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Abstract

The percolation under Quantum Hall Effect conditions in inhomogeneous medium has been studied. The lower and upper bound

possible values for effective Hall conductivity values have been established. It has been shown that these bound values for Hall

conductivity differ from bound values for metal conductivity. It comes from unusual character of current percolation under Quantum

Hall Effect conditions. The physical sense of obtained results has been discussed.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the study of the current percolation in inhomogeneous
medium the problem of the effective conductivity of the
medium se is appeared. The effective conductivity has been
determined as a coefficient of proportionality between
average electric current ~J ¼ h~ji and average electric field
~E ¼ h~ei

~J ¼ se~E. (1)

The effective conductivity has been easily established
from boundary conditions for the simple case of layered
system, consisting of two alternating layers with different
conductivities s1 and s2 and equal widths d1 ¼ d2. In the
case, when electric current flows perpendicular to the
interface of layers, the normal component of electric
current is conserved:

j1n ¼ j2n ¼ J=2 (2)

and the resistance has been averaged:

r ?¼ hri ¼
1

2
ðr1 þ r2Þ. (3)
e front matter r 2007 Elsevier B.V. All rights reserved.
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In the other case, when electric current flows along
layers, the longitude component of electric field is
conserved:

e1t ¼ e2t ¼ E=2 (4)

and the conductivity has been averaged:

sjj ¼
1

2
ðs1 þ s2Þ. (5)

In two-dimensional heterogeneous medium some exact
results for effective conductivity of the random medium
have been obtained due to the dual symmetry. Firstly it
was the Keller theorem [1] and secondly a general
approach, which has been independently put forward in
Dykhne works [2]. It has been shown, that the effective
conductivity of two-phase medium at the percolation
threshold (at equal phase concentrations) equals to:

se ¼
ffiffiffiffiffiffiffiffiffiffi
s1s2
p

. (6)

The duality relation for effective conductivity has been
established at arbitrary phase concentrations:

seð�Þseð��Þ ¼ s1s2, (7)

where � ¼ X � X c is the deviation from percolation
threshold X c ¼ 1=2. (We call the system as dual system
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relative to the initial one if it differs from initial only by the
replacement of phases and if it has the same geometric
phase placement). This relation has been obtained due to
the additional symmetry of the two-dimensional equations
for the constant current and Ohm’s law relative to
rotational transformations (see below Section 3). It has
been shown that formula (9) has a sense of stationary point
for Dykhne’s transformations in Ref. [3]. In the works of
[4,5] the local distributions of currents (fields) have been
founded for ‘‘chess-board’’ square structures by the
method of conformal map additionally.

In the general case the bound values for effective
conductivity have been obtained:

1

s

� ��1
psephsi. (8)

Here hai means the average value of the quantity a. Briefly
remind how these results have been obtained [6]. For this
aim the expression for Joulle dissipation energy has been
used.

Q ¼
1

V

Z
ð~j;~eÞdV ¼ ~J~E ¼ se~E

2
. (9)

If we insert the value for average current h~ji ¼ ~J in the
integral of formula (9), so the lower bound value of
effective conductivity in the formula (8) has been obtained .
If the value for average electric field h~ei ¼ ~E has been
inserted, so the upper bound value of formula (8) has been
followed. One can see estimations for bound values of
effective conductivity in more details in review [7].

In this paper the percolation under quantum Hall effect
(QHE) conditions ðsxx ¼ 0;sxy ¼ constÞ has been studied.
Feature of such a percolation under QHE conditions
consists of that the Hall current is always directed
perpendicular to the electric field:

~j ¼ sxy½~n;~e�. (10)

Here ~n is an unit vector, which directed along magnetic
field and perpendicular to the considered plane. So the
dissipation always equals zero under QHE regime: Q ¼ 0,
that is, the Hall phases are non-dissipative phases. It means
also that the we cannot apply above reasonings to obtain
the bound values for effective Hall conductivity under
QHE conditions and cannot estimate possible values for
Hall conductivity of heterogeneous medium by usual way.

Also from standard boundary conditions (2), (4) and the
expression for Hall current (10) the new boundary
conditions have been obtained:

j1n ¼ 0; j2n ¼ 0. (11)

The another problem comes from these new boundary
conditions, because it seems that there is no a transfer
(current) through interface of phases accordingly (11), for
exception, only few singular points. Consequently, it seems
too that the effective Hall conductivity must be equal to
zero everywhere: se

xy ¼ 0.
But as it will be shown below it is not so due to
percolation through singular points. In this paper we find
the bound values for effective Hall conductivity and
explain the physical sense of percolation in composite
systems under Quantum Hall Effect conditions. The paper
is constructed as follows. In Section 2 the usual layered
systems under QHE conditions have been considered. The
effective Hall conductivity tensor has been obtained for
layered systems. In Section 3 the effective Hall conductivity
has been calculated for random two-phase systems. The
Dykhne’s method of rotational transformations has been
used to solve this problem. It was shown that the Hall
conductivity bound values have been determined by the
connectivity of systems. In Section 4 the simple model of
circular metal inclusion has been considered to clarify the
physical sense of current percolation under QHE condi-
tions. In Section 5 short discussion of obtained results has
been given.

2. Percolation in layered systems under QHE conditions

To understand the features of current percolation under
QHE conditions let us consider the simple model of layered
media, consisting of two alternating layers with equal
widths and different Hall conductivities sð1Þxy and sð2Þxy . Let us
assume all layers are directed along y-direction.
In the case when electric current flows perpendicular to

the phase interfaces, the electric field directs along layers
according (10) for Hall current and it equals to the average
value. It has been followed from boundary conditions (4).
Correspondingly, we obtain the following formulae for
effective Hall conductivity in this case:

se
xy ¼ hsxyi ¼

1

2
ðsð1Þxy þ sð2Þxy Þ. (12)

To check this result we calculate the distributions of
electric fields and currents at every phase, using the
definitions for averaged electric field and averaged electric
current:

sð1Þxy h½~n;~e�i1 þ sð2Þxy h½~n;~e�i2 ¼ sðeÞxy ½~n; ~E�,

h~ei1 þ h~ei2 ¼ ~E. ð13Þ

After simple calculations we obtain the formula for electric
fields (currents) at every phase:

h~ei1 ¼ ~E
sðeÞxy � sð2Þxy

sð1Þxy � sð2Þxy

; h~ei2 ¼ ~E
sð1Þxy � sðeÞxy

sð1Þxy � sð2Þxy

. (14)

Inserting the formula (12) into expressions (14) it is easy to
see that

h~ei1y ¼ h~ei2y ¼ Ey=2. (15)

So we find the solution with constant electric field.
It is necessary to clear the physical sense of obtained

result for effective conductivity (12). Because according the
boundary conditions in the case of QHE conditions
j1n ¼ 0; j2n ¼ 0 the Hall edge current cannot cross
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interfaces of conducting media, for exception, only few
singular points. In the studied case of layered medium this
singular point has been placed at infinity. The considered
Hall edge currents, which flow along interfaces, were
crossed at this singular point of infinity and the non-zero
value of Hall conductivity has been appeared as result of it.
In the case of ‘‘chess-board’’ systems these singular points
have been appeared at the corners of structures—in more
details—see for example [8]. And the effective Hall
conductivity has been formed due to percolation through
these singular points. So the effective Hall conductivity
does not equal to zero.

Let us obtain another solution with constant electric
current. For this aim we study the case, when electric
current flows along layers. Let suppose that in this case the
electric current is constant:

h~ji1y ¼ h
~ji2y ¼ Jy=2. (16)

(Namely, its y-component of current, which is directed
along layers). It would be stressed that this supposition is
not obvious and we need check it further.

After calculations for averaging quantities we obtain the
formula for Hall conductivity in the form:

se
yx ¼

2sð1Þxys
ð2Þ
xy

sð1Þxy þ sð2Þxy

. (17)

Inserting this formula (17) for expression for electric fields
and for Hall currents at every of phases (14) we exactly
confirm our supposition (16):

h~ji1y ¼ h
~ji2y ¼ Jy=2 ¼

sð1Þxys
ð2Þ
xy

sð1Þxy þ sð2Þxy

Ex. (18)

Consequently, the effective Hall conductivity tensor for
layered system under quantum Hall effect conditions has a
following form:

ŝe
xy ¼

0
1

2
ðsð1Þxy þ sð2Þxy Þ

2sð1Þxys
ð2Þ
xy

sð1Þxy þ sð2Þxy

0

0
BBB@

1
CCCA.

So above consideration shows that the problem of
calculation of effective Hall conductivity under QHE con-
ditions is not obvious.

3. Dykhne approach, based on rotational transformation

To solve the bound values problems for Hall conductiv-
ity in general case of composite materials let us consider the
two-dimensional two-phase conducting medium in more
details. (The ‘‘check-board’’ structure is a simple model of
such a medium.) It has been described by the constant
current (dc) equations and Ohm’s law:

div~j ¼ 0; curl~e ¼ 0; ~j ¼ s~e. (19)

Here~j and~e are the electric field and current, s is a medium
conductivity. In two-dimensional case, which only will be
considered below, these equations are invariant relative to
rotational transformations [1,2,9]:

~j ¼ b½~n; ~e0�; ~e ¼ d½~n;~j0�, (20)

where ~n is an unit vector, normal to the ‘‘check-board’’
plane.
Due to the its linearity the Ohm’s law likewise holds in

the new (primed) system:

~j
0
¼ s0~e0 (21)

and the following expression has been obtained for the
conductivity of the primed system:

s0 ¼
b

ds
. (22)

The analogous relation has been obtained for effective
conductivities also

s0e ¼
b

dse
. (23)

Choosing the coefficients b; d as following coefficients:

b ¼
1

d
¼

ffiffiffiffiffiffiffiffiffiffi
s1s2
p

, (24)

we obtain the primed system, which differs from initial one
by the replacement of phases only:

s01 ¼ s2; s02 ¼ s1. (25)

The new primed system is dual to the initial one, that is

s0eð�Þ ¼ seð��Þ. (26)

And the above described duality relation has been
followed—formula (7).
In a magnetic field ~B, directed perpendicular to the

plane, the Ohm’s law has a tensor form:

~j ¼ ŝ~e, (27)

where ŝ is a conductivity tensor in a magnetic field

ŝe
xy ¼

sxx sxy

syx syy

 !

with components sxx ¼ s=ð1þ b2Þ, and
sxy ¼ �syx ¼ sb=ð1þ b2Þ, where b ¼ mB=c is a Hall
factor, m is a particle mobility, c is a light velocity.
In this case general linear rotational transformations

have been used:

~j ¼ a~j0 þ b½n; ~e0�; ~e ¼ c~e0 þ d½n;~j0�. (28)

For the primed system we again obtain the Ohm’s law in a
tensor form:

~j0 ¼ ŝ0~e0 (29)
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and the following expressions for components:

s0xx ¼
sxxðacþ bdÞ

ðsxxdÞ2 þ ðsxyd þ aÞ2
,

s0xy ¼
s2xxcd þ ðsxyc� bÞðsxyd þ aÞ

ðsxxdÞ2 þ ðsxyd þ aÞ2
ð30Þ

4. Symmetry transformations and Plateau of Hall

conductivity

Below we consider the random mixture of the two
Hall phases and we show that the effective Hall con-
ductivity of this medium has constant value (plateau),
which is equal to the value of first or second Hall
phases:

se
xy ¼ sðiÞxy; i ¼ 1; 2. (31)

Here the Hall phase is the phase under quantum Hall
effect conditions ðsxx ¼ 0;sxy ¼ constÞ. To solve this
problem we consider a general case and then we make
the transition to QHE regime. The case of random mix-
ture of metal phase and Hall phase has been considered
at [10].

Firstly we find all possible symmetry transformations.
There are three symmetrical transformations at least—
see [8,11]. The initial two-phase system in a magnetic field
has been transformed by the rotational transformations
to the dual system, which differ by replacement of the
phases:

ŝ01 ¼ ŝ2; ŝ02 ¼ ŝ1. (32)

The coefficients a; b; c; d have been determined by the
conditions (32). Consequently, the effective conductivity
tensor of the primed system equals to the conductivity of
dual system:

ŝ0eð�Þ ¼ ŝeð��Þ (33)

and the following duality relation for effective character-
istics has been obtained:

se
xxð�Þs

e
xyð��Þ þ se

xxð��Þs
e
xyð�Þ

sxxð�Þ þ sxxð��Þ
¼

sð1Þxxs
ð2Þ
xy þ sð2Þxxs

ð1Þ
xy

sð1Þxx þ sð2Þxx

. (34)

At second transformation the primed system differs from
initial only by inversion of the magnetic field direction:

s0xx ¼ sxx; s0xy ¼ �sxy. (35)

The general Dykhne’s relation, connected the components
of the effective conductivity tensor at arbitrary phase
concentrations, has been obtained:

½ðse
xxð�ÞÞ

2
þ ðse

xyð�ÞÞ
2
�cd þ se

xyð�Þðac� bdÞ � ab ¼ 0. (36)

At the third transformation the primed system differs
from initial one by the replacement of the phases and by
inversion of the direction of magnetic field:

s0ð1Þxx ¼ sð2Þxx ; s0ð2Þxx ¼ sð1Þxx ; s0xy ¼ �sxy. (37)
In this case the components of the two systems have been
connected by the following relations:

se0
xxð�Þ ¼ se

xxð��Þ; se0
xyð��Þ ¼ �s

e
xyð�Þ. (38)

For effective characteristics we obtain:

se
xxð�Þs

e
xyð��Þ � se

xxð��Þs
e
xyð�Þ

se
xxð�Þ � se

xxð��Þ

¼
sð1Þxxs

ð2Þ
xy � sð2Þxxs

ð1Þ
xy

sð1Þxx � sð2Þxx

. ð39Þ

Let us make the transition to the quantum Hall effect
regime for first phase: sð1Þxx ¼ 0;sð1Þxy ¼ const. We suppose
too that infinite cluster from the first Hall phase has been
formed. It means that the concentration of first Hall phase
is more than percolation threshold X c and that diagonal
component of conductivity tensor is equal to zero:
se

xxð�Þ ¼ 0. At first step we consider second phase as metal
phase. And after this we make the second step—transition
for quantum Hall Effect regime ðsxx ¼ 0; sxy ¼ constÞ for
second phase. We need make this transition step by step
because the uncertain relation 0 : 0 has been appeared in
general case.
As it is easy to see from the formulae (34) and (39) that

until there is a percolation on the first Hall phase the
effective non-diagonal component has constant value and
equals to the value of first Hall phase.

se
xy ¼ sð1Þxy . (40)

When the concentration of first Hall phase is below than
the percolation threshold, the percolation is going through
second phase. Repeating the same reasons we obtain that
the effective Hall conductivity equals to the value of the
second Hall conductivity:

se
xy ¼ sð2Þxy . (41)

These results were in accordance with general Dykhne’s
relation, which connects the components of the effective
conductivity tensor in a magnetic field at arbitrary
concentrations—formula (36). It is easy to see that
accordingly this relation in the heterogeneous Hall medium
the effective Hall conductivity has a constant value, which
did not dependent on phase concentrations.
We can obtain these both results from above results (14).

In the case of percolation on second Hall phase (the infinite
cluster forms from second Hall phase only) it means that if
se

xy ¼ sð2Þxy that electric field at first phase is equal zero:
hei1 ¼ 0. And vice verse if se

xy ¼ sð1Þxy that electric field at
second phase is equal zero: hei2 ¼ 0.
It is necessary to stress that as follows from results (40)

and (41) the values of the effective Hall conductivity do not
restricted by the bound values (8), which have been correct
for usual diagonal conductivity. In the case of quantum
Hall effect the bound values for effective Hall conductivity
have been determined by the connectivity of the system
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(existence of percolation cluster) and are equal to:

minðsð1Þxy ; s
ð2Þ
xy Þpse

xypmaxðsð1Þxy ;s
ð2Þ
xy Þ. (42)

5. Distribution of electric fields

To clarify the physical sense of above results let us
consider the metal circular planar inclusion of radius R,
which placed in the Hall medium. To solve problem let us
use the two-dimensional character of problem and use
complex variable function methods. Let us introduce the
complex variable z ¼ xþ iy and complex analytic func-
tions of electric current and electric fields:

jðzÞ ¼ jxðzÞ þ ijyðzÞ; eðzÞ ¼ exðzÞ þ ieyðzÞ, (43)

which have been connected by Ohm’s law:

jðzÞ ¼
s

1� ib
eðzÞ. (44)

In the complex variable plane under quantum Hall effect
conditions Ohm’s law has the form:

jðzÞ ¼ i
s
b

eðzÞ. (45)

So usual boundary conditions have been written as
follows:

Re½tjðtÞ�1 ¼ Re½tjðtÞ�2; Im t
is
b

jðtÞ

� �
1

¼ Im t
1þ ib

s
jðtÞ

� �
2

.

(46)

Here t ¼ cosðyÞ þ i sinðyÞ is the unit normal, the notation 1
is described the Hall medium, the notation 2 is described
the circular inclusion. Accordingly (46) for case of the
boundary conditions between metal inclusion and Hall
medium we obtain that the electric field must be equal to
zero inside of metal inclusion:

E2ðzÞ ¼ 0; jzjoR. (47)

It is easy to understand this result. Accordingly Prigogine’s
theorem for dissipation of energy the percolation of
current has a minimal dissipation. The Hall medium is
the non-dissipative medium, so current prefers to per-
colate on Hall phase only without any dissipation. But
the electric current in metal inclusion will be zero only
if the electric field will be zero in metal inclusion. Of
course the same result has been obtained when we con-
sider this problem exactly [12]. In this case the transition
for Hall medium has been corresponded to the limiting
cases:

s1!1; b1!1;
s1
b1
¼ const. (48)

From analyticity of the functions j1ðzÞ and j2ðzÞ it follows
that these functions are represented by the converging set
expansions in its areas of definition:

j1ðzÞ ¼ A0 þ
A1

z
þ

A2

z2
þ � � � ; jzj4R
and

j2ðzÞ ¼ B0 þ B1zþ B2z
2 þ � � � ; jzjoR. (49)

It is necessary to take account that the current is
homogeneous at infinity j1ð1Þ ¼ hJi, and at the inclusion
there are no singularities. So we need to satisfy the
boundary conditions (46). After calculations the following
results have been obtained:

j1ðzÞ ¼ hJi � hJ̄i
R2

z2
; j2ðzÞ ¼ 0. (50)

Here h~Ji is average current and hJ̄i is the complex
conjugated current (50). This result means that the negative
dipole moment of the circular inclusion has been appeared
when the current flows around metal circular inclusion. So
the electric field from dipole moment and external electric
field h~Ei have been exactly compensate each other,
and resulting electric field has been equal zero—see
formula (47).
This result has a clear physical sense. The current

percolation in inhomogeneous medium goes with a
minimal dissipation. In our case there is such a possibi-
lity—the percolation on Hall phase with zero dissipation
and it has been realized.

6. Conclusion

These results for bound values of effective Hall
conductivity have been connected with unusual character
of current percolation in the quantum Hall effect regime.
In this case the current always is perpendicular to an
electric field:

~j ¼ sxy½~n;~e�, (51)

where n is a unit normal to the plane. Then from the
equation div~j ¼ 0 with taking account of the potentiality
of an electric field curcl~e ¼ 0 we obtain:

~e�rsxy ¼ 0 (52)

that is the current lines are not intersected the lines of
constant values of the quantity sxy [13]. In other words, the
Hall current does not percolate from one phase to another
and was ‘‘frozen’’ in each of phases. The constant value of
the plateau sxy has been explained by this fact. And the
value of the plateau has been determined by the value of
the percolating phase, when infinite cluster of certain
first or second phase has been appeared. This solution
has a sense of stable point for Dykhne’s transformations
too [14].
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