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THE WORD PROBLEM'

By WILLIAM W. BOONE
(Received April 22, 1958)

In Parts I, II and I1I the word problem for groups is shown unsolvable.
In Part IV, certain stronger results are obtained and related questions
discussed. Simplifications are made in the argument of [2].> The Turing
Machine with two tapes used in [2] has no counterpart in our present
account; thus we decrease both the number and complexity of the defin-
ing relations required of a group presentation to show it has an un-
solvable word problem.*

Introduction

RESULT a. There is exhibited a group given by a finite number of
generators and a finite number of defining relations and having an
unsolvable word problem.*

To obtain Result a we use the fact that in [20] Post has exhibited a
Thue system and shown a problem about the words of this system un-
solvable (our Lemma 1 below), but a detailed knowledge of [20] is not
required of the reader. In all other respects the argument is self-

1 Prepared at Oxford University, Miinster University, and the University of Manchester
under a John Simon Guggenheim Memorial Fellowship. This research was supported
earlier by the Institute for Advanced Study, National Science Foundation contract G-
1974, and the U. S. Educational Foundation in Norway.

2 Numbers in square brackets [ | refer to the references given at the end of this paper.

% In |1] and [2], Parts I-IV, a generalization of the word problem, called the quasi-
Magnus problem (Can an element be written in terms of positive powers of certain
gemnerators ?) was shown unsolvable. Parts V and VI of [2] amend the argument so as to
yield the word problem result. (The pertinent portions of the revised text of [2] are
Parts 1, II, Diagrams ¢ and ¥ occurring on page 256 of Part III, Parts V and VI). Below
we relate |1] and [2] to the present article.

We have proceeded independently of [19] and Novikov’s argument is unfortunately
still essentially unknown to us. In [14] Markov vouches for the essential correctness of
Novikov's proof, describing it as based on [24]. A translation of [19] by K. A. Hirsch
is to appear in the American Mathematical Society series. Through J. L.. Britton we do
know that Novikov uses a certain result of Malcev used by us and that the symmetric
argument of [2], Part V. but having no counterpart in the present account, corresponds
to a technique of Novikov. At the British Mathematical Colloquium, Nottingham, Sep-
tember 1957, Britton announced a new proof of the unsolvability of the word problem
based to some extent on Novikov’s proof. (Added in proof. Cf. footnote 47, page 263.)

+ The concept of an unsolvable problem is discussed near the end of this Introduction.
Here in the Introduction a kind of general knowledge of the subject matter is assumed;
terms are used which are systematically defined later in the paper.
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208 WILLIAM W. BOONE

contained and consists only of a primitive kind of combinatorial reason-
ing about how words can cancel. Our hope is that this demonstration
(pp. 213-249 below) is presented in such a way that each lemma and
auxiliary theorem follows from the earlier ones almost as a triviality.

The argument is made somewhat longer and considerably more abstract
than necessary because these combinatorial results are shown for finite
presentations of groups in general rather than for certain specific presen-
tations; but this generality seems desirable from several points of view
— in particular, it tends to lay bare the motivation.

It will also be shown that in the argument of Result a the Thue system
of [20] can easily be replaced by an arbitrary Thue system with unsolva-
ble word problem. In the terminology of Post, Result b asserts that for
any Thue system, ¥, we can explicitly display, in terms of ¥, a finite
presentation of a group, ®(¥), such that the word problem for ¥ is
reducible to that for ¢(%).°

RESULT b. There is explicitly given a recursive mapping, ¢, from
the set of Thue systems into the set of presentations of groups. The
generators and defining relations of P(T) are explicitly given in
terms of those of T. The equality of the arbitrary words A and B in the
Thue system ¥ is equivalent to the equality of certain words — explicit-
ly specified in terms of A and B—1in the group presentation ¢(¥).
Thus if T has an unsolvable word problem so also has ¢(Z).

In [10] Magnus has shown that any finite presentation of a group con-
sisting of one non-trivial defining relation has a solvable word problem.
The presentation of Result a with an unsolvable word problem has a
fantastic number of defining relations, the number being closely connected
with the number of operations of a Universal Turing Machine (see [23]
or [9]). Natural questions to ask are these: What is the smallest number
of defining relations which a finite presentation of a group with unsolvable
word problem can have? How long and how ‘‘complicated’” must these
relations be? What form may they take? It is known, for example, that
finite presentations of Abelian groups have solvable word problems; the
number of generators needed for unsolvability is settled by the theorem
of Higman, Neumann, and Neumann in [8]— or see [18]— that any de-
numerably generated group can be (recursively) embedded in a group on
two generators and the same number of defining relations as the given
group. The following result gives a program for producing, from Thue
systems, manageable finite presentations of groups having unsolvable

5 With the Vstui;;a;tion of explicitness dropped, Result b would follow directly from Result
a — noting the Universal Turing Machine concept of [23] or [9].
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word problems."

RESULT c. Letg, g, --+,gyand A,=B,, A, =B,, ---, Ay =B, be the
generators and defining relations of an arbitrary Thue system I. Let
P be any fixed word of T. Then Tp 1s the finite presentation of a group
depending on T and P described as follows:

The N + 9 generators of Tp:
91y 9oy =y 9Ny 4, tly tzr k! a, by c, d,@
The 6N + M + 13 non-trivial defining relations of Tp:

gA, = d'e'ac’'d’'qBp'c'ae’t’, j =1,2, -, M
a9; = 94
ag; = g | .
cg, =g [T 1,2, ---, N, here and below
eg; = g€
gid — d‘"”ad’”“gi bgi — gibM*‘ab“’“
t.a = at, ak = ka
tuc = Ctu o 1 2 bk - kb
tud =dt, [T ck = ke
t.e =et, ek = ke

tgPkP- g 't = t,qPkP'q 't
For any word W of T, W equals P in T if and only if
tWEW-t1 equals t,WEW't;!

in Tp. Thus if it 1s recursively unsolvable to determine for an arbi-
trary word W of T whether or not W equals P in ¥, then the word problem
for Tp 1s unsolvable.

In [12] (or see [15], the review by Mostowski) Markov displayed a Thue
system with thirty-three defining relations and an unsolvable word prob-
lem. A considerable improvement has been announced by Dana Scott
in [22] assuming the unsolvability of the word problem for groups, i.e.,
Result a. While Scott does not assert this, it is easy to verify, using the
ideas of Markov |12], that Scott has exhibited a Thue system ¥ with
seven defining relations such that for a certain fixed word P of this system
it is recursively unsolvable to determine for an arbitrary word W of ¥
whether or not W equals P in 2. As pointed out by Hall in [7], every
Thue system can be (recursively) embedded in a Thue system on two
generators and the same number of defining relations as the given Thue

6 Result b can also be used in this way but the consequences are not as sharp if number
of defining relation is the primary criterion of comparsion.
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system.” It thus follows from Result ¢ (using the embedding result of
[8] noted above) that one can exhibit a finite presentation of a group
consisting of two generators and thirty-two defining relations and having
an unsolvable word problem. As a method of producing ‘‘simple’’ finite
presentations of groups with unsolvable word problems, however, Result
¢ has certain a priori undesirable features. First, more is required of the
Thue system concerned than its merely having an unsolvable word
problem. Secondly, if a Thue system, ¥, does satisfy the antecedent of
the last sentence of Result ¢ the word P may be extremely long. Indeed,
if one argues along the lines of Markov in [12] the length of P is closely
related to the number of operations of a Universal Turing Machine; in
particular, this is the situation as we verify the applicability of Result ¢
to Scott’s Thue system so that one of the thirty-two defining relations
of the group presentation referred to above is astronomical in length.

This situation can be remedied by using Theorem XI of Part IV (page
251) which relates the question of words being equal in an arbitrary Thue
system, ¥, to the question of words being equal to some fixed word, P,
in another Thue system, ¥,, which depends upon ¥. Where ¥ has N
generators and M defining relations, ¥, has 2N + 2 generators and
M + N? + 2N defining relations; the latter are short when the defining
relations of T are short, while P is only three generator occurrences
long. Thus starting with a Thue system ¥ given by N generators and
M defining relations and having an unsolvable word problem, we may
first apply Theorem XI, embed the result in a two-generator Thue sys-
tem, and then apply Result ¢, obtaining thereby a presentation of a group
with eleven generators and M + N* + 2N + 25 non-trivial defining re-
lations and having an unsolvable word problem. If T is taken to be the
two generator extension” of Scott’s Thue system, the eleven-generator,
forty-non-trivial-relation group presentation obtained can be explicitly
written down in a few minutes time. To this group presentation the two-
generator embedding result of Higman, Neumann, and Neumann [8] can,
of course, finally be applied although the resulting forty non-trivial
defining relations are then more complicatedin appearance.”

7 But since Scott’s Thue system has no defining relation of the form « non-empty word
equals the empty word one may use a more simple correspondence to so embed Scott’s
system, viz., the it® generator of Scotl’s system corresponds to abia.

8 In his dissertation [21] Michael Rabin has shown, using ideas of Markov in [13], that
a very comprehensive class of group theoretic problems are unsolvable as a consequence
of the word problem’s unsolvability. If Rabin’s construction is applied to the group given
by the forty defining relations above described, Rabin’s original result is sharpened in
the sense that the group presentations evolved can be given explicitly.
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In Section 35 an easy direct proof is given of the equivalence of Magnus’
extended word problem [10] and the (ordinary) word problem. In Section
36 we show directly the unsolvability of the word problem for the finite-
ly generated, infinitely related case, the argument being in effect an al-
ternative proof of a well known result of B. H. Neumann ([17], Theorem
13) coupled with a well-known device of William Craig [6].

In principle, throughout the article, we identify the solvability of a
problem with the existence of a Turing Machine to solve the problem,;
however, precisely what the technical definition of a Turing Machine is
need not be brought into our discussion.® The reader will find that he
follows all the arguments if he uses instead the intuitive notion of an ef-
fective procedure to solve a problem,” i.e., a uniform set of directions
which when applied to any one of the questions constituting the problem,
produces the correct answer after a finite number of steps, never at any
stage of the process leaving the user in doubt as to what to do next.

Post’s very short and elegant argument in [20] is more intimately as-
sociated with Turing Machines, depending as it does on the unsolvability
of a certain problem about some one Turing Machine.

Result a depends upon a logical equivalence called the ‘‘Main Theo-
rem.”” The demonstration of this equivalence in one direction is very
easy. In order to illustrate our point of view toward what is called a
proof as quickly as possible, this easy argument is given in Part I, prior
to the introduction of the many general ideas set forth in Part II. At the
end of Part I the overall program for showing the Main Theorem in the
non-trivial direction is stated. In Part III, then, this program is carried
out using the methods developed in Part II. The basic concept of Part
II is that of a marker (Section 8); the central argument, that of Redue-
tion D (on page 233) around which the entire demonstration has been built.
In turn, the leading idea of Reduction D is given by Diagrams &€ and &
(on page 240) so that these diagrams are the heart of the matter.

Questions about the solvability of problems do not enter at all into the
demonstration of the Main Theorem but only into its use in conjunction
with [20] to obtain Result a.

We briefly relate Result a to the arguments for the unsolvability of the
word problem in [2]. First, the finite presentation of a group considered

¥ A Turing Machine may be roughly described as the most general computing machine
possible. See [23] or [9].

0 Correspondingly, then, the word ‘‘recursive’’ would be read ‘‘effective’. It is
Church’s Thesis that every effective procedure is recursive. The same thesis is stated
by Turing in [23], directly in terms of Turing Machines.

11 The procedure need not be ‘‘practical’’.
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here is much simpler in form. Secondly, the symmetric argument of
Theorem III*, Case 2, [2], Part V, is replaced by the very simple Lemma
7 of [2], Part II. Speaking vaguely, the idea behind the change is that
the inverses of the group generators relative to which a presentation is
given can be taken as an anti-isomorphic copy of the generators. Since
in any group A~* equals B! is a consequence of A equals B, PAP-! equals
QAQ™' of AP'Q equals P'QA —and vice versa—the connection between
the old, and the new argument is seen from the well-known Tietze trans-
formation theorems. To permit the change just explained, we generalize
certain reduction processes of [2] by relativizing the notion of a word
being positive to ‘‘positive in a certain set of generators’’.”? Except for
this generalization, and our now stating matters for finite presentations
of groups in general-—rather than this or that particular presentation as
in [2]—all reductions are as given in [2].* While the argument for the
original version of each reduction is valid, mutatis mutandis, for the
generalized version, we have modified certain details and amplified the
explanation in the present account. A reduction of Malcev was stated
but not shown in [2], as Lemma 6 of Part II. We are indebted to A. H.
Clifford for the very short demonstration of this reduction given in Part
II of the present article.

Various forms of Post’s Lemma II [20] are used throughout the paper.
While cancellation semi-groups do not enter at all into the discussion, one
crucial concept is drawn from [24]: that of the two-phase Turing Machine.
The defining relation 2.10 of page 215 is a disguised form of the phase
change operation of a two-phase Machine, the ¢, and ¢, being the last rem-
nants of distinct first and second phase symbols in the sense of Turing.
As we have viewed the matter, the extension of the argument for the
unsolvability of the quasi-Magnus problem to that for the word problem
is essentially a question of adjusting a demonstration concerned with an
ordinary single-phase Turing Machine to fit a two-phase Machine.

We proceed somewhat formally with the actual argument which is cast

12 In [2] the term mormal was used instead of the perhaps-more-usual term positive.

13 Indeed, excepting only in so far as the analysis of [2], Part IV, Section 10, differs
from its. more algebraic counterpart, [2], Part VI, Section 21, these are a subset of the
reductions used for the quasi-Magnus problem in [1] and [2], but strung together now in
a different order.

Lemma 19 of [2], Section 10, contains a minor slip. (There is no error however in
the corresponding argument for the word problem.) Add ‘‘if Case 5 or 6’ to the first
sentence of Lemma 19. For the other cases of Theorem V' replace references to this
lemma by a reference to Lemma 5.1.

14 For an explanation of the relations connecting the single-phase Turing Machine, the
two-phase Machine, the quasi-Magnus problem, and the word problem see [3].
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in terms of finite presentations of groups (or semi-groups), rather than
in terms of the abstract algebraic structures themselves.?

PART I

1. Basic definitions. We assume as given a certain universe of objects
called symbols. The letter 3 is to be a variable for finite sets of symbols.
A word on B is any finite sequence of the symbols of 8. The empty word,
1, i.e., the null sequence, is not excluded. A rule over 8 is an ordered
pair of words on 3. The letter U is to be a variable for finite sets of rules
over any 8. A semt-Thue system or a substitutional system — or simply
a system — is a pair (8, 1) where U is a set of rules over 3.

In any system we use a, b, --- as variables for symbols and A, B, ---
as variables for words; the rule whose first member is A and second B is
written A — B. The word AB is the word A followed by the word B.

A proof of A/B in the system (8, 1) is a finite sequence of words on 3,
termed steps, say C,, C,, ---, C, such that

(1.1) C,is A and C, is B;

(1.2) Each C,and C,,,, v =1,2, ---,n — 1, have form PDQ and PEQ
where D — E is a rule of U for some words P and Q, possibly empty.

We use A3y B toassert that there exists a proof of A/B in the
system (3, 11). The word problem for the system (3, 1) is the problem
of determining for an arbitrary (ordered) pair of words over 3, A and
B, whether or not A5y B.

The system (3, 1) is a Thue system or a finite presentation of a semi-
group if A — B is a rule of 1 whenever B — A is a rule of 1. The Thue
system (3, 1) is a finite presentation of a group if for every symbol a of
3 there is a symbol b of 3 such that 1 — ba and ba — 1 are rules of U.

As is well-known, if the system (8, 1) is a Thue system then the re-
lation 3 is an equivalence relation on the totality of words over 8 and

15 Result a was presented on a United Kingdom lecture tour under the auspices of the
Fulbright Inter-foundation Lectureship Program in May 1957; Results b, ¢ and related
material. were announced at the British Mathematical Colloquium, Nottingham, Septem-
ber 1957. But these accounts, while dealing with the same group presentations as here,
used the old symmetric argument of [2].

For a preliminary reading of this lengthy paper we are indebted to Horst Kiesow. Our
realization that the symmetric argument of [2], Part V was unnecessary arose obliquely
out of discussions with Graham Higman regarding the theorem by him, B. H. Neumann,
and Hanna Neumann mentioned in Section 37 of Part IV. Certain suggestions of Hans
Hermes regarding the marker convention have been incorporated into Section 8.

16 The synonymous term of [1] and [2] is ‘‘formal deductive system’’. Certain obvious
changes in the notation for symbols in that account have also been made here.
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the equivalence classes defined by this relation form a semi-group'” under
the (compatible) operation of juxtaposing representatives; if (3, 1) is a
finite presentation of a group, then this semi-group of equivalence classes
is a group. The semi-group (or group) is said to be the semi-group (or
group) presented by (8, ). All this is essentially in agreement with the
usual mathematical terminology.**

Although we do not discuss the matter in detail, it should be pointed
out in passing that having a solvable word problem is correctly regarded
as a property of finitely presented semi-groups or groups rather than
their presentations in the following precise sense: if (8, 1) presents the
same semi-group (or group) as (J’, ') then the solvability of the word
problem for (3, 1) implies the solvability of the word problem for (3’, 11").*

2. Ezxhibition of the finite presentation of a group with unsolvable
word problem. We now frequently write ¥ for the system (3, 1), T’ for
the system (8',W), and ¥,,¢ =1, 2, ---, for the system (3,, I,); g, is
abbreviated ;. In connection with Thue systems we now write A <> B
for B— A, A — B. The rules of the Thue system are then specified by a
table of expressions of form A <> B called the rule couples of the sys-
tem. We say that A — B and B — A are converses of each other.

The system ¥, given below can be taken to be any Thue system having
the form stipulated. The system %,, which depends on ¥,, is a finite pre-
sentation of a group. As will be explained, for suitably chosen ¥,, e.g.,
the Thue system of Post [20] with unsolvable word problem, the word
problem is unsolvable for the resulting system T,.

izl
31t 81,8yt 8w Ay Oy 0y Ay O
U: 3, <1, 3,0, -+, 2,< T, whereeachX and1l',c=1,2, ---,
P, is of the form Aq,II, A and 1
being words on s;, 8,, ---, S, and
. being ¢,, ¢z, * -, gy, OF .

17 A semi-group is a set of objects, S, with an associated binary law of composition
defined for any ordered pair of elements of S and which is associative.

18 Various definitions for finite presentation of a group suggest themselves, but for our
purposes they are all equivalent to the one given. Defining a finite presentation of a
group to be a Thue system, such that the semi-group presented is a group, is inade-
quate, for it is a result of Markov [13] that there is no recursive method to determine
for an arbitrary Thue system whether or not it has this property.

19 Of course A —> B and B —> A are one defining relation in the usual terminology.

20 This follows from the fact that all the pairs of equal words of a presentation can be
recursively enumerated with a consequent recursive (but in general completely imprac-
tical) procedure to find the isomorphism between two presentations known to be isomor-
phic.
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3,
3,: All symbols of 3;; _
t, t, k, x, 9,1, r, t=1,2, ..., P;
Each of the above symbols with a bar superimposed.
U, Where ¢=1,2,..-,P,a=1,2, and 8=1,2, -.-, M, the rule
couples 2.1 through 2.9 are rules of U,:

2.1 X <l
2.2 spl, <> ylys, 2.6 rsg o sera
2.3 Sy <> YyYss 2.7 x8g <> sgax
2.4 t l, <> 1ty 2.8 rk<kr,
2.5 t.y o yt, 2.9 zk<okx

2.10 kgtt,q < qtit.qk

Where a is any symbol of 3, without a bar, the rules 2.11 and 2.12 are
rules of 11,:

211 aa<1

212 aa<1

3. Statement of the key theorem. The following remarks are illustrated
by the tables for &, and T,. We now assume that there are two distinct
kinds of symbols, unbarred and barred. Unbarred symbols are lightface
lower-case Latin italic letters possibly with a subscript from some well-
defined set added. A barred symbol is an unbarred symbol with a bar
added. According as a is an unbarred or barred symbol, the symbol a
is the symbol a with the bar added or removed; 1 is to be 1 and Ba is to
be aB. Thus A is well-defined for any word A. Note A is A. We now
further require of any finite presentation of a group (3, 1) that if a is a
symbol of 3 then so is a and aa <> 1 are rules of 1. We use «, 83, --- as
variables for all kinds of subscripts on symbols — the blank subscript
included. The letters A and II are to be variables for words on s,, s, =+ -, Sy;
and 3 and |' are variables for words on 3, of the form Aq,.!T, — words
which we shall call special words.

We now take the following result from Post [20].*

LEMMA 1. For a certain choice of T, it 1s recursively unsolvable to
determine for an arbitrary special word X on 8,, whether or not S+ q.

21 To the Thue system given by Post in [20] we must add the symbol ¢ and the rule
couple hgy,,h <> ¢ to obtain Lemma 1 in the form in which we have stated it. Alter-
natively, we can interpret ¢ to be the word hq, .k, for the proof of the Main Theorem
is valid if ¢ is interpreted as an arbitrary special word. This reinterpretation of notation
is actually used in the argument for Result c in Part IV.
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Main Theorem. FOR ANY CHOICE OF ¥, AND FOR ANY SPECIAL WORD X
ON 3,, 3t—,q IF AND ONLY IF t,3k3t, 1 ,t,5k>t,.

Now suppose that the word problem for ¥, were solvable when ¥, is
taken to be the Thue system of Post [20]. Then, in particular, it would
be possible to determine for any two words of the form ¢,5k>¢, and t,3kSt,
whether or not ¢,5k>¢,,t,5kSt,. From the Main Theorem, then, it would
follow immediately that the problem of determining for an arbitrary

special word = on 3, whether or not =+ ,q, would be solvable. This would
contradict Lemma 1.

Thus the Main Theorem implies the unsolvability of the word problem

for a particular finitely presented group. We now undertake its demon-
stration.

4. Some elementary results. We first review, in terms of our formal
terminology, certain familiar facts so as to illustrate our point of view
towards what we have called a ‘‘proof’’. We now often write ‘‘group
presentation’’ for ‘‘finite presentation of a group’’. For any group pres-
entation (3, 1) the sequences of rules of U, ins(AA) and del(AA) are
defined for any word A as follows. The sequence ins(11) is to be the
empty sequence of rules; ins(BaaB) is the sequence consisting of ins(BB)
followed by 1 — aa. The sequence del(AA) is the sequence obtained from
ims(AA) by replacing each rule by its converse and reversing order. Ob-
viously, and as the notation is meant to suggest, ins(AA) effects a proof
of 1/AA in any group presentation, and del(AA) of AA/1.2

LEMMA 2. For any semi-Thue system T, 1f A — B is a rule of 11, then

A+ B.
LEMMA 3. For any Thue system X :
(3.1) A1 A.

(3.2) Az B vmplies B+ A.

(3.3) Az B and B~z C implies A+ C.

(3.4) Az B and C< D implies AC—z BD.

The two-step proof A, B shows Lemma 2. The one-step proof consist-
ing of A alone shows Lemma 3.1. Reversing the steps in a given proof
of A/B, yields a proof of B/A showing Lemma 3.2. A proof of A/B fol-
lowed by a proof of B/C (with the first step omitted) is a proof of A/C
thus showing Lemma 3.8. The demonstration of Lemma 3.4 is also trivi-
al. Usually Lemma 3 is used without comment.

22 But at the moment ins(AA) and del(AA) are simply sequences of rules depending on
A with no implication that they are to be applied in a certain way intended.
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LEMMA 4. For any group presentation T:

(4.1) 13 AA.

(4.2) Az B implies A< B.

(4.3) CP—= QC implies CP—z QC.

(4.4) ABCH 4 D implies B ADC.

(4.5) APQi; PQA implies PAP—4 QAQ.

As we noted before, ins(AA) effects a proof of 1/AA in ¥ so that Lemma
4.11is clear. Assuming A+ B and using Lemmas 4.1 and 3, A, ABB,
ABB; AAB, and AABH< B. Hence Lemma 4.2 by Lemma 3.3. Lemmas
4.3, 4.4 and 4.5 are almost as trivial.®

5. Proof of the Main Theorem in the trivial direction. We use E as
a variable for words on y, y, or any [, or 1, of 3,; Q, for words on z, Z,
or any 7, or 7, of 8,. Where W is any word, |W/|, the length of W, is the
number of symbol occurrences making up W.

LEMMA 5. For any E, A, and Q:

(5.1) There is a E' such that AE,E'A;

(5.2) There is an Q' such that QA ,AQ;

(6.8) t.E-,Et, v=1,2;

(5.4) Qki—.kQ.

Clearly ssl.i—.yl.ys; and sgyt—,yyse by the rules U, ,and U, and Lemma
2. Hence splab5yl.yss and s-y+—yyss by Lemma 4.3. Thus Lemma 5.1
follows by an induction on the length of AE. Noting the rules U,; and
U,, for Lemma 5.2, the rules U, , and U,, for Lemma 5.3, the rules U,,
and U,, for Lemma 5.4, these latter results also follow by induction on
the length of the first step of the proof concerned, using Lemmas 2 and
4.3 for all of them.

THEOREM 1. If Si.q, then there are E and Q such that =+ ,Eq€.

The following lemma implies this theorem:

(I1) If 2.2 of m steps, then there are = E and Q such that >+ 22,

For n = 1, we note that X ,%. If n > 1, let X’ be the result of apply-
ing the rule I' — IV of 11, to AI'lI, so that X’ itself is AI"II. The induction
hypothesis then asserts that there exist = and Q such that = ,EAI'TIC.
By a comparison of 11, and U,, U, contains either the rule 1I'— ='I"Q’ or
the rule I” — E'I'QY for some =’ and Q' since 11, contains the rule I' — 1",
In either case I'—,="1"Q" for some E” and Q" by Lemma 4.4. Hence
S EAETYQ Q. But for some E’ and Q', AZ"—.,E"'A and

Q'"[+,11€" by Lemmas 5.1 and 5.2. This shows (I7).

23 Lemma 37, a generalization of Lemma 4.5, is shown below on page 253.
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The demonstration of the next theorem will serve to introduce certain
notations. In connection with any system H, K, V, T, and U are varia-
bles for sequences of operation rules, —the empty sequence not being ex-
cluded. The sequence KV is the sequence K followed by the sequence V.
We use H(A/B) for a proof A/B effected by means of H. The following
notation, as well as certain obvious elaborations of it, is called a diagram:

A
H
B

The above diagram stands simply for the proof H(A/B). The following
diagram stands for the proof HH'(A/C) where this proof consists of H(A/B)
followed by H'(B/C) with the last step of H(A/B) taken as the first of
H'(B/C):

A

H
B
HI

C
We must always, of course, specify in what system the proofs discussed
occur. We may write ‘“the proof H’’ for ‘“ H(A/B)’’ if no confusion can
arise.

THEOREM II. If S+,EqQ for some E and Q, then t,Sk3t,t,3k3t,.
Suppose given an H(Z/EqQ) in ¥, for some E and Q. By Lemma 3.2

there is an H'(EqQ/S) in T,. Further by Lemmas 5.3 and 3.2 there are
proofs V(t,E/Et,) and V(Et,/t,E) in T,; by Lemmas 5.4 and 3.2 there are
proofs K(Qk/kQ) and K'(kQ/Qk) in ,. Hence by Lemma 4.2 there are
4.1, Q0,1 and 1,00, effected by means of del(QQ) and ins(QQ) re-
spectively. In view of U, ., Lemmas 2 and 4.5, there is a U(thlcaﬂ/uqkﬁﬂ)
in ¥,. Containing the proofs just described, the following diagram (which
continues on the next page) then gives a proof of ¢,5k3f,/t,Sk3t, in Ty

t Skt

HH
t EqQkQqEL,

K del(QQ)
t,.EqkqEt,

V.V,

Et.gkqt,=
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U
Et.qkqt,= ]

V.V,
t,=qkq=t, ‘

ns(QQ) K'
t.EqQkQgEL,

H'H'

t,2kSt,
6. Program for showing the Main Theorem in the non-trivial direc-
tion. We first stipulate three additional group presentations.

T

3s: All symbols of 3..
1l,: All the operation rules of 11, except that each rule couple ak <> ka
of 11, ,and U,, is replaced by ak <> k and U, ,, is replaced by t.9k < t.qk.

T

3, All symbols of 3.
,: All the operation rules of U, except that each rule couple ¢,a < at,
of 11, , and 11, is replaced by t.a <> t, and t,qk <> t.qk is excluded.

T

<5

3,: All symbols of 3, except k, k, ¢, t,v=1,2. N
11,: All rules of 11, not containing occurrences of k, k, t,, t,, v = 1, 2.

Now let A—,B, 1=1,2, ---5, mean A—,B with no occurrences of
d, qi, +++,qy in any step. Then the plan of the argument is to show that
the first statement in each brace implies the second:

t Skt o t.2 k3, |
. . }-THEOREM 111

t,2k2t —  t 2kt ?
j-THEOREM v

t 2k g t.2k )
(THEOREM \%

t 2kt btk

}THEOREM VI

Y- ,EqQ for some E and O

SEqQ )
ITHEOREM VII

IEN=1i10)

}THEOREM VIII

S EqQ

}THEOREM IX

X.q
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It will be seen later in Part III that Theorems IV, VI, and IX have
obvious demonstrations. (We shall use ¥, in showing Theorem VI.) Theo-
rems III, V, VII, and VIII are non-trivial; to handle these matters we
turn to the development of general methods.

ParT II

Roughly speaking, the general results developed in Part II for group
presentations of a certain form show that applications of the rules 1 <= aa
are useless under certain circumstances; thus our reduction processes are
irrelevant modifications in the sense of Post. A particular technique used
is to consider mappings of sequences of operation rules of a given group
presentation into the words of a free group. For the most part the reader
may ignore the specific structure of the earlier systems ¥, -+, T, in
studying the theorems demonstrated in Part II but for purposes of
illustration, we do relate here in PartII, rather than later, certain of
the definitions given to the systems of Part I.

7. Certain definitions. In connection with the arbitrary system T we
make the following definitions, letting 3’ be any subset of the symbols of
3. Any symbol of 3’ is a B'-symbol. A word containing no occurrences
of 3'-symbols is 8'-free. Any rule A— B of UI, A and B 3'-free, is 3'-free.
A proof in which all steps are 3'-free (and consequently using only 3'-
free rules) is 3'-free.

We now use g, p, --- as variables for lightface lower-case Latin italic
letters, i.e., as variables to be replaced by such letters as %, ¢, q, and s
in the applications of the general theorems of Part II. For each g the
symbols g., gg, - -+, g, of 3 make up the unbarred letter set g; the symbols
Jay Yp, *++, G, 0f 3 the barred letter set g. (Either g or g may be vacuous.)
Clearly any symbol of 3 belongs to exactly one letter set.” The set g is
the union of the sets g and g; §. is a variable replaceable by gu., 7.. The
rules 1 — 9,9, and 1 — g.g, are g-imsertion rules — right and left re-
spectively; their converses are right and left g-deletion rules. Any inser-
tion or deletion rule is trivial. Thus the t-symbols of 3, are ¢,, t,, and
the k-symbols are k, k. ‘The rule s;5,— 1 is a right s-deletion rule of 11,.
A rule of 11, or U, is k-free.

8. The marker convention. We now take the following point of view.
The symbol occurrences making up a step of any proof under considera-

o~

tion and in the arbitrary system T are a row of physical objects called

2t While these definitions depend on the accidental form of notation, it is convenient
to put matters in this way. In general we use barred letters only in connection with
finite presentations of groups.
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markers.”® The application of the rule A — B of U to step C;, of form
PAQ, to obtain step C,.,, of form PBQ, is the operation O of replacing
the row of markers A in C, by a new row of markers which spell out
B and which do not occur in any step prior to C,.,. The row of the mark-
ers making up P in C, are not affected by O and thus occur undisturbed
in C..,. The same is true for the markers making up Q in C,. We call
this point of view the basic convention and, subject to an emendation to
be given in a moment, it is always to be taken. So as to have nota-
tions which depend upon O, the four rows of markers C,, C,.,, A in C,,
and B in C,., will be respectively called [O, the premiss of O; O], the
conclusion of O; {0, the argument of O; and O}, the value of O. As is
convenient, we modify the basic convention by stipulating that if O is
the application of any one of a certain specified set of non-trivial rules
then not all the markers in {O are removed from the proof by O and so
continue to occur in O}.

This is done by giving a proviso called a g-qualification for each non-
vacuous unbarred letter set g of 3 in the following way. First we
designate some set of rules of U each of which is of the form

(89) Mg.D — Eg,F, M, D, E, F g-free

as g-shift rules. Secondly, we amend the basic convention thus: If O is
the application of a g-shift rule then the occurrence of the g-symbol in
O} is the same marker as the occurrence of the g-symbol in {O.*

A particular marker convention, i.e., a precise declaration of what con-
vention is to apply to some proof being analyzed, is completely determined
by specifying the g-shifts for every non-vacuous unbarred letter set g of
3. In the null g-qualification no rules are called g-shift rules; in the
universal g-qualification every rule of form 8¢ is called a g-shift rule.
Note that a rule may be both a g-shift rule and a p-shift rule where g
and p are different non-vacuous letter sets; this cannot lead to a contra-
diction of our physical interpretation, however, since g and p are disjoint.

In connection with proofs in T, ---, T, we always enforce the basic
convention along with the universal k-qualification, universal t-qualifi-
cation, universal g-qualification and the s-qualification wherein the rules
of U,,, U,,, U, and U,, are designated s-shifts. For all other unbarred
letter sets the qualifications are null. It should be clear to the reader

25 Cf. [2], Part I, p. 235. At the end of this section these physical definitions are re-
placed by formal ones.

26 In other words, we regard a g-shift, in so far as it affects §-markers, as the oper-
ation of merely changing the subscript on a g-marker.
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that the universal k-qualification is a natural point of view to demonstrate
Theorem III, the universal t-qualification to dethonstrate Theorem V, and
the universal g-qualification to demonstrate Theorem VII.

In any system under any marker convention, then, a particular marker
has at most one occurrence in any step, and the steps in which it occurs
are consecutive; the marker carries a bar either in every such step or in
none, — and is called accordingly a barred or unbarred marker. All oc-
currences of a barred marker are occurrences of the same barred symbol;
if this symbol is a g-symbol the marker is a g-marker. All occurrences
of an unbarred marker are occurrences of unbarred symbols belonging
to the same letter set; if these symbols are g-symbols the marker is a
g-marker. Both g- and g-markers are §-markers.

We shall say that a marker which occurs in {O but not in O} leaves the
proof via O; in O}, but not in {0, that it enters the proof via 0. If [0
is P{0OQ, then O occurs, or is performed, right of P or any marker in P.
If a marker occurs in {O, O is said to be performed on that marker.

Terms defined for rules will be used for an operation if applicable to
the rule applied by the operation; e.g., we call an operation a g-shift or
a g-insertion.

To implement the marker convention we shall use non-negative integers
as first superscripts on symbol occurrences making up a proof. A par-
ticular marker is to have the same superscript at all occurrences. Dis-
tinet markers carry distinet superseripts except thata barred and unbarred
marker which enter the proof via the same insertion are assigned the
same superscript. We use g* and 3* respectively to denote the g-marker
and g-marker assigned 4 as superscript; but frequently g instead of g*is
used where « is the subscript carried by g* at all occurrences. The nota-
tion ' is a variable for g* and g'. Our notation for a marker occurrence
is the obvious one: the corresponding symbol occurrence plus the super-
script carried by the marker.

Markers entering the proof via left insertions are called left markers;
via right insertions, right markers. The addition of L or R as a second
superscript to a marker indicates its being left or right. But notations
for markers with only a single superseript, e.g., af, gi, are meant to be
ambiguous in that the marker concerned may have entered the proof via
a left or right insertiun, may have entered the proof via a non-trivial
operation, or may have occurred in the first step of the proof.

A g'-shift is a g-shift such that g* occurs in the argument and value
thereof. It is convenient to write ins(O}) for O where O is an insertion,
i.e., ins(gi*gL?) is that application of the rule 1—»g.g. via which g} and
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J, enter the proof, Similarly, we write del({O) for O where O is a dele-
tion, i.e., del(glgt) is that application of g.g,—1 via which g} and gt
leave the proof.

A logically complete notation and terminology would now distinguish
between words as symbol sequences and sequences of operation rules on
the one hand, and words as marker sequences (i.e., as part of a step of
a proof) and sequences of applications of rules (i.e., operation sequences)
on the other. For brevity, however, we do not always make this distine-
tion. We use A, A, --- for words in both senses and H, ---, ins(AA),
del (AA) for operation sequences as well as rule sequences. Either the
distinction will be non-essential, or the sense intended made clear con-
textually, — frequently by use of the words ‘‘operation sequence H'’
or ‘““step C’’. As is convenient, in the notation ‘“ H(A/B)’’ the H is now
always to mean the operation sequence H.

Lastly, it seems best to point out that our physical definition of
“marker’’ and related definitions can be replaced by quite formal ones.
A marker convention, C, for the system X is a collection of pairs (g, U,), g
any non-vacuous unbarred letter set of 3, II, any subset of the rules of
U of form 8g, exactly one pair of form (g, 11,) being in C for each non-
vacuous g of 8. The rules of U, are g-shifts (of C).

Let (%, k) be the ¢ symbol occurrence of the k™ step of some given
proof of . Then the relation ~, is to be the narrowest equivalence re-
lation on the symbol occurrences of this given proof, satisfying the fol-
lowing conditions, where the k + 1* step of form PBQ results from the
k* step of form PAQ by an application of A — B: '

(IPA| + j, k) ~(IPB| + 5, k + 1), 1=5=1Q]
(IPM| + 1, k) ~¢(|PE| 4+ 1,k + 1) where A — B is the g-shift 8g of C.

A marker is an equivalence class of symbol occurrences defined by ~.
An occurrence of a marker is a symbol occurrence which is a member of
the marker.”

9. Application of a result of Malcev. Where k is k or k according as
§*is g* or g*, we now use H*D for the sub-sequence of operations of the

" operation sequence H which are performed left of the marker §*, H (GO
the sub-sequence performed right.

% It has been pointed out to us by Hermes that with the point of view just given rules
of the form A - A must be discarded from systems considered. This of course causes
no difficulty.
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LEMMA 6*.* For any H(AJ*C/DJ*E) in any T such that no operation of
H is applied to §*, H®W(A/D) and HEOHE(AGC/DIE) are valid
proofs in X.

The lemma is obvious by an induction on the number of operations of
H. Lemma 6 is implicit in our later use of diagrams like that used in
Section 5 of Part 1.

T is g-positive means every non-trivial rule of 1 is g-free.

The essential property of g-positive group presentations is this: for any
proof in these systems, under any marker convention, g-markers enter
only via g-insertions, leave only via g-deletions; thus for each g-marker
occurring in a proof whose first and last step are g-free, there are a g-
insertion and a g-deletion via which the marker enters and leaves.

Cond,(T; g) means T is a g-positive group presentation for which
some fixed marker convention has been stipulated.

LEMMA 7. Suppose Cond(<; g). Where A and Bare g-free words, any
proof H(A/B) in T with no g-deletions has no g-insertions and is g-free.

Any g-marker occurring in H(A/B) must remain in the proof since no
g-deletions are performed and Cond,(T; g). This contradicts the fact that
B is g-free.

DEFINITION OF g-MALCEV. Where Cond(¥; g), a proof H(A/B)of T
and its operation sequence H are said to be g-normal in the sense of
Malcev, or simply g-malcev if:

(9.1) A and B are g-free;

(9.2) For each operation, O, of H, [O is of form D{OE where D contains
no right g-markers and E contains no left g-markers;

(9.3) H contains no g-deletion of form del(g,g.") or del(g."g.).

We note that the definition just given is independent of the particular
marker convention in force, i.e., if a proof is g-malcev under one conven-
tion then it is also g-malcev under any other.

We now let M(H*, C — D) be the number of applications of the rule
C — D in the operation sequence H*.

Reduction A* (Malcev. This proof by A. H. Clifford.) Suppose

25 We frequently omit definitions, lemmas, and demonstrations of special cases which
can be obtained from those given by interchanging notions of left and right. With re-
ference to the system %,, [ and y are to be interchanged with #» and w, respectively.
Statements are marked with#* to indicate that this convention is pertinent thereto.

29 Reduction A as stated is redundant in that A2 implies that if the proof H is p-free
so also is the proof H*. This arrangement makes for ease in checking applications in
Part III where it is at only one point (Theorem VIII”’, Section 25) that A2 and the cor-
responding clauses of later reductions are needed. Inall other applications these clauses
can thus be ignored.
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Cond(T; g), Cond(T; p), and A and B are g-free words over 3. Lf there
is a p-free H(A/B) in T then there is a p-free H*(A/B) in T such that

(A1) H*(A/B) s g-malcev;

(A2) M(H*,C— D) =< M(H, C— D) forany C— D of U.

Reduction A and the lemmas used in demonstrating this theorem are
typical of many of the lemmas and theorems to follow, in which we are
given a proof H(A/B) and wish to find a proof H*(A/B) with certain
properties. We take the point of view that the desired H*(A/B) is
constructed from the pattern of markers making up H(A/B) by making
certain alterations in that array, i.e., by rearranging markers, discard-
ing markers, and adding new markers. Notation will be suggestive of
this motivating idea; the superscript notation will serve to indicate the
identification of certain markers in H*(A/B) with certain markers in
H(A/B) where such identification is intended.

We let Vi be the number of g-deletions of H* of form del(g.gi") or
del(gi"gs).

LEMMA 8*. % Suppose Cond(¥; g), Cond,(T; p)and A and Bare g-free
words over B. Lf there isa p-free H(A/B) in T containing the g-deletion
O = del(g*g.) then there is a p-free H'(A/B) in T such that

8.1 Vv, =V,—1;
(8.2) M(H',C— D) £ M(H,C— D) for any C— Dof 1.

In discussing the various diagrams used we shall use Diagram 2XX’| Y to
designate the diagram obtained by substituting Diagram 9/ for that part
of Diagram X enclosed in brackets. We abbreviate ‘‘taken to be a re-
presentation of >’ by ‘“rep’’. Weuse X'|(J|| H*(P/Q) for the proof repre-
sented by Diagram X¥'| % when Diagram X is rep H%(P/Q). All diagrams
used in Part II are at the end of Part II. In view of Lemma 6 the desired
H'(A/B) of Lemma 8 is 1| %|| H(A/B), as is clear by inspection.*

For any proof H*(A/B) of T, A and B g-free, Cond,(¥; g) we shall call
a left (right) g-marker violated if an operation of H*® occurs left (right)
of this marker, and the operation so performed is said to violate the
marker; Py is the number of violated g-markers of H*(A/B).

30 It is this lemma, not the full Reduction A, which is really essential to our argument.
In a demonstration of the unsolvability of the word problem for groups based upon that
for cancellation semi-groups Reduction A might well be used in a more fundamental way.

31 In comparing Diagrams 4 and 4|9 note two points which are essential to the argu-
ment for Lemma 8. (1) Where g¢ i8 any g-marker occurring in the proof H', g* occurs
in the proof H and is a left or right barred marker in both proofs. (2) If ge leaves
the proof H' via a left (right) g-deletion, then go leaves the proof H via a left (right)
g-deletion. Similarly, in comparing Diagrams C and |9 used in the demonstration of
Lemma 9 it is essential to the argument for that lemma to note that points 1 and 2 hold
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LEMMA 9. Suppose Cond(ZT; g), Cond(ZT; p) and A and B are g-free
words over 8. If there is a p-free H(A/B) in T such that V=0 and
containing 0° = del(g4gi?) where gt is a violated g-marker then there
1s a p-free H*(A/B) in X such that

9.1) V¥ =0;

9.2) Py =P, —1;

(9.3) M(H*, C - D) = M(H’, C - D) for any C— D of U.

The desired H*(A/B) is C|9D||H(A/B). The p-freeness, Lemmas 9.1
and 9.3 are immediate by inspection® of Diagrams ( and (|9. The
marker g** is not violated in H*(A/B). Thus for the demonstration of
Lemma 9.2 it is sufficient® to show that (91) if g% u # k, is a violated
marker in H*(A/B) then there is an operation of H°, say O, which
violates g* wn H'(A/B).

Where g* is any violated marker of H*(A/B), we distinguish two cases
according as g* is (Case a) or is not (Case b) violated by ims(g;*gs") or
del(g.g%*) in H*(A/B). (Throughout the following argument Diagram C
is rep H°(A/B) and Diagram C|9 is rep H*(A/B)). Suppose Casea. If g“
is g** then g** occurs in F of Diagram C|9), so that the desired O, is
del(g.gt™). If g*is g**, then g* occurs in C of Diagram C|9 if violated
by ins(gt:g*), and in E of Diagram (|9 if violated by del(g.gz"); and
accordingly O°, is ins(g*g<®) or is del(g%3t"). Suppose Case b. Then g* is
violated by some operation, say OF, of the subsequence K,, KF¥, KX,
or K, of H¥*. Since Case b, if g* is g*" then g*" does not occur in F
of Diagram C|9 and if g* is 3** then g** does not occur in C or E of this
diagram. But a left barred marker occurring in C of Diagram (|9 cannot
be violated by an operation of K$®, and a right barred marker occurring
in F of this diagram cannot be violated by an operation of K9, Thus
g* and O are a marker occurring and operation used in some one of the
following subproofs of H*(A/B): K,(A/CD), K{¥(D[F), K{*(Cgi*[Eg.),
K,(EF/B). It is immediate then by inspection of Diagram C that the

with H* and HD substituted for A’ and H respectively. In later constructions of a de-
sired proof from a given proof, the correspondents of points 1 and 2 will not hold in
general. (We are indebted to the referee for pointing out the necessity of the foregoing
remarks which were added at his suggestion.)

If K is an operation sequence specified in one of the given diagrams, markers occur-
ring in that portion of [K (of K]) not underscored (not overscored) also occur in K] (in
[K), i.e., are markers which we know—perhaps as a result of the fact that a proof is g-
malcev for some g—are not affected by the operations of K. In a diagram obtained by
substitution these under- and over-scorings are not always correctly placed. (These
scorings were suggested for [1] by Roger Lyndon).
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operation O} also violates g* in H%(A/B), i.e., O itself is the desired O..
This shows (91), hence Lemma 9.

Suppose that we are given an H(A/B) in ¥ as described in Reduction
A. Then by induction on V, and using Lemma 8 there is a p-free H°(A/B)
in ¥ such that V§ = 0 and M(H°, C — D) < M(H, C — D) for all C - D of
U. The existence of a p-free H*(A/B) in T such that Al and A2 now
follow by induction on P) using Lemma 9*.

10. The relative positions maintained by certain markers; definition
of g-stability. We first shall make precise the concept of non-
commutability of markers.

DEFINITION OF g &® p. For any ¥ with any marker convention, g ® p
(tn ¥) means U has no g-shift p-shift rules of this form or its converse:

(10gp) Ag.BpsC — Dp,Eg;F .

Eg,g9®ping, -.-, T, where g and p are any unbarred letter sets of
those systems. Note that for any £ and g under any marker convention
g & g in T,— as is clear directly from the definition of a g-shift.

Cond(¥; g, p) means Cond(T; g), Cond,(T; p), g and p are
disjoint, and g ® p in T

DEFINITION” OF g* < p*. For any proof in any system, §* < p° in step
C means that both §* and p" occur in C with §* occurring left of p°.

Note that both Cond, and & depend upon the marker convention in
force.

LEmMMA 10. Suppose either (i) g° is g or (i) g ® pin . Then for any
proof in T there do not exist steps C, and C, such that §° < p* in C, and
p' < §°in C,.

Clearly a counterexample to this lemma would mean that in some proof
of ¥ there is used an operation O such that §* < »*in [0 and p* < §* in
O] for certain markers §* and p’. But such an O much be of form 10gp.

DEFINITION OF g-STABLE. For any £ under any marker convention the
g-shifts, g-insertions, g-deletions, and §-free rules of Ul are called g-
stable. A proof with only g-stable operations is g-stable; if every rule
of U is g-stable then ¥ itself is called g-stable.

Note that a rule’s being g-stable depends on the marker convention in
force. The essential property of g-stable proofs is this: g-markers enter
only by g-insertions and leave only by g-deletions. (Cf., proofsin g-
positive group presentations).

32 g% L PY or a* < bv are variations of this notation with the obvious meaning.
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Cond(Z; g) means Cond (T; g) and < is g-stable.

Note that Cond,(<; g) determines the form of the rules of 1 in that
every non-trivial rule of 1 not §-free must be of form 8g. Moreover,
Cond,(T; g) implies that the universal g-qualification applies.

LEMMA 11. Suppose Cond,(Z; g). Any g-free g-stable proof H(A/B)
in T has 1n each step the same g-markers, viz., those occurring in the
first step.

Obvious; since no g-markers enter or leave the proof H(A/B).

We now show two easy consequences of Lemma 10, namely, Lemmas
12 and 13.

LEMMA 12. Suppose Cond(Z; g). In any g-stable K(gjE/Fgl) of T
containing no g-deletions, g’ is the right-most §-marker occurring in
each step. Thus E is g-free and mo g-imsertions of K are performed
right of g’.

Suppose that for some §°, s # j, (i) g’ < ¢° in C, some step of the
proof K of the lemma. Since the proof K contains no g-deletions and is
g-stable, §° must also occur in C’, any step following C. But g & g, so
that, by Lemma 10, not §° < g’ in C'. Hence i in C’. But in fact not i
in FgJ, i.e., in the last step of the proof K, so that not i in any step C,
as the lemma asserts.

Cond (T; g, p) means (10.1) Cond,(<; p)
(10.2) Cond(Z; g, p)
(10.3) Any rule of U which is not a
p-shift is g-stable.

If Cond(Z; g, p), then the essential property of proofs in T is this: g-
markers enter only by g-insertions and p-shifts and leave only by g-dele-
tions and p-shifts. It should be noted that if 8 contains no p-symbols
then Cond(Z; g, p) means simply Cond(Z; g) and that Cond(T; g) implies
10.3. Clearly Cond(Z,; k), Cond(Z;;g), 1=8,4,5, g=k,t,q. Thus
Cond (Ty; t, k), Cond(Zy; s, q) as is pertinent to Theorems V and VIIL.

LEMMA 13. Suppose Cond (¥; g, p). Any p-free K(giE/Fgl) of T is
both p-free and g-stable.

By Lemma 11 each step of the proof K contains the same p-markers.
The argument now parallels that for Lemma 12. Using Lemma 10 and
the fact that g ® p, no p-marker ever appears right of g’ since none ap-
pears right of g’ in the last step; none ever appears left of g’ since none
appears left of g7 in the first. Thus the proof K is p-free. Being p-free,
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hence having no p-shifts, the proof K is g-stable by 10.3 of the defini-
tion of Cond,.

11. Tabulation of the kinds of first-occurring g-deletions possible.
For any  and g such that Cond,(T; g) we now let O be the first g-dele-
tion of H*.

LEMMA 14. Suppose Cond(Z; g, p) and let H(A/B) be any g-malcev
p-free proof of T containing g-deletions.

(14.1) The following are the six exclusive and exhaustive possibilities
for {0,. Here 3. is the g-marker leaving the proof via O,. In cases 59
and 6g, g* is a g-marker which has entered the proof via some p-
shift.

1g. gitgld, i #3J 3g9. Glgl, 1+
2g9. girgl 4g. gitgy
5g9. gugs 6g. g.'gs

(14.2) If Case 1g holds then Diagram £ may be rep H(A[D) with full
generality;*

(14.3) If Cond,(Z; g) then Cases 5g and 6g are excluded.

The cases given in the second column of Lemma 14.1 are the duals of
those in the first column. It is convenient to begin by showing four pre-
liminary sublemmas, (141) to (14f11t). First, we note in general that
(141) if * O, = del(gzgi}), them not git < g* in any step of the proof H.
Since g* < gi* in [0,, (14}) is immediate by Lemma 10.* Secondly, we
show in general that (1411) if* O, = del(gzg'}), then not (i) g* < p* < g&*
for any p® in any step of the proof H. For suppose there is a step C and
marker p® such that i in C. Then p® occurs in [O,, by Lemma 11 since
the proof H is p-free and p-stable. Consequently i in [0, by Lemma 10
since p ® g. But in fact not i in [O,, so that (14ft). Thirdly, we note in
general that (14111) if * O, = del(gZg¥), then not (i) g°< g*< g** for any
4" in any step of the proof H. For suppose there is a step C and marker
§? such that ii in C. Then, by Lemma 10, since g&g, ii also holds in any
step following C and preceding O,] in which §? occurs. Suppose there is
an operation, O, preceding O,, via which 4 leaves the proof. By the
definition of O,, O is not a g-deletion so that by 10.3 of the definition of
Cond,, O is a p-shift. But since i in [O, O is a p-shift applied between g~
and 7** thus contradicting (1411). Thus there is no such O and g¥ occurs
in [0,. Consequently ii in [0,. But in fact not ii in [O,, so that (1417T).

3 If H is g-stable then D of Diagram & contains the marker gi® when that diagram is
rep the proof H.
34 Alternatively by the fact that the proof H is g-malcev.
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Fourthly, we note in general that (14111f) ¢f* O, = del(g%g¥), then g*
does not occur in [tns(g'*g’F). For according as ins(g¥gl) is performed
left or right of g% so either gi* < g® or g° < g'* < gi¥ in ins(giFgFr)],
thus contradicting either (14t) or (14t17).

We now show Lemma 14.1. Again recall the essential property of
proofs in ¥ where Cond,(<¥; g, p). Suppose O,=del(gi*gl), i+j. If
ms(glfgl?) follows ins(gifgl®) then either (14111) or (141) is contradict-
ed according as 1ns(g:¥giF) is performed left or right of g&X. This shows
O,#del(gfgy), © # 5. By (141111), O, # del(glgy), where g’ occurs in
the first step of the proof H. Clearly O,+del(gig:) since H is g-malcev.
The arguments* that O,#del(g5gl"), i+J or del(gitgl) where g’ occurs
in the first step or del(gzg'l) are the duals of the cases excluded above.
This shows Lemma 14.1 which merely lists the combinatorially remain-
ing possibilities.

Now assume Case 1g. By (141111), ins(g+g) precedes ins(gl-gl") in H.
By (1471), ins(gitglr) is performed left of gif. Since H is g-malcev no
operations are performed right of g} or left of gi*. For these reasons
Diagram & may be rep H(A/B) with full generality. This shows Lemma
14.2,

Lemma 14.3 is trivial since if ¥ is g-stable then no g-markers enter the

proof via p-shifts.

12. Reduction process for the case wherein O, = del(gi'gL).
DEFINITION OF g-TRANSLATION RULE AND OF g‘-TRANSLATION. For any
T under any marker convention a g-shift rule of the form
(12g9) Ag,B — Cg,D
where AB is CD is called a g-translation rule; a g'-translation is an
application of a g-translation rule to the marker g°.

Reduction B. Suppose Cond,(T; g) and Cond(ZT; p). If theng is a p-
free H(A/B) in T such that O, = del(gi}gF) and the only operations of H
between ins(gifgit) and O, applied to g'* are g®-translations, then there
is a p-free H*(A/B) in T such that

(Bl) Ny =N, — L;

(B2) M(H*,C— D) £ M(H,C— D) forall C— D of U.

LetC,,n =1,2, ---, N, be the n'® step of H(A/B) and C; the result of
erasing gif and g for any A from C,. Then if O,, the n*™ operation of
H, is ins(g#g¥), a g'®-translation, or O,, C;,, is C;;; otherwise C, ., follows
from C;} by O,. But C} is C,, i.e., A; and C} is Cy, i.e., B. Thus C;, C;,
..+ C# is, with repetitious steps omitted, the desired H*(A/B).

3 But Reduction D is more general than Reduction B. Sections 13 and 14 could be
given prior to Section 12 for the notion of g-translation is not used.
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13. Interchanging the order of certain operations. In this section and
Section 14 we demonstrate a sequence of results needed to show an an-
alogue of Reduction B of the preceding section for the case wherein O, =
del(gitgit), i.e., Reduction D below.* This new and crucial case is more
involved, however. The central ideas might be described as follows. Let
Diagram & be rep a given proof falling under Case 1g of Lemma 14.1.
We wish to assert that &|F|| H(A/B) has N, — 1 g-deletions, but this as-
sertion is not in general valid since §-markers may occur in F of Diagram
& when that diagram is rep H(A/B). The argument of this present sec-
tion is that g-insertions and g’-shifts, t # 7, of K, performed left of g’
can be postponed until after O,, thus making F g-free.

As an extension of the definition of [O and O] we now use [H for the
premiss of the first operation of an operation sequence H under discussion
and H] for the conclusion of the last.

LEMMA 15.* Suppose Cond,(T; g) and Cond(T; p). If there is a p-free
K(MgE|FgiP) in T, then there is a p-free TU(Mg;E[Fg)P)in T such that

(15.1) Ewvery operation of T performed left of g’ is g-free;

(15.2) U contains neither g’-shifts nor operations right of g';

(156.3) If C — D is any rule of U other than a §-free p-free insertion
or deletion, M(TU, C — D) = M(K, C — D).

A finite sequence of proofs in ¥, ;K (Mg’,’E/ngP)}i‘Ll, for some N, will
be recursively defined. Let the first term of this sequence be the proof
K(MgiE/Fg.P)assumed in the lemma. An operation of K*, v=1, 2,---, N,
is regular if it is either a g’-shift or an operation performed right of g’;
irregular, if it is an operation performed left of g’ and is not §-free. Let
0, be the first regular operation of K~ preceded by an irregular operation
of K'. If O} does not exist K’ is K~, i.e., the sequence of proofs ter-
minates With the v proof; if 0% does exist, let O} be the last irregular
operation of K preceding 0. If O} is a g’-shift then the v + 1% proof
is G| H||K~. If O%is an operation right of g’ let K be V,0;V0, V3.
Here V' contains neither g’-shifts nor operations right of g’ by the
definition of O%. Take K *'to be V:0,0%V3V?; by Lemma 6—identifying
g’ with the " of that lemma—K>*' effects a proof of MgjE/Fg;P. It is
obvious inductively that the proof K-*' is p-free and M(K-*',C— D) =
M(K , C — D) for C— D not a g-free p-free insertion or deletion since
these are the only kind of new operations added in the passage from K,
to K**'. Clearly K~ exists. We write K~ in the form T'U where the first

36 The present arrangement of the argument seems a slight improvement over [2],
Part 11, page 496, to which it corresponds.
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operation of U is the first irregular operation of K¥. This shows the
lemma.

As will now be seen, we use only that special case of Lemma 15 wherein
the words M and P are 1 and the proof K is g-stable; in this situation the
proof K of Lemma 15 resembles — comparing first and last steps — the
proofs of Lemmags 12 and 13. The leading idea behind Lemmas 15 and 16
is that the word F’ as constructed by these lemmas, and as described in
Lemma 16, is g-free.

LEMMA 16. Suppose Cond,(T; g) and Cond,(Z; p). For any p-free g-
stable TU(gE|Fg)) in T with no g-deletions such that 15.1 and 15.2 of
Lemma 15 hold, there is a p-free g-free word on 3, ¥, such that

(16.1) T effects a g-free proof of giE[F'g; in T; the only g-marker oc-
curring in this proof is g’;

(16.2) U effects a p-free proof of F'|F in T having no g-deletions.

We suppose given a proof T'U(g;E[/Fg]) as described. Consider first the
subproof, U(T]/Fg)). Since 15.2 of Lemma 15 holds and U] is Fg;, T']
is F’g] for some word, F’, on 8 and U effects a proof of F//F in ¥. Con-
sider the subproof T'(g;E/F’g]) of the given proof T'U(gJE/Fg}). The
former is g-stable since the latter is. It is immediate that g’ is the only
g-marker occurring in T'(gJE/F’g)). For E is g-free by Lemma 12, no g-
insertion of T is performed right of ¢’ by Lemma 12, and no g-insertion
of T is performed left of g’ since 15.2 of Lemma 15 holds. (Thus, we
have made the crucial point that the word F’ is g-free.) The remaining
points to be noted for Lemma 16 are completely trivial: the p-freeness
of both T(gjE/F'g]) and U(F'[F) follows from that of the given
TU(giE[/Fg}); the proof U(F'/F) has no g-deletions since the given
TU(gE/Fg}) has none.

Reduction C. Suppose Cond (T; g, p). If thereisa p-free K(giE/Fg})
in T with no g-deletions then for a certain word on 3, F', there are in
< proofs T(gJE[F'g}) and U(F'[F) such that

(C.1) T(giE[/F'g)) is p-free and g’ is the only §-marker occurring in
this proof; thus E and ¥’ are p-free, §-free;

(C.2) U(F¥'[F) is p-free and has no g-deletions;

(C.3) If C— D is any rule of U other than a §-free p-free insertion
or deletion, M(TU, C — D) = M(K, C — D).

Suppose Cond (T; g, p) and that we are given a p-free K(g;E/Fg}) in ¥
with no g-deletions. By Lemma 13 this proof is both p-free and g-stable.
Next applying Lemma, 15 to this same proof, it follows that there is a p-
free proof in ¥, TU(g/E/Fg]) such that 15.1, 15.2, and 15.3 of Lemma 15
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hold. Since 15.3, the proof TU(g;E/Fg}) is g-stable and without g-dele-
tions since these properties hold for K(gJE/Fg}). Thus, we may apply
Lemma 16 to the proof TU(gjE/Fg}) directly obtaining Reduction C.

14. Reduction process for the case wherein O, = del(gitgiF), 1 + j.
This is the central idea of the entire paper.

Reduction D. Suppose Cond(Z; g, p). If there is a g-malcev p-free
H(A/B) in T such that O, = del(gi*giy), i + j, then there is a p-free
H~*(A/B) in T such that

(D.1) Ny =N, —1;

(D.2) M(H*, C— D) = M(H, C— D) for any C— D of U except a §-
free p-free insertion or deletion.

The following lemma is a precise statement asserting that for our pur-
poses we may assume without loss of generality that no §-markers occur
in F of Diagram & when that diagram is rep a proof whose first g-deletion
is del(glg®), v + 7.

LEMMA 17. Suppose Cond(%; g, p) and that there is an H(A/B) in I
as described in Reduction D. Then there is a p-free H(A/B) in T such
that

(17.1) 0f = del(gi'git), © # j, and Diagram & may be rep H'(A/B);

(17.2) Nj = Ng;

(17.3) When Diagram & is rep H°(A/B) the proof K(g E[Fgl) is p-
free; moreover, g’ is the only g-marker occurring in this proof so
that the words E and F are p-free g-free;

(17.4) M(H*,C— D) = M(H, C— D) for any C— D of U except a §-
Sfree p-free insertion or deletion.

By Lemma 14.2, Diagrams &€ may be rep the g-malcev p-free H(A/B) of
Reduction D. Identify the subproof K,(g/E/FgJ) then given by this dia-
gram — this proof has no g-deletions by the definition of O, —with the
proof K(gJE/Fg]) of Reduction C. Then, by Reduction C, there are
proofs T (g;E/F'g}) and U(F'/F) in T as described therein. The desired
H°(A/B) is obtained from H(A/B) by replacing K,(gE/Fg)) by
T(97E[F’'g}) and K.(FP/giG) by UK.(F'P/g;G).

LEmMMA 18. Suppose Cond (¥; g, p). Lf there isa p-free H'(A/B) satis-
Sying 17.1, 17.3 of Lemma 17, then there is a p-free H*(A/B) such that
N;=N,—1and M(H*,C— D) < M(H’, C - D) for any C - D of U
except a g-free p-free insertion or deletion.

Let Diagram & be rep the H(A/B) described. Then the words E and
F of that diagram are g-free and p-free since 17.3 of Lemma 17 holds.
The desired H*(A/B) is ¢’| || H" since the operation sequences ins(FF),
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ins(EE), del(FF), and del(EE) thus consist solely of §-free p-free inser-
tions and deletions.
Lemmas 17 and 18 imply Reduction D.

15. g-translation group presentations.

T is a g-translation means Cond,(¥; g) and every g-shift rule
group presentation of U is a g-translation.

Cond(<; g, p) means Cond(%; g, p)and T is a
g-translation group presentation.

E.g., Cond(Z,; k, p) where p is void, Cond(%;; t, k). Now Argz,B is to
mean Az B which is g-free.

Reduction E. Suppose Cond (<; g, p). Let A and B be g-free p-free
words on 8. If Az, B, then A-3,, B.

We suppose given a p-free H(A/B) of £ and show by induction on N,
that there is a p-free H'(A/B) of < such that N; = 0. If N, = 0 then of
course H(A/B) is the desired H'(A/B). Suppose N, > 0. By Reduction A
— noting the words A and B are g-free — there is a g-malcev p-free
H*(A/B) in € such that N < N,. We shall show that

(Et) 4if N > 0, then there is an H*(A/B) in T such that N < N'.
As T is g-stable an application of Lemmas 14.1 and 14.3 shows there are
four possibilities for {O¥, viz., 1g, 2g, 3g, and 4g of Lemma 14.1.

If 19 then (Ef) follows by Reduction D; if 2g then by Reduction B.
Cases 39 and 4g are the duals* of Cases 19 and 2g respectively. From
(Et) the existence of the desired H'(A/B) is clear.

Since B is g-free H'(A/B) is g-free by Lemma 7.

16. Redundant operation sequences. Where Cond (¥; g), we now use
Qv for the number of g-shifts of operation sequence H*, Qj;, for the
number of gi-shifts.

DEFINITION OF ¢'-REDUNDANT. For any ¥ under any marker convention
the operation sequence K,0,K,0,K, is called gi-redundant (in O, and
0,)—or simply redundant—if O, and O, are g’-shifts which are con-
verses of each other and K, contains no g’-shifts.

Reduction F.* Suppose Cond,(T; g) and Cond,(T; p). If there is a p-
free H(A/B) in ¥ such that H 1is g'-redundant in the p-free operations
0, and O,., then there is a p-free H°(A/B) in T such that

(F1) N = N,;

(F2) Q7 < Q;

(F8) M(H?,C— D)< M(H,C— D) for any C— D of U except a g-
free p-free insertion or deletion;
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(F4) If N,>0 and O,=del(ggi*) then OF =del(g4'g.") for a certain 1.

The desired H(A/B) is .¥| §|| H. The sequences del(PP) and del(QQ)
of H® contain no j-deletions by the definition of a g-shift and no p-dele-
tions since by hypothesis O, and O, are p-free. (Trivially, then, H°(A/B)
is p-free by Lemma7.) If N, > 0 and O, = del(g3'g.") then ns(giFgt
occurs in K, and O, in K, so that F4 is clear.

17. sig, a mapping of operation rules of a group presentation into
words of a free group. For any finite group presentation a word is
reduced if not of the form BaaC. A finite group presentation (3, 1) is
called the free group on 3 if 1l consists precisely of the trivial rules; in
this case we write (3, @) for (3, 11) and 3 for H(g,2)-

LEMMA 19. Forany free group (3, @) if Wi=3S1, then W31 without
nsertions.

We omit the demonstration of this lemma because the lemma is so well-
known; a direct demonstration by induction on the number of insertions
in a given proof is easily supplied, however, using the marker convention
and the technique of the diagrams. For the essential idea note Reduction
B of this paper and diagrams page 577 [2], Part IV.

LEMMA 20. For any free group (3, @), if W is reduced and W91
then W 1s 1.

Trivial, by the preceding lemma.

Let (3, 1) be any finite group presentation and 3’ a subset of 3 con-
taining a if a. Let O (or (Z')) be any set of reduced words over 3’ not
containing 1 and containing A if A. If a word P can be expressed in the
form A,A, -+ A,, n=1,2, -+, where each A, is a word of %, then P is
an M-product and the sequence of words, A,, A,, - -+, A, isan - factoriza-
tion of P. (An M-product may have more than one IMN-factorization.)
An M-product, P, is Mi-reduced if for any M-factorization of P, say
A, A, -+ A, no A, is A,.

The empty word also is an W-reduced Ni-product. If there is an Yt-
reduced Mi-product, P, P not 1, such that P31 we shall say, that 9,
or the set of M-products, is dependent, otherwise independent. (For in-
dependent 9, the M-factorization of any M-product is unique.)

Let I be any subset of the non-trivial rules of 1l such that A — Bisa
rule of W’ if B—A is. With regard to any proof in (3, ), a U-sequence is
any sequence of operations each of which applies a rule of 1. Let $ig (or
gig: W —— M) be any mapping of 1’ onto M satisfying the condition that
3ig(A — B) is 3ig(B — A) for all A— B of 1. Suppose the mapping $ig as
initially given is now extended to a mapping of the set of 1-sequences
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onto the set of MM-products in the following way. First, 8igO is sig(A—B)
where O is an application of A — B. Secondly, the word corresponding
to the empty sequence is 1. Thirdly, sig(KO) is 8igOsigK.

When the extension of 3ig as just described is understood we shall say
that stg is a right signature (for ' in IMM(Z’)). When we understand the
third proviso in the construction of the extension for a right signature is
replaced by the stipulation that 8ig(KO) is 8igK 8igO we call 8ig a left sig-
nature (for W im M(I)).

Now let T, ), m < m, be the operation sequence O,+1,00m+s *** Oy
and T, ., be the empty sequence of operations. Then T, ,, or T, ., is
to be any subsequence of T, ..

We shall say that 8ig, a right signature for I’ in 9¥(B'), and iv(s)ig_m,
any sequence of » — m + 1 words over 3’ form a right signature com-
plex for the W'-subsequence 7', ,, in T, ., if the following three condi-
tions are satisfied:

(17.1) Vi, is 1;

(17.2) Where O, is an operation of T4,.,, either V., is
gigO(sﬂ)V(s) or V(s) is gigO(sﬂ)V(sﬂ);

(17.3) Where Og.,) is not an operation of 7', ), Va3 V.

If in addition the following two conditions are satisfied we shall say the
complex is fatthful:

(17.4) Di(F') is an independent set;

(17.5) 8igT ¢, n is M-reduced.

To obtain the definition of left signature complex replace ‘‘right’’,
“8i0¢,41, V', and ““8ig0¢nVan'’, by ““left”, ““V(»,8190.,,’", and
“Ven81d0¢s+py”’ Tespectively.

LEMMA 21%. For an arbitrary group presentation (3,1) suppose
3ig: W' —— W(B') and ;Vm)ifZ:m form a right signature complex for the
W-subsequence Ty i Tepny. Then

(21.1) 81T n -2 Vs

(21.2) If the complex is faithful and V¢, is 1 then T, ., 1S empty.

For n = m Lemma 21.1 reads 13" 1. Assume inductively then that

(211) 81T (> Ve, m = u = m.
Suppose O, ., is an operation of T, ,.,- Then it follows from 17.2 that
Vs 81000snVan. Since T ui i Ocusny Tonn the induction step
follows from (21t). If Og,.p is not an operation of 7T, ., Timusny 18
Ty, Vs Ve by 17.3 and the induction step follows by (21%).
This shows Lemma 21.1.

As to Lemma 21.2, Qingm,ml—?’/l follows from Lemma 21.1 and the as-
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sumption that V,, is 1. But 8igT";,, ,, is an YR-product which is 2t-reduced
by 17.5 since the complex is faithful; further 8ig7",, ,, is 1 by 17.4 and
the definition of an independent set. Thus T, ,, is empty by the defini-
tion of 3ig.

We now consider certain independent set of words in the system %..
Let 3,. be the subset of 3, consisting of

the 7-symbols;
the Z-symbols.

Where r, is any r-symbol let 9%,, consist of the following words on
3., together with their inverses:
7‘&3
T W
XX
3,, and M, have the dual definitions, i.e., 3,, consists of the [- and -
symbols of 3, and 9, of all words of the form L., yl.y, yy, together with
their inverses.
Now let UI,, be the rules 1, ,, 11,,, and 1,, of 11,; 11,, the rules U, ,, 11, ,,
and U, , of U,. The right signature of 1,, onto M,,, 8ig,., is defined by
the following table with the understanding that s$ig,.(B—A) is sig,.(A—B).

A—>B 3ig,.(A — B).
S = llr, Ty

YaSp —> SpUT ¥ Y

XSp —> SpiLk xx

The left signature of 1,, on YN, %ig,, has the dual definition, i.e.,
810, (2 — 1,070) 18 La, 3i8i(sele — Ylayse) is Ylay, Sigu(ssy — yysg) is yy and
8ig,(B — A) is sig,,(A — B).

3, is to be the set of #-symbols, IR, to be 3, itself, 1, to be the rules
u,,, sig(=—l.'r,) to be r,, and 8ig,(l,I'r.—X) to be 7,. Thus, 8ig,, a right
signature of 1,, i.e., the ¢-shift rules of 11,, onto M, is just a restriction
of 8ig,,. We take the dual definitions for 3, ¢, 1, and sig,, a left sig-
nature of 11, (which is, of course, 11,) onto It,.

3, 18 to be the set of I-symbols together with ¥, 7; W, to be 3;, itself,
11;, to be the rules U,, and 1,,, 3ig;,(yl.yss — ssla) is L., 8ig (Yyss — sp¥)
is y, and 8ig;,(B — A) is 8ig;,(A — B). Then 8ig;, is a right signature of
1;, onto M;,. The dual definitions are taken for 3,,, M., W, (which is
1,,and 1,,), and 8ig,., a left signature of 11, onto M,

We now wish to show that Jt,,, M, W, and their duals are indepen-
dent sets. We now* write "%, —", =" for |3, =3, =31 respectively.
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LEMMA 22%. Let P’ be any W,,-reduced N, -product, A, A,--- Ay,
N=0,1, ---, consisting solely of x-symbols. Then

(22.1) P’ is reduced and in fact consists of an even number of occur-
rences of x alone or T alone;

(22.2) Where P is xP'z, Pz, P""“1 implies P’ is 1;

(22.3) Where P is xP’, zP’, P'z, P'Z, not P"I-""1.

Since P’ is M, ,-reduced either every A, is xzx or every A, is Zz. This
shows Lemma 22.1, from which Lemmas 22.2 and 22.3 follow trivially
using Lemma 19.

LEMMA 23. M,., W, W, W, M,, W, are independent sets.

Let P be the 9, ,-reduced M, ,-product AA,--- Ay, N=20,1,--- and
suppose we are given an H(P/1) in the free group on 3,,. We show that
(231) P is 1. By Lemma 19 we may assume without loss of generality
that H consists entirely of deletions. Reverting here to the marker con-
vention—with all qualifications null—and its superscript notation, suppose
0, = del(rirl) is the first r-deletion of H where r{ occurs in A;, 7] in A,,
1<1<j=EN.

Let P’ be A;,, -+ A,_, and P” the word between r, and 7} in P. By
the definition of O, and Lemma 10 both P’ and P” consist solely of #-
markers. The following table gives P” in terms of P’ for the various
values of A, and A,.

A, A, P”
(a) r! 7l P’
(b) atrixt ziriz x'PE
(c) r T Pz
(d) xric' 7 P’

The mere existence of O, implies (23+) P"""“1. If a, then P’, an i, -
reduced M, -product consisting solely of Z-markers, is reduced by Lemma
22.1; hence is 1 by (23+) and Lemma 20. Thus j = 7 + 1, A,., is A, and
P would not be I, -reduced. Thus a cannot occur. If b, then (23+) and
Lemma 22.2 again imply the contradiction ‘P’ is 1°’ as before. Thus b
cannot occur. Clearly ¢ or d cannot occur by (23%) and Lemma 22.3.
Thus O, # del(rirl), i #+ j. Interchanging barred and unbarred letters
in the foregoing demonstration produces a valid argument that
O, = del(rir)), 1 + 7.

Thus O, does not exist and P contains no i-markers. But if P contains
only z-markers then Lemmas 22.1 and 20 suffice to show (23t).

This shows M, is an independent set. The dual argument*, using the
dual of Lemma 22, shows 9, is an independent set. Where M is M,
M., M, or M, any M-product is NM-reduced if and only if it is reduced.
Thus these sets are independent by Lemma 20.
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ParT 111

The general methods of Part II are now used to carry out the program
given on page 219 for showing the Main Theorem in the non-trivial diree-
tion.

18. Demonstration of Theorem III. Since Cond (%,; k, p) with p void
and the words ¢3k3¢, ¢ = 1, 2, are k-free, Theorem III is an instance of
Reduction E.

19. Demonstration of Theorem IV. We assume given a k-free proof
H(t,3k3t,/t,5k>5t,) in T,. By Lemma 11 exactly one k-marker occurs in
this proof and in every step thereof. We call this marker %° and let the
1" step of the proof H be A,k'B,, =1, 2, .-+, N. Then to show Theorem
IV it clearly suffices, since A, is ¢,5k° and Ay is t,2k°, to show (IVY)
Ak 5 As i,k for each i. If O, the 4" operation of H, is the application
of the k-free rule C — D to markers in A, then (IVt) follows since C — D
is also a rule of U,. If O is a k-free rule applied in B, then (IVY) since
A;.,is A;. If O applies the k-shift ak — ka of U, or U,, let A, be A’a so
that A,., is A’; then (IVT) follows since ak — k is a rule of 11, and effects
a proof of A’ak/A’k in E,. If O applies ka — ak then (IVY) follows simi-
larly since k — ak is a rule of U,. Now suppose that O is an application of
Tt.t.qk—kgt,t,g and let A, be A’Gt,t,q sothat A,., is A’. Then () A’qt,t.qk,
A'Gttqk, A'gak, A’k is a valid proof in ¥, since t,gk — t,gk is a rule of
11,. Supposing O applies kﬁ—t_lt2q—>c}z‘,_1tzqk (IVt) follows similarly (using
the steps (x) in reverse order as a proof) since t,gk — t,9k is a rule of U,.
This shows Theorem IV.

20. Demonstration of Theorem V. Since Condy(%,; t, k) and the words
t3k, ¢ = 1, 2, are t-free and k-free, Theorem V is an instance of Reduc-
tion E.

21. Demonstration of Theorem VI. Assume that we are given a k-
free t-free H(t,2k/t,Sk) in T,. We let k° and t' be the single k-marker
and single t-marker occurring in the proof and occurring in each step.
(Lemma 11.) Clearly H must contain at least one application of the rule
of U, t,gk — t,qk for otherwise the last step of the proof could not be
ti3k°. Then the premiss of the first such operation is Etigk’F for some
E and F; so simply omitting all the steps that follow, gives a proof

H'(tSk*/Etigk'F) in T,.
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From the proof H’ erase that part of each step left of ¢!and omit rep-
etitious steps. Since ;M — ¢,N is a rule of U, if Gt,M — Rt,N is a rule
of U, the result is a valid k-free ¢-free proof, H"(t:Sk/t'qk°F), in T,. (The
induction argument needed to show the trivial t:!A; ,..t'A;.,, Wwhere B,t1A,
is the 7" step of the proof H' is the dual of (IVt) but without analogues
of the last two cases considered there.)

From the proof H” erase that part of each step right of k° and omit
repetitious steps. Since every k-shift of 11, is of form Mk— Nk the result
is a valid k-free t-free proof, H'"(t:2k°/t'qk"), in T, whose " step may
be written ¢'M,;k°. (The trivial induction argument needed is a special
case of the dual of the induction argument about H" of the preceding
paragraph.)

Clearly the following lemma, shown by induction on ¢, implies Theorem
VI: (VIT) For every M, there are words E and Q such that =+ ,EMQ.
For ¢ = 1, we note ZI—,>. To show the induction step it suffices to show
(VITt) M,—,E'M,..Q' for each M, for some E' and Q'. If O, the 4™ oper-
ation of H'”, is not a k- or ¢t-shift, then M, M,., since the rule applied
is a rule of U, as well as 11,. Suppose O applies ta — ¢t (here a is y or an
l-symbol) and M, is aM so that M,,, is M. Thus (VI{f) since aM,aM.
Similarly, if O applies ¢ — ta, M, is M, and M,,, is aM, then (VI{t) since
M ,aaM using ins(aa). If O applies a k-shift (VI{) follows by the dual
argument. This shows (VI{t) in general, hence (VITt).

22. Demonstration of Theorem VII. Given an H(Z/EqQ) in I, we
show that (VIIT) if N, > 0, there is an H'(Z/EqQ) in I, such that
N; < N,. As =% and EqQ are g-free, by Reduction A we may assume
without loss of generality that H is g-malcev in showing (VII{). As £, is
g-stable by Lemmas 14.1 and 14.3 there are four possibilities for {O,, viz.,
1q, 2q, 3q, and 4q of Lemma 14.1. If Case 1q holds then (VIIt) follows as
a special case of Reduction D taking ¥ to be T;, g to be ¢, and p void.

23. Demonstration of (VIIt) if O, = del(¢¥¥g"*). In this case the
stronger version of (VIIT) obtained by dropping the assumption that H
is g-malcev will be shown by an induction on Q,. If Q, =0 then Q,; =0
so that (VIIt) follows by Reduction B taking ¥ to be ¥, g to be ¢, and p
to be empty. Suppose Q, > 0. If H is ¢'*-redundant then by Reduction
F ignoring F'3 there is an HO(X/EqQ) in ¥, such that Q¥ < Q,. We shall
show (VIITt) if O, = del(¢5q) and H is not ¢'*-redundant Q,,=0. Thus
(VIIt) would again follow by Reduction B.

24. Demonstration of* (VII11). For this case let O, be ins(qqll),
assume O, is the N + 1* operation following Oy in H and let O,,, n =
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1,2, ..., N be the " operation following O. We write O¢yl, n =
1,2,---, N, as

A, Bay?a'Cy, By g-free.
’Ilhis is completely general by the definition of O, and Lemma 10. Let
W, where W is any word on 3;, be W with all symbols except #-symbols

everywhere erased. Clearly W is UV where W is UV. Let T, ,, be the
subsequence of ¢**-shifts of T y;.

LEMMA 24. 8ig, and }B(n)§n _o form a faithful right signature complex
Jor Ty 5y in Te xy and B(N) is 1.

The conditions 17.1, 17.2, 17.3 are verified as follows. First, as to
17.1, B, is 1 since no #-markers occur between ¢** and gi¥ in ins(g*g¥)].
Secondly, as to 17.2, suppose O(,m) is a ¢**-shift applying Pg;N—[ ,P'q N'r,
where of course N and N’ are #-free. Then assume notatlonally that B¢,
is NB so that B¢, is N'r,B. Thus B(n) is B and B<n+1) is ».B, i.e.,
soth(nﬂ)B(n). If O¢..p applies the converse and B, is N'r,B, then B(nﬂ)
is B, B, is r.B, i.e., 8190+ pBeusp. Thirdly, as to 17.3, assume Og,.,,
not a ¢*®-shift. If O, is not performed in B, then clearly B,., is
B, hence ﬁ(nﬂ) is ﬁ(n) If O¢,+p is performed in B¢, let B, be B'IB",
B(nﬂ) be B'JB"” where O(,m) applies I -» J. If I —» J is -free, then both
BW and B(,,H) are B'B”; if I - J is the rule of 1,, 7.8, — Sg&r.& or the
converse then both B(,, and B,. are B'r.B”. If I > J is an 7-insertion
or 7-deletion then an application of I — J effects a proof of B,)/Bwu+n in
(8,, @). Lemma 23 verifies 17.4. Asto 17.5, if Ty, were of form
M3ig0 (3q0 s+ )N Where 8190 (.., is 8igO¢,) then H would be ¢**-redundant
in O, and O, contrary to hypothesis. Clearly B is 1 since Oyl is
[del(qm—iR)

Thus (VIIT1) follows by Lemma 21.2. Cases 3q and 4¢ are dual* to 1¢
and 2q respectively. This shows Theorem VII.

25. Demonstration of Theorem VIII. For proofsin T, let Qs =Q,+Q;.
All proofs in &, having no g-deletions are ordered in the following way:
H*(A/B) precedes H*(C/D) if either (i) Qi < Qf,, or (ii) Qf = Qi; and
N% < N

As is sufficient to show Theorem VIII, we assume given a g-free
H(Z/EqQ) in T, and show that (VIIIT) if N, > 0, then there is a q-free
H'(2|EqQ) which precedes H(Z/EqQ). By Reduction A—noting particu-
larly A2—and since = and EqQ are s-less we may assume H is s-malcev
to show (VIII{) for H in general. We let ¢* be the single g-marker oc-
curring in each step of the proof H. (Lemma 11.) -
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While the following lemma is not essential it is an expositional con-
venience.”

LEMMA 25. In demonstrating (VIIIT) we may assume that the given
proof H(Z[EqQ) contains no occurrences of [- or §-markers right of q*
i any step and no occurrences of - or &-markersleft of q* in any step.

Simply erasing all violating marker occurrences in the given proof re-
sults in a valid g-free s-malcev proof in T, (except for repetitious steps)
without increasing either the number of s-deletions or the number of s-
shifts and ¢-shifts and without adding g-deletions. Let C, be the n'™ step
of the given proof H and C) be the result of erasing all occurrences of
[- and §-markers right of ¢* and #- and 4-markers left of ¢* in step C,.
Suppose O, the n' operation of H, (1) is not a ¢>-shift and (2) either (2A)
is not both i- and y-free and applied right of ¢* or (2B) is not both #- and
2-free and applied left of ¢>. Then C3,, is C3; otherwise CJ,, follows from
C° by O, and O, does not violate 9.2 or 9.3 in the proof C2/C5., since the
proof H itself is s-malcev. But since C!is C,, i.e., =, and C% is Cy, i.e.,
E2qQ. This shows the lemma.

We show (VIII{) by means of the following two auxiliary theorems.

THEOREM VIII'. If N, > 0 and H is either ¢*redundant or s*-redun-
dant for some s°, then there is a q-free H'(Z/EqQ) in I, such that
Qg < Q.

THEOREM VIII”. If N, > 0 and H is neither ¢*-redundant nor s'-
redundant for any s°, then there isa q-free H'(S/EqQ) such that Qu=Qq
and N; = N, — 1.

Theorem VIII' is immediate by Reduction F—noting particularly F3
but ignoring F4—taking g to be ¢ and ¢ to be 2 if H is ¢>redundant and
g to be s and 7 to be v if H is s>-redundant.

As to Theorem VIII”, since H is s-malcev there are by Lemmas 14.1
and 14.3 initially six possibilities for {O,, viz., 1s through 6s of Lemma
14.1. If Case 1s holds then Theorem VIII” follows by Reduction D since
Cond (Z;; s, q) noting that D2 implies that Q;; < Q.

It is convenient to show Theorem VIII” for Cases 2s and 5s together
by the following unified argument.

26. Demonstration of Theorem VIII"”, residual case. Suppose O; =
del(s%s¥) where either u is tR or s* has entered the proof via a q2-shift.
Now O, is to be ins(sifs¥); we assume O, is the N + 1% operation follow-
ing O¢, in H and let O¢,), n = 1,2, ---, N be the n™ operation following

37 Its inclusion actually lengthens the argument, but it seems a natural step in the
development.
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O«. By Lemma 10 either ¢* < § or s* < q* in all steps containing 3i%;
we call these two situations subcases a and b respectively. We now
suppose subcase a. We write O(,] in the form

A(n)qg(n)B(n)Q(n)g‘LRC
where either the right-most marker of B, is an s-marker or B, is 1.%

LEMMA 26. No O, is an s-insertion performed in or immediately
left of Qeuoyy.

Suppose O, isthe first counter-example to Lemma 26. If O is
1ms(si®st™) then §i* < s%® in O(,], hence 5* must leave the proof prior to
8 since H is s-malcev thus contradicting the definition of s®. If O is
ns(s¢tst") then ¢ < st < st < 8% in O,,]. Neither s®® nor s-markers
entering via ¢’-shifts occur between 5 < s in O¢w»],—but this situation
also obtains in succeeding steps containing 5t and 5* by the fact that H
is s-malcev (or, alternatively, by Lemma 10). This is again a contradiction
the form assumed for the first s-deletion, i.e., O,.

It is immediate by Lemma 26 that for non-void B¢, the right-most s-
marker occurring in By, is unbarred; we let sym be this marker occur-
rence.

If O, is a non-trivial operation and Q,_,, and Q,, are distinct words
then O, is called extreme. Obviously there are two kinds of extreme
operations s“m-v-shifts and ¢*-shifts removing markers of Q,_,, from the
proof or entering markers of Q¢ into the proof. We use T, ,, for the
sub-sequence of extreme operations of T, ), Tin. for the sub-sequence
of ¢*-shifts of T'(,, ).

LEMMA 27. 8ig,, and iﬂ(n) iﬁ’,o Sform a right signature complex for
Tiom i Tom-

Clearly O, is 1 since no #- or &-markers occur between si* and si* in
ins(sy'sl)]. This verifies 17.1. Suppose O, is an extreme operation. By
Lemma 25, O,, is I-free and y-free. Then 17.2 is checked by the follow-

ing table, interchanging Q, with Q,.,, and B¢, with B,.,y for O, the
converse of the cases listed. (The superscripts for markers are dropped
in the table, 8 = Bw-n, 8 = Bw,s You-n =V =7 -

Rule applied by O, B, B Qv
Aqgll — [,A'gsT'r, I 7. Qen>
TSy —> SyLT,% Br,sy Bs, 7,2y
LSy —> SyLX Bxs, Bs, 22 ¢y

3 The G need not carry a subscript because of the s-malcev property of the proof H.
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Now suppose O, is not extreme. If O, is not performed in Q,, then
Q18 Qeuep and 17.3 is clear. If O, is performed in Q, then it must
be an Z- or 7-insertion or deletion. For O, is [-free and y-free by Lemma
25, is not an s-insertion by Lemma 26, is not an s-deletion by the defini-
tion of O,, and is ¢-free since ¢* is the sole ¢g-marker occurring in the
proof. Thus, as an 7- or Z-insertion or deletion, O, itself effects a proof
of Qwy/Qensp in (8,., @) again verifying 17.3.

27. A stronger version of Lemma 27. The idea behind the next four

lemmas is to show the complex of Lemma 27 faithful. Let, W, W any
word on 3,, be the word obtained from W by erasing all symbols except
f-symbols everywhere.

LEMMA 28. Suppose O,y and O,y are extreme q*shifts and T, ;1) i
empty. Then 3ig, and zﬁ(,)}{_.e Sform a faithful right signature complex
for T, ,_yin Teyor). Further, B, is 1.

No #-marker lies between ¢* and Q,, if either O, or O, is an ex-
treme ¢*-shift. Thus both B(e) and ﬁ(,) are 1. If Oy, e <t < f,is an
application of the rule I — J of 1, then since T, ;,_,, is empty, B, is
B’IB” for some B’ and non-void B” so that B, is B'JB”. The remainder
of the argument is exactly that of Theorem VII{{ with the following
changes.

For substitute
qiR q2

©.3) T -
n t

LEMMA 29. Suppose O, and O, are extreme q¢*-shifts such that
Ti..s-1y ts empty. Then O, and O,y are not converses of each other.

Using Lemmas 20.2 and 28, T, ;- is empty. Thus Lemma 29 is im-
mediate from the fact that H is not ¢*>redundant.

LEmMMA 30. 8ig,, T (.5, 18 M,,~reduced.

Consider any two extreme operations O, and O, e < f, such that
T(es- is empty. Thus 8ig,, T~ is of the form Esig,,0,3ig,,0,»F.
Suppose 8ig,,O¢ is 8ig,,O¢H. Then by the definition of 8ig,, either (1)
both operations are s-shifts, or (2) both operations are ¢*-shifts. Suppose
1. Then O, is an s“©-shift and O,y an s%»-shift. But sy oceurs in O
and in fact is 8353, c=e+1,.--,f, since no O, ¢ < f, is extreme.
Thus 1 implies that H is s“»-redundant, contrary to hypothesis. Clearly
2 contradicts Lemma, 29.
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LEmmMmA 31. 8ig,, and %Q(n%f,‘;o form a faithful right signature complex
Jor T yyin T¢ ny. Further, Qy is 1.

Clearly Q, is 1 since no #- or Z-markers occur between s¥ and s¥* in
[del(sysi?). The first sentence is clear by Lemmas 23, 27 , and 30.

LEMMA 32. T, y, is empty; hence st is s'®.

Immediate, by Lemmas 21.2 and 31.

By Lemma 32 and Reduction B, Theorem VII” is immediate, but it
must be recalled that we have been assuming subcase a of the first
paragraph of Section 26.

28. Argument if s occurs left of ¢*. Subcase b (of Section 26, first
paragraph) is shown by a degenerate form of the argument for subcase
a. We proceed as follows, writing O,,] in the form

BEwsiC

where either the right-most marker of B, is an §-marker or By,, is 1.
By the correspondent of a lemma or argument used under subcase a, we
now mean the result of substituting I, y, 8;,, u,, W, for r, x, B, ..,
.., respectively throughout that lemma or argument (but mot inter-
changing left and right). The correspondent of Lemma 26 is true and the
demonstration of Lemma 26 in Section 26 becomes a valid demonstration
here if ¢* < 8" < st < s} is replaced by 54" < si* < §* < ¢°. By Lemma
10 and the correspondent of Lemma 26 each B¢, is non-void and has si®
as the right-most marker occurrence; hence O, = del(si*s'¥). Extreme
operations are defined as before (with = for Q) but note that now these
operations are identical with the s**-shifts. The correspondent of Lemma
27 holds. For, verifying 17.1, we note that =, is 1 since no [- or i-
markers occur between si* and st} in ins(si*si*)]. To verify conditions 17.2
and 17.3, take the correspondent of the argument about conditions 17.2
and 17.3 in the proof of Lemma 27 in Section 26 substituting the follow-
ing table for the earlier one:

Rule applied by O, B, Biuin Enen
ylnysw d Swln Bylnysm Bs, lnE(n)
YYSa — Sy Byys. Bs, YE

No reference to g-shifts appears in this table since no extreme operation
is a ¢-shift in this subcase b.

No analogues of Lemmas 28 and 29 are needed. The correspondent of
Lemma 30 is valid—since H is not s™®-redundant. The correspondent of
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Lemma 31 holds—noting Lemmas 23, the correspondents of Lemmas 27
and 30, and the fact that E,, is 1 since no [- or y-markers occur between
s and s in |O,.

Thus, the correspondent of Lemma 32 holds by Lemmas 21.2 and the
correspondent of Lemma 31. By the correspondent of Lemma 32 and
Reduction B, Theorem VIII” again follows for subecase b, so that Theorem
VIII” has now been shown for Cases 2s and 5s of Lemma 14.1.

The demonstration of Theorem VIII” for Cases 3s, 4s, and 6s are the
exact duals* of those for 1s, 2s, and 5s.

This completes the demonstration of Theorem VIII.

29. Demonstration of Theorem IX. Let W*, W any word on 3;, be
the result of erasing #-, I-, #-, and y-markers at all occurrences. If
A — B is any rule of 11, then either A* — B* is a rule of U, (this being
the case, for example, when A — B is a g¢-shift) or A* is B* (this being
the case, for example, when A — B is an s-shift). Thus if =, C,, -« -, Cy,
EqQ is a valid proof in ¥;, then =, C}, ---, Cy, ¢ with repetitious step
omitted is a valid proof in £,, which shows Theorem IX.

30. The unsolvability of the word problem for a certain choice of T,.
Result a follows from the Main Theorem, whose demonstration we have
just completed, and Lemma 1. (The full argument is given on page 216
immediately following the statement of the Main Theorem.)

ParT IV

In Part IV we discuss certain matters, described in the Introduction
which are related to the word problem. Section 31 gives a result of a
general nature like those of Part II—especially like the key lemma of
Reduction C, Lemma 15 (page 231). But Section 31 is not used in the
arguments for Results b and ¢ which immediately follow.

31. Rightward g-shifts.
DEFINITION OF RIGHTWARD ¢g-SHIFT RULE. For any system under any
marker convention a g-shift rule of the form

Ag,B— Cg,
is called rightward.

Reduction G. For any T under any marker convention suppose there
is a K(MgiE/FgiN) in T such that all g'-shifts are rightward. Then
there is a TUMGgG!E[Fg.N) such that

(G1) T contains no g'-shifts;
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(G2) U contains no operations right of g';
(G3) M(TU, C— D) = M(K, C— D) for any C— D of 1.

Let O, be the first operation of K applied right of g¢ and preceded by
a (rightward) g’-shift. If O, does not exist, K is TU. If O, does exist
let K be V,0,V,0,V, where O, is the last g'-shift preceding O,. Clearly
V.0,0,V,V{(Mg:E/FgiN) is a valid proof in ¥ by Lemma 6. Thus
Reduction G follows by induction using this argument.

32. The demonstration of Result b. The reasons why the argument of
Parts I, II, and III does not yield Result b directly are the following. (1)
An assumption was made about the form of the operation rules of 1,, i.e.,
each member of each rule is a special word. (2) The Main Theorem does
not relate the equality of any two words of <, to the equality of certain
words of ¥T,, but only so relates the equality of a special word and
the word ¢ to equality in ¥,. Theorems X and XII nullify the effect of 1,
Theorem XI, the effect of 2. Cf. footnote 5, page 208.

We consider the Thue system, T, defined in terms of the arbitrary
Thue system £.

Ly
B+ The symbols of 3; ¢,

. 1 qA< ¢B where A < B is a rule couple of 1;
*2 gqa <> aq, where a isa symbol of 3.

THEOREM X. Where < is any Thue system and W and V are any
words on 3, W4 q,V is a necessary and sufficient condition that
Wiz V. ’

Erasing g, at all occurrences in a given proof of ¢, W/q,V in T, results
in a valid proof of W/V in ¥ except for repetitious steps. This shows the
sufficiency of the theorem. As to the necessity, we first note the follow-
ing lemma which is obvious by induction on |P| using the rules U,.,.

LemMA 33. For any Thue system I, qlPr—z*qu where P is any word
on 3.

Clearly q1A|—3* q¢,B where A— B is a rule of U, by the rules 11,..,. Thus
by Lemma 3 we have (Xt) ¢,;PAQlI+_ ¢,PBQ where P, A, B, Q are words
on 3 and A — B is a rule of 1. From (Xt) the necessity of Theorem X
clearly follows by induction on the number of steps of a given proof of
W/Vin E.

We now consider the Thue system £, defined in terms of the arbitrary
Thue system <.
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T,
B a,a where a is a symbol of 3;
D, v
U,;: 0.1 The rules of U;
0.2 ab < ba
0.3 paa<> acip where a, b are symbols of 3.
04 3101; P

We relate the Thue system I—arbitrary, but fixed throughout the dis-
cussion—to the dependent system ¥, by means of Theorem XI. We use
Greek capitals for words on 3. The word @, is to be the word obtained
from ® by everywhere replacing a by a; ®,, by everywhere replacing a
by aa.

THEOREM XI. For any Thue system T—pAOv-g, PV 18 a4 mecessary
and sufficient condition that O A.

We first note the following lemma.

LEMMA 34. For any Thue system T:

(34.1) OB-g, O,

(34.2) p®d|—3-_0 Op.

(34.3) Oupvi-g, PV.

Using induction on word lengths, Lemma 34.1 is immediate from the
rules U,,, Lemma 34.2 from the rules 11, ,, and Lemma 34.3 from the rules
1, ..

Lemma 3 is used throughout the following argument. Now suppose
O5 A so that pA@vi5 pAAv in view of the rules U,,. Then pA,Av
g, PAqv by Lemma 34.1, PAVg, Agpv by Lemma 34.2, and AV, PV
by Lemma 34.3. Thus the necessity of Theorem XI is clear.

We now show the sufficiency of Theorem XI. Where A is any p-free
v-free word on 3,, A, is to be the word obtained from A by everywhere
erasing all symbols on 3; A,, by everywhere erasing all symbols not on
3; the word A, is to be the word obtained from A, by everywhere replac-
ing a by a. We adopt the marker convention for ¥, wherein the rules of
1, ; and 1, , are designated p-shifts, the rules of 11, , v-shifts. The system
%, is both p-stable and v-stable. Clearly any proof in ¥, contains the
same p-markers and the same v-markers in every step. (Cf. Lemma 11
which states the corresponding result for groups.)

LemMA 35. For any Thue system <, suppose there is an H(CpD/EpF)
wn I, where C, D, E, and F are p-free v-free words on 3,. Then

(35.1) C.D, ts E,F,;

(35.2) C,D,;¢ E/F,.
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Throughout the demonstration of this lemma, we restrict the range of
the variables A, B, --- to the p-free v-free words on 3,. We let p' be the
p-marker occurring in the first step of the proof H of the lemma; thus
any step of this proof is Gp*H for some G and H which, of course, depend
on the step.

If the proof H consists of a single step the lemma holds since in that
case C is E and D is F. We shall show that if the operation sequence H
consists of a single operation, O, the lemma holds. Using Lemma 3.3
and the last sentence of the preceding paragraph this suffices to show
the lemma in general by induction on the number of steps of the proof
H of the lemma. Suppose O applies the rule & — ¥ of 1, right of p*and
let Cp'D be Cp'P®Q so that Ep'F is Cp'P¥Q. Using parentheses with the
obvious meaning, C,(P®Q), is C,P.Q,, which is also C,(P¥Q).. Thus
Lemma 35.1 for this case. The word C,(P®Q), is C,P,®Q,. Since ® — ¥
is a rule of U as well as of U,,, by Lemmas 2, 3.4, C,P, Q- C,P,¥Q;,.
But C,P,¥Q; is C,(P¥Q),;. Thus Lemma 385.2 for this case.

The following table verifies Lemmas 35.1 and 35.2 under the remaining
possibilities for O. Each of the last three rows is understood to be listed
a second time with the entries of the first and second columns inter-
changed.

Both C,D, Both C,D,
Cp'D Ep'F and E,F, and E,F,
P®Qp'D PYQp'D P.Q.D, P,Q,D,
Cp'aaQ Cap'Q C.aQ, C,aQ,
AabBp'D  AbaBp'D A,aB,D, A,aB,D,
Cp*AabB Cp'AbaB C.A.aB, C,A,bB,

LEmMMA 36. For any Thue system X, suppose there is an H(pDv/pv) in
Lo, D any p-free v-free word on 3,. Then for some p-free v-free word
E on 3,, le—zo Ep.

Let v* be the single v-marker appearing in each step of the proof H,
and let the proof K(pDv*/Epv*M) be those steps of the proof H preceding
the first application of a rule of 11,,. Lemma 36 now follows by Lemma
6—identifying v* with the §* of Lemma 6.

To show the sufficiency of Theorem XI assume, for arbitrary Thue
system I, that pAOG)I—% pv. By Lemma 36, pA0®|—$0 Ep for some p-free
v-free word E on 3,. The word (A,®), is A,. Henczs A, is E, by Lemma
35.1. Thus E, is A. But the word (A,®), is O, so that O, A by Lemma
35.2.

Let Ty, be the Thue system defined as follows in terms of the arbi-
trary Thue system 2 and fixed word W on 3.
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Tew)
Bt The symbols of 3; ¢
Uwy: W.1 The rules of U;
W.2 Weogq

THEOREM XII. Where U and W are any words on 3, Uz
only if U4 W.

Adding the step ¢ to a proof of U/W in ¥ yields a proof of U/q in Ty,
by the rules Uy .. Replacing ¢ by W throughout a proof U/g in Ty,
produces a proof of U/W in ¥ except for repetitious steps.

THEOREM XIII. For any Thue system ¥ and words A and B on 3, the
following statements are equivalent:
A—<B
PB AV, v
0.PB AV, q,pv
GPBIAV =0,y
This theorem follows at once from Theorems XI, X, and XII.
We now show Result b. Where T is an arbitrary Thue system each rule
- couple of Toucapw 18 0f the form Ag,IT < A'gell’, A, 11, A, 11’ g-free, i.e.,
having the form of &, when the symbols ¢,, ¢ here are identified with the
g-symbols of 3,, the remaining symbols here with the s-symbols of 3,.
Moreover, the word ¢,pB,Av of the last statement of Theorem XIII is a
special word in the terminology of ¥, when such an identification is made.
Thus the first and last statements of Theorem XIII together with the
Main Theorem give Result b.
33. Application of a technique of Tietze. The following lemma is a
generalization of Lemma 4.5.

- if and

LeEMMA 37. For any group presentation I, suppose the words P and
Qare g-free words on 3. Then APQz, PQA if and only if PAPz, QAQ.
The lemma is clear from the following diagrams.

PAP_, _APQ
ms(QQ) _ ins(PP)
PAPQQ PPAPQ
\ y - J
K vV
PPQAQ PQAQQ
—J —
del(PP) del(QQ)

MQAQ PQAT
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THEOREM XIV. Let T and I’ be any two group presentations such that
B1is 8, and W is W with the non-trivial rule couple A < B replaced by
A’ < B, A, B, A, B g-free. Suppose A’I—% B’ and Al—% B. Then for
any words C and D on 3, Cl—gg D if and only if C}—@g D.

Given a g-free proof of C/D in ¥, any consecutive steps of form PAQ,
PBQ can be replaced by a g-free proof of PAQ/PBQ in ¥'.

34. The demonstration of Result c¢. This, then, is a revision of the
constructions of Parts I, I, and III so as to obtain certain group presenta-
tions of comparatively simple form and with unsolvable word problem. As
before, ¥, is to be an arbitrary Thue system having the form stipulated
on page 214 of Section 2, Part I but we specify a new version of T,. We
omit a listing of the barred symbols in the new 3, and of the trivial rules
in the new U,. We now specify words by means of integral exponents
(positive, negative, or zero) in the familiar way. Lower case Greek let-
ters are variables for exponents.

T,-Second Version.
8,: All symbols of 3,;
t,t, k;a,bc,d, e
,: Where ¢ =1,2,---,P, «=1,2, and 8=1,2, ..., M, the rule
couples 2.1 through 2.7 are rules of 11,:
2.1 3 < deacdbcaed

2.2 spz <> 23, where z is e, ¢, or a

2.3 sgd < dHad"*'s, 2.5 bsg <> sgb"*'ab" !
2.4 t,u < ut,, where u is 2.6 vk < kv, where v is
e, c,a,ord e, c,a,orb

2.7 kgtit.q <> qtit.qk

We shall first show that the Main Theorem holds under this reinter-
pretation. The general idea is to let the item in the second column given
below play the role of the corresponding item in the first. As are the old
(Lemma 23), the new sets of words referred to are independent. That
fact is the central idea of this revision.

The symbols® ¢, é

A

M, The words ce

t==+1, +2,-+-, + P
M, The words e‘c‘}

3% We now write ¢ for ¢, ¢ in listing symbols.
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3
Buw J
Bz
‘.Ulm}

am,, |

M,
‘szfj]fThe words ¢*', e*', b*', d**ad”*', d'eacd

The symbols ¢, ¢, a, 5, d

The words c¢*!, e*!, d*!, b"*'ab”*', bcaebd 1

Jzzo,il,---,:tP

We shall explain in detail the revisions which should be made in the
original argument for the Main Theorem so as to obtain a valid argument
for the Main Theorem under this new interpretation of ¥,. There is, of
course, no need to check through Section 4 of Part I or Sections 7 through
17 of Part II as the results shown there hold for systems in general.
Beginning with Section 5 of Part I let = be a variable for word on ¢, ¢,
d, a; Q, for words on ¢, ¢, b, @. Then Lemma 5 remains valid using the
new rules 11,, and 11,, for Lemma 5.1, the new rules U,, and U, for
Lemma 5.2, the new rules 1, , for Lemma 5.3, and the new rules U, for
Lemma 5.4. The form of the argument is otherwise unchanged. Thus
Theorem I still holds, — the original argument being completely valid
under the new interpretation. Consequently the new version of the
Main Theorem is clear in the trivial direction.

As to the program for the demonstration in the non-trivial direction,
in the definition of ¥, and ¥, replace the phrase in the first column fol-
lowing by that opposite it in the second:

of U,,and 11, of 1,
and 11, , and 1, .,
of U,, and U, of U,,

With these changes the chain of theorems to be shown remains as be-
fore.

The marker convention adopted for the new systems is the same as for
the old ones (see bottom of page 221) except that the new rules U,,, 11, ,,
and U, , are now designated as s-shifts.

The discussion of Part II, Section 18, is almost entirely revamped.
Consider the table just given on the bottom of the preceding and top of
this page to be made a part of the new Section 18 taking the item in the
second column as the definition of the corresponding item in the first and
adding the following additional definitions:
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u, .
o

1,,

u,
i;, The rules of 1,,, I1,,, U,,, and 11,

y
1,

With the understanding that 8ig,.(B— A) is 8ig,.,(A — B) and 8ig,(B— A)
is 81g,(A — B), the right signature of 1, on M,, 8ig,, is given by the re-
quirement that 8ig,(S — d'e'acd I'b'c'aed) is ce, and the right signature
of 1,, on IM,, is given by the following table.

A—->B 8ig, (A — B)
Y - deacd 'bcaed bcaed

2Sp — Sgz, Where z ise, ¢, ora  z

bsﬁ — SﬁbP+labP+l bP+labP+l
dP+ad? sy — spd d

We give 8ig, and 8ig,, the definitions which are dual* to those for 8ig,
and 8ig,,. We take 8ig;, to be 8ig,,, and 8ig,, to be 8ig,,. Of course it is
intended that b and d are dual, and that a, ¢, and e are each self dual.
We retain the abbreviations "%, ete., under the new interpretation.

Lemma 23 is valid under the new interpretation. This* fact, i.e., the
set of words ¢¢, c= +1, +2, -+, + P, and the set ¢*', e*'. d*', b"*'ad"*!,
bcaed, ¢ =0, +1, .-+, + P, are independent, is obvious. By Lemma 19 a
completely combinatorial demonstration is effected.

We now consider the revisions necessary to Part III. As before, Theo-
rem III remains an instance of Reduction E. In the demonstration of
Theorem IV simply replace the words ‘‘U,, or U,,”" by “U,¢’. Theorem
V remains an instance of Reduction E. In the demonstration of Theorem
VI replace ““(here a is y or an l-symbol)’”’ in the fifth last line of
Section 21 by ‘‘(here a is ¢, e, a, or d)’’. As to the demonstration of
Theorem VII, up to the definition of W the text is to stand as given. We
now define W to be W with all symbols except ¢, ¢, everywhere erased.
Then Lemma 24 remains valid, it being only necessary to replace ‘‘#-”’
by “é- or -’ — or ‘‘é- and é-”’ in the context ‘‘#-free’’—and *‘the
rule of U,, 7,8, — Se®7r.%’’ by ‘‘either the rule cs;— sgc or the rule
esg — sge of 1,,”’ in the original demonstration to obtain the new one

needed.
To demonstrate the new Theorem VIII we modify the argument for

the original Theorem VIII in the following way. Lemma 25 is dropped
completely but all other lemmas and auxiliary theorems are retained in
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the present development. We now let {2 and E be variables for words on
¢-, e, a-, B-, and d-symbols. Up to Lemma 26 these are the only changes
to be made. (Thus we are continuing to distinguish between subcases a
and b of the residual case of Theorem VIII”.) The demonstration of
Lemma 26 is valid as it stands. The demonstration of Lemma 27 is to be
changed. Statements said to follow by Lemma 25 must be dropped. A
reference to » and x, e.g., ‘“‘no - or #-markers’’ must be replaced by a
corresponding reference to ¢, ¢, a, b, and d. The table given is to be re-
placed by the following table:

Rule applied by Oy B, Basn Qeusn

Agpll — dic'aed A g 1T’ beacd* I iy betact' Qe
78, — s,z where z is ¢, ¢, or a Bzs, Bs, ZQ e

bs, — s,b"*'abt+! Bbs, Bs, b"*ab?*Qq,,
d”*ad”+'s, — s,d Bd?+ad**'s, Bs, dQy»

For Lemma 28 we define W to be the word obtained from W by erasing
everywhere all symbols except é- and é-symbols. In the demonstration
the reference to 1, should be replaced by a reference to the rules
SgZ — 783 Where z is ¢ or e of the new 11,,. The reference to Theorem
VIItt should be interpreted as a reference to the new Theorem VIItf.

The demonstrations of Lemmas 29 and 30 are valid as given. The argu-
ment for Lemma 31 must be altered only in the first sentence by replac-
ing ‘“‘#- or #-markers’’ by ‘“¢-, é-, 13-, a-, or d-markers’’. Lemma 32 and
Theorem VII”, subcase a of the residual case, follow as before.

To obtain the revised version of Section 28 it is only necessary to re-
place “J-or y-markers’’ by ‘“¢-, é-, 13-, a-, or d-markers’’ and to replace
the table given there by the table we have just given on this page with
the first line omitted. Of course, the references to Lemma 28, Lemma 29,
ete., should be interpreted as references to the new Lemmas 28 and 29.
The demonstration of Theorem VIII is thus completed.

In the demonstration of Theorem IX it is only necessary to replace
“p-, 1-, &-, or 4=’ by ““&-, b-, &, d-, or &-"".

Thus the Main Theorem is valid under the new interpretation of ..

We now make a final but trivial change in this new version of the Main
Theorem by interpreting the ¢ of 1, of the second version of ¥, and of
the statement of the Main Theorem itself to be a fixed special word on
8.. All our earlier arguments are valid under this notational reinterpre-
tation as may be directly verified.*

40 This corresponds, of course, to dropping Theorem XII in the demonstration of Re-
sult b. (See footnote 21 on page 215.)
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We now show Result c. Let ¥ be an arbitrary Thue system. Then the
system ¥, (as defined in Section 32) has the form of the system ¥,, iden-
tifying the symbol ¢, of &, with the g-symbols of T,. Where Z, is identi-
fied with T,, and P is a fixed word on 3, let €, be ¥, with the q of 1,
replaced by ¢,P (and of course § by Pg,). Let T, be Ty, with kP t,t.q,P <>
Pg.t,t.q.k replaced by t,q,PkPg.t, < t,0,PkPg,t,, Then, where W is any
word on 3, the following statements are all equivalent:

WP
By Theorem X.

]
f
Wiz, o.P } {By the Main Theorem with

q,P substituted for q.
{By Lemma 37 and Theorem
XIV (Section 33).

tWEWt, i~ . WEWE,

t,WEWi, o, t.WEW?,

The equivalence of the first and fourth statements is Result ¢ when
the subsecript 1 is dropped from gq;.

Certain applications of Result ¢, some in connection with Theorem XI,
are discussed in the Introduction.

35.4 The equivalence of the word problem and Magnus’ extended word
problem. Let T be any finite presentation of a group and 3’ a subset of
3 such that if a is a symbol of 3’ so also is a. The extended word problem
for T relative to 3 is the problem of determining for an arbitrary word W
on 8 whether or not there is a word W’ on 3’ such that Wi, W’'. We
shall show directly that for arbitrary T and 3’ there is another finite pres-
entation of a group, T_, such that the solution of the word problem for
3_ implies the solution of the extended word problem for ¥ relative to
3'. The converse reduction is trivial: for to solve the word problem for
any finite presentation of a group, ¥, is no more general than the solution
of the problem of words being equal to 1 in ¥T,—and this last problem is
the extended word problem for ¥ relative to the empty set of symbols.

Where the group presentation T has as symbols ¢,, g,, -+, gx, J» and
non-trivial operation rules S, <> X, - -+, X, <> X, let T_ be the following
group presentation where m is a fixed integer, 0 = m < N. We omit the
barred symbols and trivial rules.

11 Presented to the American Mathematical Society, Houston, December 1955, (abstract,
Bulletin AMS, 62 (1956), 148). Michael Rabin has noted (independently) a very simple
argument for the general result given here using free products of groups with amalga-
mations. Our interest in this problem of course arises from the unsolvability result of
[2], Parts I-IV.
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T_
B-1 91 Gu v, 90 K
N -1 3 e3,v=1,2,---, M;
-2 kg o9k t=1,2,---,m
We now use I' as a variable for words on 91, 91, ***, 9m, O» and, as ex-
emplified above, = for words on 3.

THEOREM XV. kX Xk if and only if thereisa I' such that Zq I

LEMMA 38. For any group presentation T: (38.1) kI'—4_ Uk; (38.2)
kgl—5_ gk, t=1,2, .- m.

Using the rules U_.,, Lemma 38.1 follows by induction on |I'|; using
the rules U_ ,, Lemma 38.2 follows by Lemmas 2 and 4.3.

Let ¥. be the group presentation obtained from ¥ _ by adding the rules
kg.<> gk, ¢c=1,2,---, m. For T. we take the marker convention stipu-
lating the universal k-qualification with all other qualifications null. In a
k-free proof of k=/=k in T. each step contains a single k-marker (Lemma
11) which we call &°.

Lemma 39. If kXt 3k, then k2t « =k in which every k-shift is
rightward.

If H(kZ/Sk) is a k-free proof in T . containing D, D > 0, k-shifts which
are not rightward, then H|| X|.Lis a k-free proof in ¥. with D—1 k-shifts
which are not rightward. Thus Lemma 389 follows by induction on D. In
Diagrams X and [, §, is g, where ¢, is g, and vice versa.

K L
k= mns(gLgl,
(- —_
K, N GGG
(—_A_—‘ |—
E'g:k"Z" 0
| S— —
0 NG eges”
— - J
S RgRs del(§291)
— K3 Y kogézu
-
/o)
*k

We now show Theorem XV. Suppose Z\—4 I' for some I'. The 24 T
by the rules U_,, kx4 kI' by Lemma 3.4, kT'—+_ I'k by Lemma 38.1,
hence k-5 Xk by Lemma 3. Suppose we are given an H(k°Z/Zk°) in
¥_. Noting that ¥_ is a k-translation group presentation, by Reduction
E (Section 15 of Part II) there is a k-free H'(k°S/=k") in T_ but which we
regard as a proof in .. By Lemma 39, there is a k-free H "(K'Z/ZK") in
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. in which all k-shifts are rightward. By Reduction G (of Part IV, Sec-
tion 31) and Lemma 11, there are proofs T(k°=/2'k’S") and U(Z'k°Z [Zk°)
in . for some 3’ and X", where T contains no k-shifts, U no operations
right of k. (The k-freeness is clear from G3.) By Lemma 6, T(3/3") is
a valid k-free proof in <. since no operations of T are applied to k*—hence
also a valid proof in ¥. It thus remains only to show (XVx) 3/ is a word
on gy, g1, ***, Um, Om. But consider the proof U(Z'k’Z"[2k°). Since no oper-
ations of U are applied right of k° and the last step of this proof has no
markers right of k° each marker of X' must leave the proof via a k-shift.
This shows (XV=), hence Theorem XV.

36.” A gemeralization of the word problem. We now relax the condi-
tion that the operation rules of a system must be finite. We show, using
the techniques of Part II, that the word problem for a certain presenta-
tion of a group, consisting of a finite set of symbols and an infinite— but
recursively given — set of operation rules, is unsolvable.

Where S is any set of ordered pairs of positive integers, let Ty be the
following group presentation, omitting barred symbols and trivial rules.
Ty

Bs: 2, 2y, Xy,

Ug: zrayqer” <> xiqu;” for each (y, v) of S.

zo1

THEOREM XVI. 2lqa;”t-g 23qv;” if and only if there is a (¢ such that
(¢, v) is a member of S.

It is immediate that Theorem XVI implies the unsolvability result just
mentioned; for we may take S to be a set S, with the following proper-
ties: (1) There is a recursive procedure to determine for an arbitrary pair
of positive integers, (m, n), whether or not (m, n) is a member of S. (2)
There is no recursive procedure to determine for arbitrary » whether or
not there is an m such that (m, n) is a member of S,. Such an S, is known
to exist.®

In the demonstration of Theorem XVI the group presentations Ty, Ty,
and ;" are all to have as unbarred symbols x,, 2,, ¢; Uy, Uy, and Uy’ are
U with z*alqr;” <> xigx; replaced by xlqer™ < xigxy”, qxi’x; <> €7 23q,
and x)q < x3q respectively and with z <> 1, z-insertions, and -deletions

12 Included in an N.S.F. interim report on contract G-1974, May 28, 1956, but in a form
more akin to [2], Part V than Result a as presently shown. The idea was evolved from
the corresponding result for the infinitely generated, infinitely related abelian case, com-
municated to us by Hillary Putnam and Dana Scott in September 1955. The infinitely-
generated infinitely-related (general) case is shown unsolvable by J. L. Britton in [5].

43 See, e.g., [9]
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omitted. We write -, ', ---, for g, g, - - -, Pu. for ziqaz', a=1, 2,
and assume the universal ¢-qualification with all other qualifications null
in showing this theorem. Each of the following statements implies the
succeeding one:

PP, iErase %-symbols
from the ¢ proof (Cf. Section 29).
Pll.'_,PZL
f {By Lemma 37
[ and Theorem XIV (Section 33).
Pl:.'_'"Pm
{As Ts is a g-translation group
presentation, by Reduction E.
Plc'_';IPZL
{By Lemma 37
land Theorem XIV (Section 33).
PILI_(’IP&
Erase all symbols right of ¢
{m each step of the Ty proof.
Tighg 1q
} See i below.
Liq = qa25q
l See ii below.
riq <> xg is a J
rule couple of Uy’
} By the definition of Z5’.
Qe <> xqat is a

rule couple of 1.

All proofs referred to now are to be g-free and in Ty'.

i. Order all proofs first by the number of g-shifts; for two proofs with
the same number of ¢-shifts, the one with the fewer Z-deletions precedes.
(This is the ordering of the first paragraph of Section 26.) We assume
given an H(xiq/xiq) with N, > 0 and show (XVIY) there is an H'(x.q/xq)
preceding the proof H in this ordering. Let ¢° be the single g-marker
of the procf H. (Lemma 11.) By Reduction F the proof H may be assumed
not ¢’-redundant (Cf. Theorem VIII’, Section 25) and x-malcev by Reduec-
tion A. According as O,, the first z-deletion of H, is del(xZi}), 1 + 7,
or del(x¥zi"), (XVIT) follows by Reduction D or B. If O, = del(z%xY), x*
entering the proof via a ¢°-shift, then, inductively, the conclusion of a ¢°’-
shift following ins(Zi-xl’) and applying xfg— xfq is of form AZI'Bxixiq°C,
8 #+ v, B being z-free and not of form xB’. Since H is not ¢°-redundant
the left-most xz-marker of xf does not leave the proof via the next ¢’-shift
which therefore applies x7g — x3q, for some 7, 7 < 6. Thus this case
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cannot occur.

ii. If V,0,0,V, effects an z-free proof of xiq/xsq in 5’ and O, and O,

are converses, so does V,V, so that we may assume a given H(x'q/x'q) in
s not ¢’-redundant. By exactly the same argument as the last case of
i, H consists of a single operation.

A kind of reciprocal relationship holds between the unsolvability result
just shown and B. H. Neumann’s exhibition [17] of a group given by a
finite number of symbols and infinite number of operation rules but hav-
ing no finite presentation. Both his proof and the present argument
depend upon the non-trivial rules of the presentation discussed being in-
dependent, i.e., for each non-trivial A < B, not A—B in the system ob-
tained by discarding A <> B.# Theorem XVI shows Neumann’s Theorem.
Most simply, use Ty with v having the range of the positive integers.*
But, conversely, as pointed out to us by John Milnor, and Dana Scott in
May 1956, Neumann’s example can be adapted to fit the present argu-
ment for the unsolvability result using Craig’s device [6] in the same way
it has been used here. Add 2, 2z, to Neumann’s presentation and take
zc¢, = 1, for each (g, v) of S, as the non-trivial rules, ¢, being as defined
by Neumann.*

Lastly we note how simply the results of this section may be obtained
using the theory of free products of groups with amalgamated sub-
groups, the following argument being due entirely to Graham Higman.-
We show directly for £, where v has the range S’, a set of non-negative.
integers including zero, that (x) not P, —'P, unless ¢ is in S’. Let F(x,, q)
be the free group with the free generators x,, ¢. Then the elements
P, = xYqx>, v in S’, are free generators of the subgroup they generate.
(See [17], page 514, 4.4.) Hence this subgroup does not contain P, if ¢ is
not in S’. Form the free product of F(x,, q) with F(z,, ¢'), identifying
the subgroup generated by the P,, with that generated by P, = xlq'x;”,
y in S’, according to the isomorphism P,, corresponds to P,,. Thus P,, ¢
not in S’, is not in the identified subgroup, hence P, # P,. Since ¢ =
P, = P, = ¢' we may eliminate ¢’. This shows (*).

4 Tt has been shown by B. H. Neumann in [17] that if a group has a finite presenta-
tion then for any finitely-generated infinitely-related presentation of that group all but
a finite number of the defining relations are dependent.

4 But Graham Higman has shown that the group just described can be embedded in a
finitely presented group. Cardinality considerations alone show that there exist finitely-
generated infinitely-related groups that cannot be so embedded, but an example has yet
to be exhibited.

16 As still another alternative one can use the two-generator embedding result of
Higman, Neumann, and Neumann [8] together with the infinite-generator results mentioned
in footnote 42. The resulting defining relations would of course be rather complicated.
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37. Connections with a theorem of Higman, Neumann, and Neumann.
There is a well-known result [8] (or see [18]) by these mathematicians
that for any group G with isomorphic subgroups A and B there is an ex-
tension of G in which A and B are transforms of each other. In Septem-
ber 1955, Ralph Fox pointed out to us that Theorem XV of Section 33
was easily obtained by the methods of the theorem of [8] just described.
In November 1957, Higman explained to us how Theorem III (stated on
page 219) could also be obtained by the argument of [8].

To what extent the other combinatorial arguments about the word
problem used in this article can be replaced by more familiar group
theoretic arguments is an interesting question.”

UNIVERSITY OF ILLINOIS

7 (Added in proof.) A brief account of the present article appears under the same
title in Proc. Natl. Acad. of Sc., vol. 44 (1958), pp. 1061-1065. In line 15 from bottom
of page 1062, for I" read I',.

K. A. Hirsch’s English translation of [19] now appears as vol. 9, pp. 1-122, of the
Amer. Math. Soc. Translations, Series 2. The present author regrets that at this writing
he has not had the opportunity for a detailed study of that translation and cannot, there-
fore, compare Novikov’s argument with this paper. (But see J. L. Britton’s remarks
noted in footnote 3 of this article.) Britton’s review of [19] now appears in The Jour.
Sym. Logic, vol. 23 (1958), pp. 50-53. In this review Britton says of [19]: “‘. ... the
reviewer now firmly believes that this proof is correct and contains no serious gaps.”
Cf. Markov [14].

Britton’s proof of the unsolvability of the word problem (see our footnote 3) now
appears under the title The word problem for groups in Proc. London Math. Soc., Series
3, vol. 8 (1958), pp. 493-506. The argument uses his earlier paper, Solution of the word
problem for certain types of groups II, Proc. of the Glasgow Math. Association, Vol.
111 (1957), pp. 68-90. (His interesting exploitation of the theorem of Higman, Neumann,
and Neumann referred to in Section 37 of this paper was effected independently of the
remarks of Fox and Higman mentioned in that section. The author should like also to
note here that at the time of his original announcement (see footnote 3) Britton was
unaware of the existence of [2].)

Michael Rabin’s [21] now appears under the title Recursive umsolvability of group
theoretic problems in the Ann. of Math., vol. 67 (1958), pp. 172-194. Reference should
also be made here to S. 1. Adan, The algorithmic umsolvability of the problem of
checking certain properties of groups (in Russian), Dok. Akad. Nauk SSSR, vol. 103
(1955), pp. 533-535; and, also by Adan, Finitely generated groups and algorithms (in
Russian), Uspéhi mat. nauk, vol. 12 no. 3 (1957), pp. 248-249. Reviews of this work of
Adan by Andrzej Ehrenfeucht appear in The Jour. Sym. Logic, vol. 23 (1958). (Rabin’s
work [21] was carried out without his knowing of Adéan’s 1955 paper.)

The abstract by G. S. Céjtin, Dok. Akad. Nauk SSSR, vol. 103 (1955), pp. 370-371,
gives, independently, the result of Dana Scott in [22]. See the review by Mostowski,
the Jour. of Sym. Logic, vol. 22, (1957), page 219.

A review of [2] by Michael Rabin now appears in The Jour. Sym. Logic, vol. 22
(1957), pp. 372-374. As the author wishes [2] itself to be a readable and self-contained
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proof of the unsolvability of the word problem, it is suggested on the basis of certain
comments by Rabin in his review that footnote 38, page 228 of [2] Part VI be amplified
by the addition of the following remark to this footnote as presently given: ‘‘These
processes introduce no new g-deletions. For let Diagram .1 with ¢ everywhere replaced
by % be rep the proof H of Theorem IX such that Ny=0. Then, since Ty contains no
rules of form Uk, VgoW «—Pq.Qk.R, ¢q° does not occur in the subproof k{,E/ngi. Note
now that it is only this subproof which is modified.”
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