on the phase quanta simply from the

parameter range mentioned in Sec. Il C. Because the com-

V. BOUNDS AND SYMMETRIES ON THE RING plex solutions interpolate between the cn and dn solutions:
The stationary states presented above are the bounded, 0<n< J (46)

guantized version of bright soliton trains. Solutions on the 2°

ring have many special properties and symmetries. We detail

their bounds, degeneracies, and point-group symmetry iNote thatn is stricly less tharj/2. This is because the phase

light of the BEC. That is, we consider the effect of changingguantum number of the cn solution is actually 0, p@t j/2

the scale parametex, which corresponds to accretion of is the limiting case, an@l can be odd, even though an odd-

atoms into a condensate. Experimental predictions will bgeaked cn solution does not solve the NLSE on the ring.

made in Sec. V. In Fig. 6 we plot the inverse scale at which egche-
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in order to find the degeneracy.

Consider the case ¢=5: from Eq.(47), it may be seen
that there is a reah=0, dn solution and two complex solu-
tions: n=1 and 2. As the two complex solutions are each
twofold degenerate, there are five solutions in all. This is
identical to the theCg character tablgl9]: there are one real
solution and two doubly degenerate, intrinsically complex
solutions. The latter are essentially a linear combination of
independent bright solitons with coefficients which are sim-
ply the appropriate group characters, as familiar to chemists

FIG. 7. Fivefold group symmetry on the ring. The dips are thein molecular orbital theory20].
mean-field effective potential produced by the five peaks in the |n the limit that\ —07, i.e. that the peaks are well sepa-
condensate. rated, giverj peaks there arenearly degenerate solutions. If
j is even there are two real solutions, one symmetric and one
antisymmetric, and j(—2)/2 complex solutions, each two-
fold degenerate. The splitting is given by Eg1). If j is odd
there is only one real solution, the symmetric one, apd (
—1)/2 complex solutions, each twofold degenerate.

An upper bound may be placed on the splitting by apply-
ing Eqg. (31) and keeping in mind that the odd-peaked cn
N"Y) = W\/Tsjeven, _solution is_a limiting case on the ring_. Fo_r both even ar_ld odd

47) j the ordering of the chemical potentials is as detailed in Sec.
(A_l)min: TN =2+ 4] 644,

Il D, with the antisymmetric solution being the lowest and
the other symmetry breaking solutions being higher in
for even or odd, respectively. The order gépeaked solu- chemical potential aa—0". There is an ad_ditional degen-
tions turning c()jn as IOa func%on ok 1is ?hgn 1,2,3,54, °racy due to symmetry breaking, as seen in EEI_S), (28)’.
7,9,6,11,13,8. .. . Thus for largex ! many more odd than and (43). Thus we have s_hown by group th.eoretlc consider-
even solutions are available, as again may be seen in the pI&F'OnS tha'g our bright stationary _state_solut|ons to the NLSE
In Fig. 6 and in Eq(47) it is apparent that the minimum under periodic boundary conditions include all symmetry-

inverse scale for a complex solutionsis,2. This means that breaking eigenstates of evenly spaced peaks identical up to a

the ground state for less than about 4.5 healing lengths to ﬂ,%hase.

box length is then=0 constant solution, rather than the
single-peaketh=0 dn solution. This is also the source of the V. EXPERIMENTAL PREDICTIONS
constant factor in the entropy of the nodeless solutions, Egs. A. Formation of the ground state

(28) and (43). 72 is the minimum size of a peak. .
Supposing thak ! is large there are then three regimes: . The symmetry of the ground state of the NLSE on a ring

_l .
for smallj all solution types are available; for intermedigte IS Scéle de_plendent. .F.M .< V2 the ground state is a con-
even-peaked solutions are cn and go to zero, while oddStant forx >\2m itis single peaked, symmetry breaking,
peaked solutions are complex and shallow; and for lgrge @d nodeless. The width of this peak is abgtr\. Recall-

only cn solutions are available, so that there are no oddind the definition ofx, for fixed L, i.e. a fixed trap size, we
peaked solutions. may consider the symmetry breaking as a function of either

particle number or scattering length. The former case corre-
sponds to the experimental situation of adiabatic accretion of
particles in quasi-one-dimension. The latter corresponds to
From Eg.(1) one may consider the negative nonlinearthe tuning of a scattering length, by a Feshbach resonance
term in the NLSE as an effective potential generated by th¢21] or other means.
wave function. As long as the peaks in the wave function are Thus one expects under adiabatic growth of the conden-
well separated then the self-generated troughs do not integate to observe the density of the attractive BEC, as a func-
act. On a ring one may treat the well-separated limit as aion of the number of atoms trapped, to be constant, then to
rotationally symmetric set dfpotential wells, wherg is, as  peak in the middle, thereby breaking symmetry, and finally
before, the number of peaks in the magnitude of the waveo disappear from view as the width of the peak becomes less
function. In Fig. 7 the case fgr=>5 is shown. than the wavelength of the imaging radiation. In Fig. 8 we
This is in complete analogy to the quantum dynamics of ashow this sequence of events in four stages superimposed on
particle in aj-fold rotationally symmetric potential in two each other. Under box boundary conditions one expects a
dimensions. Such a physical situation is described byCthe similar occurrence. Although the ground state is not a con-
symmetry point group. The number of irreducible represenstant, it is quite broad foh "*~1. As A ! increases, the
tations of theC; group determines the degeneracy of theground state becomes steadily sharper, until it is no longer
solutions. Thus one may look up tkk character tablefl9]  visible under the imaging radiation.

comes available for the maximumwithin the range ofn.
For oddj this is only half a phase quantum away frgi2,
while for evenj it is a whole phase quantum away. Thus we
expect that the odgl solutions should become available at
lower inverse scales than the evgrsolutions, due to the
guantization conditions

B. Theory of point groups
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FIG. 8. Adiabiatic formation of the ground state on a ring: the ~°;> i
onset of symmetry breaking. From the broadest to the thinnest so BRI I T T I oo E

lution the scales aré/é=m+2, 5, 10, and 25. The respective

chemical potentials arg=—1, —1.852, —6.250, and—39.025. * X
In a box the formation is similar, except that at the broadest scales g, 9. Modulational instability: fluctuations in particle number

the ground state goes smoothly to zero rather than being constanfeaq to symmetry-breaking solutions of radically varying depth. All
four plots are forj =5 peaked dn solutions, with scale varied from

Though it has been shown that the NLSE models the BEGhe minimal number of healing lengths needed to obtain a five-

quite well in the repulsive case, it has been unclear as to howeaked solution to just over the minimal number needed to obtain a

well it models the physics of the attractive case. There haveix-peaked solution:(a) L/é=5m2, m=—1.0000; (b) L/¢&

been relatively few experiments with attractive interactions,= 5.2+ 102, 7= —1.0028;(c) L/¢=25, n=—1.4657; andd)

and analysis of the NLSE in a three-dimensional trappeq ;:—¢,2+10°3, 7,=—1.0001.

condensate suggested a small upper limit on the number of

atoms that can be ”?a'”ta'”?d ina _stable.con(_jelﬁ?nam,q. akin to the modulational instability found in fiber optics, in
We predict that in quasi-one-dimension, i.e., for trans-

verse dimensions on the order #fa slow enough accretion which a continuous wave laser picks up highly variable side-
. . ug bands in response to small changes in the pd&kr
of particles to the attractive condensate will have the se- : . L .
If the scattering length is positive then the BEC is repul-

?Oﬂiﬂzebzzovxg ngF(Ia?in?e]cr\c;rlégii::ngfo?nsdu(?hszlanﬁ(g:iarnszqitrj]etrr]]z%ive’ and the ground state on a ring is the constant solution.
. P 9 9 L{sing a Feshbach resonance the scattering length may be

shape of the ground state could answer two questions . .
once: whether there are bright solitons and whether thguned rapidly negative. In the case &Na the condensate

NLSE is a useful model for the attractive BEC. If it can be Wwas experimentally observed to disappear from view when

shown that the NLSE models the attractive BEC in quasi-the scattering length becomes negafi#2,23, with various

. . . explanations based on atomic recombination mechanisms
one-dimension, then there are a plethora of rich phenome 5
o . ) . . r\@4—26. In the case of°Rb the condensate shrank to below
in fiber optics which could have a direct analogue in the BN : .
the resolution limit and then emitted a burst of high-energy
BEC.
atoms[27].
We have shown here that the stationary NLSE provides a
mechanism for the apparent destruction of the condensate
For A ~1< /27 we have shown that the constant solutioneven in the absence of recombination, at least in the
is the ground state. We have discussed the case of adiaba@igasi-1D approximation. For a fast transition in the scatter-
changes in the particle number or the scattering length. Leg length we expect the constant solution, in response to
us now considenonadiabaticchanges. noise, to be able to easily shift to a many-peaked soliton
We first note that the depth of the dn solutions is highlysolution without having to change phase quantum number. It
scale dependent. We solve Eg4) in the limit asm—0* may even be possible to control the form of this transition by
for n 1 using intentional noise to induce the desijqutaked soliton
train solution. Induced modulation has proven quite useful in
A= \/ij. (48 fiber optics, as for example in the creation of a new kind of
laser[8].

For eachj €{1,2,3...} there is a scale for which the real,
j-peaked dn solution is in fact a constant. Near these scales
the dn has shallow modulations. Midway between these
scales it is exponentially close to zero between the peaks. in We have presented a complete set of stationary solutions
Fig. 9 we plot such a sequence for the5 solution. The to the nonlinear Schainger equation under periodic and
four plots of the wave function maintain the same phaséox boundary conditions in one dimension for the case of
guantum numbemn=0, yet vary greatly in depth with only a attractive nonlinearity. In a box all solutions may be taken to
small fluctuation of scale. This extreme sensitivity in thebe real. On a ring there are four solution types: constant
form of the solutions to an external parameter, heré, is  amplitude solutions which are plane waves; real symmetry-

B. Modulational instability

VI. CONCLUSION
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breaking solutions with nodes; real nodeless symmetrymental predictions specific to the BEC. The creation of an
breaking solutions; and a class of complex, symmetryattractive BEC in the quasi-one-dimensional regime could
breaking, nodeless solutions. All symmetry-breakinganswer two questions at once: is the NLSE with attractive
stationary states on the ring are described by the theory afonlinearity a good model; and can one observe solitons?
point symmetry groups. Thus far experiments have only been performed in the three-

Constant amplitude solutions and real solutions withgimensional regime. The quasi-one-dimensional solutions
nodes are in one-to-one correspondence with those of “}?resented in this work may suggest further experiments.

analogous particle-on-a-ring and particle-in-a-box problems|se\here we have illustrated such solutions numerically
in linear quantum mechanics. Nodeless, symmetry—breakln?”

solutions are uniquely nonlinear. Solutions of nonconstan

amplitude may be treated as bright soliton trains. As the

n_atural size of a de_nS|ty peak is12, _the minimum scale ACKNOWLEDGMENTS

size needed to obtain nodeless solutionk/i&= 7v2. As a

consequence, the form of the ground state depends/én We benefitted greatly from extensive discussions with

which in the context of the BEC means that as atoms accretdathan Kutz and David Thouless. Early stages of this work

the ground state on the ring breaks symmetry. were supported in part by the Office of Naval Research; the
In addition to describing the properties and physicalwork was completed with the partial support of NSF Chem-

meaning of stationary states in detail, we have made experistry and Physics.
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