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Stationary solutions of the one-dimensional nonlinear Schro¨dinger equation.
II. Case of attractive nonlinearity
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All stationary solutions to the one-dimensional nonlinear Schro¨dinger equation under box or periodic bound-
ary conditions are presented in analytic form for the case of attractive nonlinearity. A companion paper treated
the repulsive case. Our solutions take the form of bounded, quantized, stationary trains of bright solitons.
Among them are two uniquely nonlinear classes of nodeless solutions, whose properties and physical meaning
are discussed in detail. The full set of symmetry-breaking stationary states are described by theCn character
tables from the theory of point groups. We make experimental predictions for the Bose-Einstein condensate,
and show that, though these are the analog of some of the simplest problems in linear quantum mechanics,
nonlinearity introduces surprising phenomena.

PACS number~s!: 03.75.Fi, 05.30.Jp, 05.45.Yv
se

d
on

e

ne
-
pe
lin
of
ll
n

na
f
e
3
o
t
it
th
rs
ch
e

1D

t

ng
-

der

on

nit-

ns,
t
f

e

ua-

this
is

of
to

ct
I. INTRODUCTION

In a recent experiment the dilute-gas, attractive, Bo
Einstein condensate~BEC! was created for lithium@1–3#. As
predicted by the nonlinear Schro¨dinger @4,5# equation
~NLSE! for three dimensions@6#, the condensate collapse
when the number of particles became large. However, in
or quasi-one-dimension, no collapse is predicted@7#, and in
one dimension the NLSE has a wide application in fib
optics @8# as well as other fields@9–12#.

In this paper we present stationary solutions to the o
dimensional~1D! NLSE for attractive nonlinearity under pe
riodic and box boundary conditions. In the preceding pa
@13# we solved the analogous problem for repulsive non
earity. Although we will place our results in the context
attractive atomic interactions in the BEC, they are equa
applicable to wave phenomena in many physical situatio
as, for example, ring lasers@14#.

We define the BEC to be in the quasi-one-dimensio
regime when its transverse dimensions are on the order o
healing length, and its longitudinal dimension is much long
than its transverse ones. In this case the 1D limit of the
NLSE is appropriate, rather than a true 1D mean-field the
@15#, as would be the case for a transverse dimension on
order of the atomic interaction length or the atomic size
self. Under these criteria the condensate is well out of
Thomas-Fermi limit; i.e., the kinetic energy in the transve
dimensions is very high. It is this high-kinetic-energy whi
prevents the condensate from collapsing. We have num
cally illustrated the stability of the condensate in quasi-
elsewhere@7#.

As shown in the previous papar@13#, in the quasi-1D
regime the solutions are approximately separable, and
dimensionless NLSE may be written

*Author to whom correspondence should be addressed.
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@2l2] x̃
2
2u f ~ x̃!u21Ṽ~ x̃!# f ~ x̃!5m̃ f ~ x̃!, ~1!

where f ( x̃) is the dimensionless wave function describi
excitations alongL, x̃P@0,1#, Ṽ( x̃) is a dimensionless po
tential representing the boundary conditions,m̃
[(2mj2/\2)m, andl[j/L}N21/2 is the ratio of the heal-
ing length to the box and ring length. We remind the rea
@13# that j2[1/(8pr̄uau), wherea is the scattering length
and r̄ is the mean particle density.

For comparison with experiment we list the conversi
factor from the unitlessm̃ to m in mK. Using the formula
from the previous paper@13#, for 7Li with r̄51014 cm23 and
a521.45 nm, the conversion factor is 0.125. Since the u
less chemical potentials we find will be on the order of21
to 210 this gives a sense of the energy scale of the solutio
on the order of 0.1–1.0mK. We also note that throughou
our presentation we will use a reasonable test scale ol
51/25 for illustrative purposes.

As u f ( x̃)u2 is the longitudinal portion of the single particl
density, we require the normalization condition

E
0

1

dx̃u f ~ x̃!u251 ~2!

be satisfied together with the NLSE~1! and such boundary
conditions as we will describe below. These are the eq
tions we will solve.

II. BOX BOUNDARY CONDITIONS

The key concept underpinning the approach taken in
paper is that in a region of constant potential the NLSE
integrable. This was utilized in our companion paper@13#,
and virtually all the techniques applied there to the case
repulsive nonlinearity apply here as well, though they lead
the identification of different particular solutions.

Specifically, it was shown in the previous paper@13# that
solutions of the stationary NLSE on the unit interval, subje
©2000 The American Physical Society11-1
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to the box boundary conditions

f ~0!5 f ~1!50 ~3!

can be expressed, without loss of generality, by purely
functions. Such solutions are given in terms of Jacobian
liptic functions, whose properties were reviewed in the p
vious paper. This result holds independent of the sign of
nonlinearity. For the case of repulsive nonlinearity, it w
established that the sn function provides all possible s
tions. For the attractive case, both the cn and dn functi
offer solutions. However, the dn function has no real zer
so the cn function provides all solutions which satisfy b
boundary conditions.

A. Solutions and spectra

The most general form of the solution is

f ~ x̃!5Acn~kx̃1dum!, ~4!

where 0<m<1 is the parameter of Jacobian elliptic fun
tions.k andd will be determined by the boundary condition
below, whileA andm will be determined by substitution o
Eq. ~4! into the NLSE and by normalization.

Since the quarter period of cn is the complete ellip
integral of the first kind,K(m), and since cn(0um)51, we
find that k52 jK (m) and d52K(m), where j
P$1,2,3, . . . %. The physical meaning ofj 21 is the number
of nodes in the cn function. We will give a more gene
meaning toj below. We then solve Eq.~1! by substituting
Eq. ~4!, using Jacobian elliptic identities, and setting coe
cients of equal powers of cn equal. This results in equati
for the amplitude squared,A2, and the chemical potential,m̃:

A252m@2 jK ~m!#2l2, ~5!

m̃52@2 jK ~m!#2l2~2m21!. ~6!

Substituting Eq.~5! into Eq.~2!, utilizing Jacobian elliptic
identities, and noting that the integral over cn2 can be defined
in multiples of the quarter periodK(m), we obtain the nor-
malization condition

2~2 j !2l2K~m!@E~m!2~12m!K~m!#51, ~7!

whereE(m) is the complete elliptic integral of the secon
kind. Equation~4! then becomes

f ~ x̃!5A2m@2 jK ~m!#lcn„K~m!~2 j x̃21!um…. ~8!

This leaves the chemical potential~6! and the wave func-
tion ~8! determined up to the parameterm and the scalel. In
Fig. 1 a graphical solution of Eq.~7! is shown. The plot
demonstrates that the solutions are unique. Note that the
malization condition requiresm to be much closer to 1 tha
in the repulsive case, as may be seen by comparing Fig.
the corresponding figure in the previous paper@13#. It fol-
lows that the numerics of the attractive case are more d
cult than those of the repulsive one, as may be seen in s
of the figures.
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These solutions are in one-to-one correspondence
those of the 1D particle-in-a-box problem in linear quantu
mechanics. Plots of the wave function for the ground st
and the first three excited states are shown in Fig. 2. In F
3 the chemical potential spectrum of this solution type
plotted as a function ofl22, the number of healing length
per box length quantity squared. The leftmost portion of

FIG. 1. This graphical solution of Eq.~7! shows that for a given
scale and number of nodes the real solution to the stationary N
under box or periodic boundary conditions is unique.l is the scale,
and j 21 with j P$1,2,3, . . . % or j with j P$2,4,6, . . . % is the num-
ber of nodes, respectively. The three curved lines are plots of
~7! solved for the number of nodesj, with l215L/j510, 25, and
50. The left-hand side of the plot is them50 linear limit, while the
right-hand side exponentially approaches them51 bright soliton
limit. Solutions are found where these lines intersect with the h
zontal lines ofj. Note the rapid convergence tom50 in the high-j
limit, so that for largej the solutions are in the linear regime.

FIG. 2. Real stationary solutions to the NLSE under box a
periodic boundary conditions. The solid lines show solutions
one-to-one correspondence with those of the analogous particl
a-box and particle-on-a-ring problems in linear quantum mechan
The dashed lines show uniquely nonlinear, nodeless solutions fo
only on the ring. Both solution types may be characterized as br
soliton trains. Box: the solid lines in~a!–~d! are the ground state
and first three excited states. Ring:~a! nodeless, symmetry-breakin
ground state~note that the solid line has overwritten the dash
one!. ~b!–~d! Symmetric and antisymmetric solutions.~c! Only the
dashed line is a solution. All plots are for the test scale ofj/L
51/25.
1-2
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plot corresponds to the particle-in-a-box limit and the rig
most portion to the bright soliton limit. We now discus
these two limits.

B. Particle-in-a-box limit

High chemical potential states in which the peaks over
become particle-in-a-box type solutions, as can be see
Fig. 2~d!. This is both the zero density, linear limit, and th
highly excited-state limit. Mathematically,m→01 and cn
→cos. Physically,j l@1. In this limit K(m)→p@1/21m/8
1O(m2)# andm→1/( j pl)2, so that Eq.~6! becomes

m̃5 j 2p2l2S 12
3m

2
1O~m2! D ,

m̃5 j 2p2l2F12
3

2 j 2p2l2
1OS 1

j 4l4D G , ~9!

or, putting back in the units,

m5
j 2p2\2

2ML2 S 12
3m

2
1O~m2! D ,

m5
j 2p2\2

2ML2 F12
12aNL

At j
2p

1OS L2N2

j 4 D G , ~10!

which clearly converges to the well-known linear quantu
mechanics particle-in-a-box chemical potential. Note that
first order correction is identical to the repulsive case exc

FIG. 3. Chemical potential spectra of real stationary states w
nodes, as a function of inverse scaleL/j, with stationary plane-
wave spectra shown for comparison. Dashed lines: shown an
50, 1, 2, and 3, wheren is the phase quantum number of the pla
wave on the ring. Solid lines: real stationary states of the NLSE
a box and on a ring are soliton trains. Shown arej 51, 2, 3, and 4,
with j 21 the number of nodes in a box andj 52 and 4 the number
of nodes on a ring. The linear regime to the far right correspond
the bright soliton limit in which the peaks are well separated, wh
the far left corresponds to the particle-in-a-box or particle-on-a-r
limit.
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that it is negative. One may also obtain this result from fir
order perturbation theory, as shown in the previous pa
@13#.

C. Bright soliton limit

One may add a peak without disturbing another pe
provided that adjacent peaks have opposite phases and
the overlap between them is exponentially small in the ra
of their separation to their healing length. In this limit w
ought to recover a series of equally spaced sech solution
alternating phase to within exponentially small factors,
shown, for example, in Figs. 2~b! and 2~c!. Sech solutions
are also called bright solitons. The sech function is them
→12 limit of the cn function in the solution@Eq. ~4!#.

Bright solitons solve the free NLSE. Thus we should fi
that the wave function and chemical potential no longer
pend on the box lengthL. In this limit the solitons must have
a different length scale thanl, which depended onL. The
soliton width is proportional to the parameter

h[
At

8pNuau
, ~11!

where At is the transverse area of the box. In the solit
literature@8#, h is usually set to 1 by renormalizing the wav
function.

We now consider the limitl→0, which corresponds to
m→12. Physically, this means that the peaks become hig
separated and the interaction between them becomes e
nentially small. By using Taylor expansions in 12m of the
complete elliptic integrals in Eq.~7! we find that Eq.~6!
becomes

m̃52
1

16j 2l2
, ~12!

while Eq. ~8! becomes

f ~ x̃!5
1

23/2j
l21cn S 1

8 j 2l2
~2 j x̃21!UmD . ~13!

Putting back in the units we find

m52
\2

2m

1

16h2

1

j 2
, ~14!

f ~x!

AL
5

1

23/2j

1

h
cnF S 1

4 j h D x2d~L !UmG , ~15!

whered(L) is an offset which depends on the box leng
But asL→` the offset becomes arbitrary, so that we can
it to zero. Note that we put back in the units of the wa
function f (x) which we took out in making the separation
variables in the quasi-1D approximation.

As the reader may verify, for the case in whichj 51 this
is indeed the chemical potential and wave function of
sech solution to the free 1D NLSE:

h

n
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f ~x!

AL
5

1

23/2

1

h
sechF S 1

4h D xG . ~16!

We have found that this limit suffices to calculate chem
cal potentials for whichj ,1/(5l) to better than 1%. This
estimate assumes an overall scale size of;5j per peak. The
L-independent chemical potentials for thej 51, 2, and 3 so-
lutions shown in Fig. 2 satisfy this criterion, for example,
do any ground states for a healing length smaller than 1

Note that Eq.~14! is identical in form to that of the Ryd
berg formula for the energy levels of the Hydrogenic ato
Thus to leading order we have found stationary state ene
levels for which the quantum number scales asj ~harmonic
oscillator! @13#, j 2 ~particle in a box!, and j 22 ~Rydberg
formula!. This is an impressive illustration of the complexi
of solution types for stationary states of the NLSE.

III. PERIODIC BOUNDARY CONDITIONS

There are four solution types for periodic boundary co
ditions. There are constant amplitude solutions which
plane waves; real, antisymmetric, symmetry-breaking so
tions, similar to those found in Sec. II; real, symmetr
symmetry-breaking solutions; and a class of comp
symmetry-breaking solutions. The former two are in one-
one correspondence with particle-on-a-ring solutions in
ear quantum mechanics; the latter two arenodeless, and are
found only in the presence of nonlinearity. As the ring
rotationally invariant, the symmetry-breaking solutions w
have a high degeneracy, in analogy with vortices in two
mensions@16#. The periodic boundary conditions are

f ~0!5 f ~1!, ~17!

f 8~0!5 f 8~1!. ~18!

A. Constant amplitude solutions

If we assume thatr ( x̃)5const, then we obtain constan
amplitude solutions of the form

f ~ x̃!5eı2pnx̃, ~19!

wherenP$0,61,62, . . .%. The amplitude is constrained b
normalization to be 1. Substituting Eq.~19! into Eq. ~1!, we
find the chemical potential

m̃5211~l2pn!2. ~20!

Unlike for the case of repulsive nonlinearity, where t
ground state on a ring was the constant solution forn50, the
ground state of the attractive BEC breaks symmetry at so
scales, so that the constant amplitude solutions are a hi
excited state. This will be discussed further in Sec. V A. F
nÞ0 each solution is twofold degenerate, asn can be either
positive or negative.

Note that these states could also be termed angular
mentum eigenstates or quantized vortices, as for examp
the work of Matthewset al. @17#.
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B. Real symmetry-breaking solutions

Of the two Jacobian elliptic functions having differe
physical forms and solving the NLSE for attractive nonli
earity, only one could be used for the box, the cn functio
The dn function satisfied the NLSE but, as it never vanish
failed to satisfy box boundary conditions. But on the ring t
dn function poses no difficulty, because the boundary con
tions are periodic. Thus two real solution types are availa
Looking at the plot of the Jacobian elliptic functions in th
Appendix to the previous paper@13#, we observe that the cn
function is antisymmetric with respect to translation by t
half-period 2K(m), while the dn function is symmetric unde
such a translation.

1. Analog to box boundary condition solutions

As we have exchanged the ring for the box, Eq.~4! is the
real solution. One simply changesk from 2jK (m) to
4 jK (m) in order to satisfy Eqs.~17! and ~18!, i.e., from
multiples of the half-period to multiples of the whole perio
The number of nodes will be 2j rather thanj 21, where j
P$1,2,3, . . . %. We temporarily keepd set to 0. But note that
unlike for box boundary conditions, under periodic bounda
conditionsd is arbitrary.

Then all the results from Sec. II hold with the newk, by
letting j→2 j in all equations. The energy and wave functio
are determined uniquely by graphical solution of Fig. 1.
Figs. 2~b! and 2~d! we show the first two states. Both th
linear quantum mechanics particle-on-a-ring limit and t
bright soliton limits are reproduced. In the latter the sa
kind of nonoverlapping criterion applies as before.

We found real solutions by settingd50. If we instead let
d vary arbitrarily, we obtain the degeneracy inherent in the
symmetry-breaking solutions. The entropy associated wit
pair of peaks depends logarithmically on the box lengthL,
and, since there are approximatelyl21 possible positions for
a peak, the entropy is@13,16#

S;kB lnS 1

10j l D ~21!

where the factor of 10 comes from 5 for each of the tw
peaks. This is consistent with the non-overlapping criter
used in obtaining Eq.~14!.

2. Nodeless solutions

To find the dn solutions, we follow the same method
outlined in Sec. II. The most general solution is

f ~ x̃!5Adn~kx̃1dum!, ~22!

subject to the NLSE~1!, the normalization~2!, and the
boundary conditions~17! and~18!. From these we obtain the
chemical potential, normalization, and amplitude:

m̃52@2 jK ~m!#2l2~22m!, ~23!

2~2 j !2l2K~m!E~m!51, ~24!
1-4
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f ~ x̃!5A2@2 jK ~m!#ldn„K~m!~2 j x̃21!um…, ~25!

wherej refers to the number of peaks rather than nodes in
dn function, since the dn function is nodeless. Note that E
~23!–~25! are only valid formÞ0. The m50 case is dis-
cussed in Sec. IV A.

The dn function has a period of 2K(m), not 4K(m) as did
the cn function. Plots of the amplitude for the first four e
ergy levels are shown in Fig. 2. The lowest state, shown
Fig. 2~a!, appears identical to the lowest state in Sec.
Becausem is very close to 1 for the test scale ofl51/25, dn
; sech and cn; sech, so that cn; dn. Had we chosen a
scale at which the peaks came near to the boundaries, the
ground-state solutions would have looked quite different.
make clear the extent to whichm is singular at this scale, th
numerical solution to Eq.~24! for a single peak is (12m)
.O(10266).

The particle-on-a-ring limit for the dn solution is a plan
wave. Asm→01, dn→1. In this case the amplitude is con
strained to be 1 by the normalization, and the chemical
tential is m̃521.

In the bright soliton limit Eq.~24! may be expanded in
(12m) to yield the same result for the chemical potent
and amplitude as was found for the cn solutions in a box

m52
\2

2m

1

16j 2

1

h2
, ~26!

f ~x!

AL
5

1

23/2j

1

h
dnF S 1

4 j h D x2d~L !UmG , ~27!

where the same criterion as was used for the cn solution
a box may be applied to the validity of the use of the lim
here.

As with the cn solutions, we found the nodeless dn so
tions by settingd50. If we instead letd vary arbitrarily, we
obtain the degeneracy inherent in these symmetry-brea
solutions. The entropy associated with a peak depends l
rithmically on the box lengthL, and, since there are approx
matelyl21 possible positions for a peak, the entropy is

S;kB lnS 1

pA2 j l
D , ~28!

where the factor ofpA2 will be explained in Sec. IV A.

3. Energy splittings

Because the dn solutions are symmetric and the cn s
tions are antisymmetric, we expect that for even number
peaks the chemical potentials of the two solution typ
should be very close. For odd numbers of peaks there ar
cn solutions.

Removing all factors in common to the two chemical p
tentials we find from Eqs.~6! and~7! for the cn solution and
from Eqs.~23! and ~24! for the dn solution:
06361
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m̃cn~mcn !}2
2mcn21

E@mcn #2~12mcn !K@mcn #
, ~29!

m̃dn~mdn !}2
22mdn

E@mdn #
, ~30!

wheremcn is found by solving Eq.~7! numerically, andmdn
is found by solving Eq.~24! numerically. This gives the
exact percent splitting:

%split5100
m̃dn~mdn !2m̃cn~mcn!

1
2 um̃dn~mdn!1m̃cn~mcn !u

, ~31!

which falls off exponentially asmcn,mdn→12.
In linear quantum mechanics it is known that for the sp

tial wave functions of two particles the antisymmetric sup
position is higher in energy than the symmetric superpo
tion. The exact opposite is true in the NLSE. Numeric
studies of Eq.~31! show that the symmetric, nodeless, d
solutions arehigher in chemical potential than the antisym
metric cn solutions. But just as in linear quantum mechan
the more the wave functions overlap the higher the splitti

C. Complex symmetry-breaking solutions

Our treatment is identical to that of the repulsive ca
@13#. By the same arguments used there, all intrinsica
complex solutions to Eq.~1! may be written as a sum ove
standard elliptic integrals by the use of appropriate Cay
transformations@18#.

Writing the wave function as

f ~ x̃!5r ~ x̃!eıf( x̃), ~32!

one may divide the NLSE into real and imaginary parts:

~S8!2522F 1

l2
S31

2m̃

l2
S22bS12a2G , ~33!

f85
a

S
, ~34!

wherea andb are undetermined constants of integration a
S[r ( x̃)2 is the single-particle densityu f ( x̃)u2.

From substituting Eq.~32! into Eqs. ~17! and ~18!, and
again taking real and imaginary parts, four boundary con
tions are obtained, the important one being phase quan
tion

f~1!2f~0!52pn, ~35!

wheren is an integer which we will call the phase quantu
number. Thus for the complex solutions, Eqs.~33! and ~34!
replace the NLSE as the equations to solve, together w
four boundary conditions, of which phase quantization is
most important, and the normalization@Eq. ~2!#.

In Secs. III B 1 and III B 2, we showed that the re
symmetry-breaking solutions have a density proportiona
1-5
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cn2 and dn2, respectively. The former of these vanishes atj
points around the ring, while the latter is nodeless. We lo
for complex solutions which effectively interpolate betwe
these two real solution types. The motivation for such a
lution will become clear in Sec. IV B. Using our physic
intuition, we are again able to bypass the use of Cay
transformations, as we did in the repulsive case.

We remind the reader of the Jacobian elliptic functi
identity:

cn2~ x̃um!5
1

m
@dn2~ x̃um!2~12m!#. ~36!

We thus generalize the real symmetry-breaking soluti
@Eqs.~4! and ~22!# as follows:

r 2~ x̃!5A2@dn2~kx̃1dum!2g~12m!#. ~37!

Wheng50 the dn solution is recovered; wheng51 the cn
solution is recovered. As in the repulsive case, we tem
rarily setd50. j is to be interpreted as the number of pea
in the densityr ( x̃)2. We will consider the case of generald,
and thus degeneracy, later.

Using the solution methods as outlined in the repuls
case@13#, k is set to 2jK (m) in order to satisfy the boundar
conditions. The solution then becomes:

r 2~ x̃!5A2@dn2~2 jK ~m!x̃um!2g~12m!#. ~38!

The chemical potential and the parametersg, A2, anda
are then

m̃52 3
2 112j 2l2E~m!K~m!24 j 2~22m!l2K~m!2,

~39!

g5
2 j 22l2218E~m!K~m!

8~12m!K~m!2
, ~40!

A258 j 2l2K~m!2, ~41!

a5
1

A2
†l22

„@2118 j 2l2E~m!K~m!28 j 2~12m!

3l2K~m!2#$118 j 2l2K~m!2164j 4l4E~m!2K~m!2

216E~m!@ j 2l2K~m!14 j 4l4K~m!3#%…‡1/2. ~42!

This leaves the constant of integrationa in Eq. ~34!, the
interpolation parameterg, the prefactor to the densityA2,
and the chemical potentialm̃, determined up to the numbe
of peaksj, the scalel, and the parameterm. For a givenl
and j we then numerically integrate Eq.~34! and adjustm
until the phase is quantized on the ring, i.e. untiln is an
integer.

All parameters are monotonic inm. Furthermorem has an
extremely limited range. Because solution~38! was designed
to interpolate between the two real solution types, outside
the small splitting between the value ofm for the real cn and
dn solutions~see Sec. III A 3! there are no complex solution
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at all. We find numerically that outside of these splittingsa
becomes purely imaginary. This would invalidate the h
pothesis that the phase is real. Thus to find the comp
solutions one need only scan the values ofm betweenmcn
andmdn, so that the algorithm is quite straightforward.

If there are an odd number of peaks then there is no
solution. In this case we just consider the odd-peaked
solution for the box, and treat it as a limiting case of t
complex solutions. By symmetry of the ring,n can be either
positive or negative, so that each solution is twofold deg
erate, just as we found for the constant amplitude solutio

In Fig. 4 we show the lowest two solutions. We ha
plotted the amplitude above the phase to make it appa
that the phase is nearly constant over the peaks, and ju
sharply between them. When the troughs go to zero,
phase becomes a step function and the height of each
approachesp, which recovers cn-type solutions. As a co
sistency check, we note that all of the chemical potent
and other parameters in the complex case approached
values found in the real case asg→01 andg→12, respec-
tively. If d is generalized so that it is arbitrary, a similia
degeneracy to what was found in Eqs.~21! and ~28! is ob-
tained,

S;kB lnS 1

pA2 j l
D , ~43!

where the factor ofpA2 will be explained in Sec. IV A.

D. Spectra

We show the chemical potential spectra as a function
l22 for the four types of stationary states on the ring: re
with nodes, constant amplitude, real without nodes, and
trinsically complex. In Fig. 3 the two lowest real spectra a

FIG. 4. Two intrinsically complex, stationary, bright solito
train solutions on a ring.j is the number of peaks,n is the phase
quantum number, and all plots are for the test scale ofj/L51/25.
~a! Amplitude and~b! phase/2p of the j 53, n51 solution. ~c!
Amplitude and~d! phase/2p of the j 54, n51 solution. Note that
these solutions are twofold degenerate, as the chemical pote
depends onn2.
1-6
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shown. For comparison we have overlaid the four low
constant amplitude spectra on the same figure. In Fig. 5
show the spectra of the nodeless solutions: the three lo
for the complex ones and the five lowest for the real one

The spectra in Fig. 5 are nearly linear because they ar
the bright soliton regime. As soon as the peaks overlap
preciably these two solution types no longer become av
able. However, for the cn spectra shown in Fig. 5 both
bright soliton limit, to the far right, and the particle-on-a-rin
limits, to the far left, hold.

For the experimentally reasonable test scale ofl51/25
the ground state is the single-peaked, nodeless dn solu
The first excitation is the two-peaked antisymmetric cn so
tion, the second is the two-peaked dn solution, the third is
three-peakedn561 complex solution, the fourth is th
three-peaked dn solution, and so forth.

Since the real solutions are limiting cases of the comp
solutions, the three symmetry-breaking types scale in
same way and their energy levels do not cross, as will
further explained in Sec. IV. But the constant amplitude
lutions depend differently on the scale, so their energy lev
can cross with those of the other solutions.

IV. BOUNDS AND SYMMETRIES ON THE RING

The stationary states presented above are the boun
quantized version of bright soliton trains. Solutions on t
ring have many special properties and symmetries. We d
their bounds, degeneracies, and point-group symmetry
light of the BEC. That is, we consider the effect of changi
the scale parameterl, which corresponds to accretion o
atoms into a condensate. Experimental predictions will
made in Sec. V.

FIG. 5. Chemical potential spectra for symmetry-breakin
nodeless solutions on the ring. These solutions have no anal
with the particle-on-a-ring solutions in linear quantum mechanicj
is the number of peaks,n is the phase quantum number, andL/j is
the number of healing lengths per box length. Dashed linesj
51, 2, 3, 4, and 5 from left to right. Solid lines: (j ,n)
5(3,1), (4,1), and~5,1! from left to right. The spectra are nearl
linear, because when the peaks overlap appreciably they no lo
solve the nonlinear Schro¨dinger equation, so that they only exist
the bright soliton regime.
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A. Bounds

Box-type stationary states can have an arbitrarily la
number of nodes. But the excitation level of nodeless so
tions is limited. We set three bounds on the nodeless stat
ary states: the maximum chemical potential; the minim
and maximum phase quantum number; and the minim
scale to obtainj notches. As a consequence of these bou
there are some scales at which no nodeless solutions ex

Mathematically, the maximum number of peaks that c
fit on the ring is obtained from the lower limit on the perio
of the dn function in solution~38!. When the peaks overlap
too much they are no longer solutions to the NLSE. The
function approaches its minimum period ofp asm→01. In
this limit Eq. ~39! becomes

m̃max52 3
2 12 j 2l2p2. ~44!

In this same limit the amplitude approaches a const
which the normalization constrains to be 1. From Eqs.~34!
and~42! we find a relation between the maximum number
peaks, the phase quantum number, and the scalel:

l5
1

pA2 j max
2 28n2

. ~45!

If n50 the dn solution is recovered. Substituting Eq.~45!

into Eq. ~44! and settingn50, we find thatm̃max521.
Therefore, the chemical potential of the plane wave solut
is an upper bound for all nodeless solutions.

We can set a bound on the phase quanta simply from
parameter range mentioned in Sec. III C. Because the c
plex solutions interpolate between the cn and dn solution

0<n,
j

2
. ~46!

Note thatn is stricly less thanj /2. This is because the phas
quantum number of the cn solution is actually 0, notj /2. j /2
is the limiting case, andj can be odd, even though an od
peaked cn solution does not solve the NLSE on the ring

In Fig. 6 we plot the inverse scale at which eachj be-

,
ue

er

FIG. 6. Minimum inverse scale forj peaks to become available
The lower curve is oddj; the upper curve is evenj. Note that in
general there are many more odd solutions than even solut
available. The ordering of the solutions isj 5(1,2,3,5,4,
7,9,6,11,13, . . . ).
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comes available for the maximumn within the range ofn.
For odd j this is only half a phase quantum away fromj /2,
while for evenj it is a whole phase quantum away. Thus w
expect that the oddj solutions should become available
lower inverse scales than the evenj solutions, due to the
quantization conditions

~l21!min5pA2818 j even ,
~47!

~l21!min5pA2214 j odd ,

for even or oddj, respectively. The order ofj-peaked solu-
tions turning on as a function ofl21 is then 1,2,3,5,4,
7,9,6,11,13,8, . . . . Thus for largel21 many more odd than
even solutions are available, as again may be seen in the

In Fig. 6 and in Eq.~47! it is apparent that the minimum
inverse scale for a complex solution ispA2. This means tha
the ground state for less than about 4.5 healing lengths to
box length is then50 constant solution, rather than th
single-peakedn50 dn solution. This is also the source of th
constant factor in the entropy of the nodeless solutions, E
~28! and ~43!. pA2 is the minimum size of a peak.

Supposing thatl21 is large there are then three regime
for small j all solution types are available; for intermediatej
even-peaked solutions are cn and go to zero, while o
peaked solutions are complex and shallow; and for largj
only cn solutions are available, so that there are no o
peaked solutions.

B. Theory of point groups

From Eq. ~1! one may consider the negative nonline
term in the NLSE as an effective potential generated by
wave function. As long as the peaks in the wave function
well separated then the self-generated troughs do not in
act. On a ring one may treat the well-separated limit a
rotationally symmetric set ofj potential wells, wherej is, as
before, the number of peaks in the magnitude of the w
function. In Fig. 7 the case forj 55 is shown.

This is in complete analogy to the quantum dynamics o
particle in a j-fold rotationally symmetric potential in two
dimensions. Such a physical situation is described by theCj
symmetry point group. The number of irreducible repres
tations of theCj group determines the degeneracy of t
solutions. Thus one may look up theCj character tables@19#

FIG. 7. Fivefold group symmetry on the ring. The dips are t
mean-field effective potential produced by the five peaks in
condensate.
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in order to find the degeneracy.
Consider the case ofj 55: from Eq.~47!, it may be seen

that there is a real,n50, dn solution and two complex solu
tions: n51 and 2. As the two complex solutions are ea
twofold degenerate, there are five solutions in all. This
identical to the theC5 character table@19#: there are one rea
solution and two doubly degenerate, intrinsically compl
solutions. The latter are essentially a linear combination
independent bright solitons with coefficients which are si
ply the appropriate group characters, as familiar to chem
in molecular orbital theory@20#.

In the limit thatl→01, i.e. that the peaks are well sep
rated, givenj peaks there arej nearly degenerate solutions.
j is even there are two real solutions, one symmetric and
antisymmetric, and (j 22)/2 complex solutions, each two
fold degenerate. The splitting is given by Eq.~31!. If j is odd
there is only one real solution, the symmetric one, andj
21)/2 complex solutions, each twofold degenerate.

An upper bound may be placed on the splitting by app
ing Eq. ~31! and keeping in mind that the odd-peaked
solution is a limiting case on the ring. For both even and o
j the ordering of the chemical potentials is as detailed in S
III D, with the antisymmetric solution being the lowest an
the other symmetry breaking solutions being higher
chemical potential asn→01. There is an additional degen
eracy due to symmetry breaking, as seen in Eqs.~21!, ~28!,
and ~43!. Thus we have shown by group theoretic consid
ations that our bright stationary state solutions to the NL
under periodic boundary conditions include all symmet
breaking eigenstates of evenly spaced peaks identical up
phase.

V. EXPERIMENTAL PREDICTIONS

A. Formation of the ground state

The symmetry of the ground state of the NLSE on a ri
is scale dependent. Forl21,A2p the ground state is a con
stant; forl21.A2p it is single peaked, symmetry breakin
and nodeless. The width of this peak is aboutA2pl. Recall-
ing the definition ofl, for fixed L, i.e. a fixed trap size, we
may consider the symmetry breaking as a function of eit
particle number or scattering length. The former case co
sponds to the experimental situation of adiabatic accretio
particles in quasi-one-dimension. The latter correspond
the tuning of a scattering length, by a Feshbach resona
@21# or other means.

Thus one expects under adiabatic growth of the cond
sate to observe the density of the attractive BEC, as a fu
tion of the number of atoms trapped, to be constant, the
peak in the middle, thereby breaking symmetry, and fina
to disappear from view as the width of the peak becomes
than the wavelength of the imaging radiation. In Fig. 8 w
show this sequence of events in four stages superimpose
each other. Under box boundary conditions one expec
similar occurrence. Although the ground state is not a c
stant, it is quite broad forl21;1. As l21 increases, the
ground state becomes steadily sharper, until it is no lon
visible under the imaging radiation.

e
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Though it has been shown that the NLSE models the B
quite well in the repulsive case, it has been unclear as to
well it models the physics of the attractive case. There h
been relatively few experiments with attractive interactio
and analysis of the NLSE in a three-dimensional trapp
condensate suggested a small upper limit on the numbe
atoms that can be maintained in a stable condensate@1–3,6#.

We predict that in quasi-one-dimension, i.e., for tran
verse dimensions on the order ofj, a slow enough accretion
of particles to the attractive condensate will have the
quence shown in Fig. 8 for the ring and a similar seque
for the box. An experiment looking for such a change in t
shape of the ground state could answer two question
once: whether there are bright solitons and whether
NLSE is a useful model for the attractive BEC. If it can b
shown that the NLSE models the attractive BEC in qua
one-dimension, then there are a plethora of rich phenom
in fiber optics which could have a direct analogue in t
BEC.

B. Modulational instability

For l21,A2p we have shown that the constant soluti
is the ground state. We have discussed the case of adia
changes in the particle number or the scattering length.
us now considernonadiabaticchanges.

We first note that the depth of the dn solutions is high
scale dependent. We solve Eq.~24! in the limit asm→01

for l21:

l215A2p j . ~48!

For eachj P$1,2,3, . . . % there is a scale for which the rea
j-peaked dn solution is in fact a constant. Near these sc
the dn has shallow modulations. Midway between th
scales it is exponentially close to zero between the peak
Fig. 9 we plot such a sequence for thej 55 solution. The
four plots of the wave function maintain the same pha
quantum number,n50, yet vary greatly in depth with only a
small fluctuation of scale. This extreme sensitivity in t
form of the solutions to an external parameter, herel21, is

FIG. 8. Adiabiatic formation of the ground state on a ring: t
onset of symmetry breaking. From the broadest to the thinnes
lution the scales areL/j5pA2, 5, 10, and 25. The respectiv

chemical potentials arem̃521, 21.852, 26.250, and239.025.
In a box the formation is similar, except that at the broadest sc
the ground state goes smoothly to zero rather than being cons
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akin to the modulational instability found in fiber optics,
which a continuous wave laser picks up highly variable si
bands in response to small changes in the power@8#.

If the scattering length is positive then the BEC is rep
sive, and the ground state on a ring is the constant solut
Using a Feshbach resonance the scattering length ma
tuned rapidly negative. In the case of23Na the condensate
was experimentally observed to disappear from view wh
the scattering length becomes negative@22,23#, with various
explanations based on atomic recombination mechani
@24–26#. In the case of85Rb the condensate shrank to belo
the resolution limit and then emitted a burst of high-ener
atoms@27#.

We have shown here that the stationary NLSE provide
mechanism for the apparent destruction of the conden
even in the absence of recombination, at least in
quasi-1D approximation. For a fast transition in the scatt
ing length we expect the constant solution, in response
noise, to be able to easily shift to a many-peaked soli
solution without having to change phase quantum numbe
may even be possible to control the form of this transition
using intentional noise to induce the desiredj-peaked soliton
train solution. Induced modulation has proven quite usefu
fiber optics, as for example in the creation of a new kind
laser@8#.

VI. CONCLUSION

We have presented a complete set of stationary solut
to the nonlinear Schro¨dinger equation under periodic an
box boundary conditions in one dimension for the case
attractive nonlinearity. In a box all solutions may be taken
be real. On a ring there are four solution types: const
amplitude solutions which are plane waves; real symme

o-

es
nt.

FIG. 9. Modulational instability: fluctuations in particle numb
lead to symmetry-breaking solutions of radically varying depth.
four plots are forj 55 peaked dn solutions, with scale varied fro
the minimal number of healing lengths needed to obtain a fi
peaked solution to just over the minimal number needed to obta

six-peaked solution:~a! L/j55pA2, m̃521.0000; ~b! L/j

55pA211022, m̃521.0028;~c! L/j525, m̃521.4657; and~d!

L/j56pA211023, m̃521.0001.
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breaking solutions with nodes; real nodeless symme
breaking solutions; and a class of complex, symme
breaking, nodeless solutions. All symmetry-breaki
stationary states on the ring are described by the theor
point symmetry groups.

Constant amplitude solutions and real solutions w
nodes are in one-to-one correspondence with those of
analogous particle-on-a-ring and particle-in-a-box proble
in linear quantum mechanics. Nodeless, symmetry-brea
solutions are uniquely nonlinear. Solutions of nonconst
amplitude may be treated as bright soliton trains. As
natural size of a density peak ispA2, the minimum scale
size needed to obtain nodeless solutions isL/j5pA2. As a
consequence, the form of the ground state depends onL/j,
which in the context of the BEC means that as atoms acc
the ground state on the ring breaks symmetry.

In addition to describing the properties and physi
meaning of stationary states in detail, we have made exp
et

. A

t,

J.

ht,
ia

-

e
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mental predictions specific to the BEC. The creation of
attractive BEC in the quasi-one-dimensional regime co
answer two questions at once: is the NLSE with attract
nonlinearity a good model; and can one observe solito
Thus far experiments have only been performed in the th
dimensional regime. The quasi-one-dimensional soluti
presented in this work may suggest further experime
Elsewhere we have illustrated such solutions numeric
@7#.
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