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Localized states in a strong magnetic field: Resonant scattering and the Dicke effect

T. V. Shahbazyan* and S. E. Ulloa
Department of Physics and Astronomy, Condensed Matter and Surface Science Program, Ohio University, Athens, Ohio 4570

~Received 2 October 1997!

We study the energy spectrum of a system of localized states coupled to a two-dimensional electron gas in
a strong magnetic field. If the energy levels of localized states are close to the electron energy in the plane, the
system exhibits a kind of collective behavior analogous to the Dicke effect in optics. The latter manifests itself
in a ‘‘trapping’’ of electronic states by localized states. At the same time, the electronic density of states
develops a gap near the resonance. The gap and the trapping of states appear to be complementary and reflect
an intimate relation between the resonant scattering and the Dicke effect. We reveal this relation by presenting
the exactsolution of the problem for the lowest Landau level. In particular, we show that in the absence of
disorder the system undergoes a phase transition at some critical concentration of localized states.
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I. INTRODUCTION

Electronic states of two-dimensional~2D! systems in a
magnetic field in the presence of impurities have been in
sively studied during the last two decades.1–16 The macro-
scopic degeneracy of the Landau levels~LL’s ! makes impos-
sible a perturbative treatment of even weak disorder and c
for nonperturbative approaches. For high LL’s, the se
consistent Born approximation of Ando1 was shown to be
asymptotically exact for short-range disorder,8,14 while in the
case of long-range disorder the averaged density of st
~DOS! was obtained within the eikonal approximation.14 For
low LL’s and uncorrelated disorder, the problem contains
small parameter and neither of those approximations app
Nevertheless, for the lowest LL, the exact DOS in a whi
noise potential has been obtained by Wegner by mapping
problem onto that of the 0D complexf4 model.6 This re-
markable result was extended to non-Gaussian distribut
of random potentials by Bre´zin, Gross, and Itzykson within
the functional-integral approach,7 and recently to multilayer
systems.16

In the works mentioned above, the energy levels of
impurities played no role in the scattering. Experimenta
this is well justified since usually the random potential com
from charged donors with energy levels substantially hig
than the Fermi energy in the plane. The Gaussian form of
distribution function implies that a random potential is cr
ated by a large number of relatively weakly scattering imp
rities. The LL shape is then described by a ‘‘smooth’’ curv
symmetric with respect to the LL center. In the case of po
like scatterers with constant scattering strength, the DO
strongly asymmetric,2,3,7,9 vanishing below~above! the LL
center for a repulsive~attractive! potential. An asymmetry
caused by deviations from the Gaussian distribution,
been observed in very-low-mobility heterostructures.17

The situation is quite different in the presence of localiz
states~LS’s! with energies close to the electron energy in t
plane. A large number of such LS’s can have a dram
effect on the properties of the 2D electron gas. Such exp
mental structures became available with recent advance
fabrication of arrays of ultrasmall InAs quantum dots with
570163-1829/98/57~11!/6642~12!/$15.00
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unusually narrow distribution of parameters.18–20 With typi-
cal sizes of less than 20 nm and variations of less than 1
an array of such dots with density 1010–1011 cm22 can be
produced at some preset distance from a plane of h
mobility electrons.21 As the Fermi energy in the plane i
brought close to the levels of the dots, the scattering beco
strongly enhanced. It was, in fact, observed in Ref. 21 t
the mobility dropped by two orders of magnitude when t
thickness of the tunneling barrier between the dots and
plane was reduced.

In this paper we study the electronic states of a sys
consisting of a 2D electron gas in a strong magnetic field
pointlike LS’s with energy levels close to the electron ener
in the plane. It is important to realize that thecombined
effect of such LS’s differs drastically from that of a colle
tion of isolated LS’s. The reason lies in a specific type
coupling between LS’s, which originates from electron
transitions between LS’s and the electron plane. For an
lated LS, such transitions merely lead to a broadening of
LS level. However, in the case of many LS’s, the electron
the ‘‘course’’ of a single transition between a particular L
and the plane ‘‘visits’’ also theother LS’s, propagating in
the plane between successive transitions. As a result,
LS’s become coupled via the states in the plane. This c
pling differs qualitatively from the usual overlap of the L
wave functions, and leads to the formation of a certainco-
herentstate.22

Let us illustrate the role of such coupling between LS
~in the absence of a magnetic field! on the following ex-
ample. Consider first an isolated LS with energye1. In the
absence of tunneling, the spectral function~SF! of the LS is
simply S0(v)5d(v2e1). Turning on the tunneling trans
forms the SF into the Lorentzian

S~v!52
1

p
Im

1

v2e11 iW
5

1

p

W

~v2e1!21W2 , ~1!

with

W5p(
k

ut1ku2d~v2Ek!, ~2!
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57 6643LOCALIZED STATES IN A STRONG MAGNETIC . . .
wheret1k is the amplitude of tunneling between the LS a
statek in the plane. The meaning of Eq.~1! is, of course, that
in the presence of tunneling the LS level acquires a wid
W215t being the decay time~we set\51).

Let us now place another LS with energye2 at some
distance from the LS 1. Then a simple generalization of
~1! gives

S~v!52
1

p
Im

1

2
Tr

1

v2 ê1 iŴ
, ~3!

where ê is a diagonal 232 matrix with eigenvaluese1 and
e2, and

Wi j 5p(
k

t iktk jd~v2Ek! ~4!

is the matrix of widths. The key observation is that the m
trix elements ofŴ are not independent, but instead satisfy
certain relation.22 This relation follows from the definition o
t ik as the overlap between wave functions of LSi and of the
statek in the plane. Since the latter is simply a plane wa
t ik contains a phase factor depending on the in-plane coo
nate r i of the LS: t ik5eik–r i t i , with uku5kF52p/lF , lF
being the Fermi wave length. For diagonal elements,Wii
[Wi , the productt iktki in Eq. ~4! is independent of the
orientation of k. For nondiagonal elements, however, t
productt iktk j contains the factoreik•r i j , r i j being the distance
between the LS’s. One then obtains from Eq.~4!

W125qAW1W2, q5J0~r 12kF!, ~5!

whereJ0(x) is the Bessel function. For the simplest case
identical LS’s,e i5e, Wi5W andW125qW, Eq. ~3! yields

S~v!5
1

pF1

2

W2

~v2e!21W2
2

1
1

2

W1

~v2e!21W1
2 G , ~6!

with W65(16q)W.
It can be seen that if the two LS’s are well separat

r 12kF@1, then the parameterq is small and the SF again ha
the form of a simple Lorentzian with widthW. However, if
the distance between LS’s is smaller than the Fermi wa
length, r 12kF&1, thenq;1 and both diagonal and nond
agonal elements ofŴ are of the same order of magnitud
The SF then represents a superposition of a narrow an
broad Lorentzian with widthsW2 and W1 , respectively.
This, in turn, gives rise to short,t15W1

215t/(11q), and
long, t25W2

215t/(12q), decay times. In other words, th
state formed by two LS’s, coupled via the continuum
states in the plane, is split into fast- and slow-decay
components.22

The physical mechanism leading to the appearance
fast- and slow-decaying components is, in fact, analogou
that of the Dicke effect in the spontaneous emission of li
by a gas.23 In particular, the case of two LS’s, coupled v
the continuum of electronic states withlF /r 12@1, is similar
to the case of a pair of atoms radiating a photon with
wavelengthl much larger than the interatomic distanced.
For l/d@1, which corresponds to the limitq→1, the two
atoms form a single quantum-mechanical system. The e
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tromagnetic field couples only to the symmetric state, wh
is the fast-radiating component, whereas for the antisymm
ric state~slow-radiating component! the corresponding ma
trix element vanishes. The emission spectrum represen
narrow peak with widthW2→0 on top of a wide peak with
width W1→2W, where hereW215t is the radiating time of
an isolated atom. The wide peak, corresponding to the
time t15t/2, is a manifestation of thesuperradiance, which
is coherentemission with the doubled rate, while the narro
peak, corresponding to thesubradiance, describes thetrap-
ping of radiationby atoms.24 Similarly, the first term of the

SF ~6!, which turns into1
2 S0(v)5 1

2 d(v2e) for r 12kF!1,
describes thetrapping of electronic statesby the LS’s~‘‘sub-
tunneling’’!, and the second term indicates that the fast co
ponent decays into a continuum of states in the plane wi
doubled rate~‘‘supertunneling’’!.

This analogy holds for an arbitrary number of LS’s. Th
SF of N LS’s is still given by Eq.~3! ~with the factor of 1/2
replaced by 1/N) and Eq. ~4!, where Ŵ and ê are now
N3N matrices. For identical LS’s confined within the are
lF

2 , all the elements ofŴ are again of the same order o
magnitude. To gain qualitative understanding, let us assu
them equal,Wi j 5qW, with someq;1. Then the generali-
zation of Eq.~6! reads

S~v!5
1

pF S 12
1

ND W2

~v2e!21W2
2

1
1

N

Ws

~v2e!21Ws
2G ,

~7!

with Ws5@11q(N21)#W. We see again that asq→1, a
fraction 121/N of all states becomes trapped by the LS
while the remaining fraction 1/N is distributed in a wide
interval NW. The latter translates into the fast decay tim
ts5t/N. This is again completely analogous to the Dic
effect for N atoms confined in a volume with a linear siz
much smaller thanl.

With this understanding, let us turn back to our system
randomly distributed LS’s coupled to a 2D electron gas in
strong magnetic field. In a realistic system, in addition
LS’s, a ‘‘usual’’ disorder is present in the electron plan
which we assume to be uncorrelated. At the same time,
energy levels of LS’s are not all the same, but, in gene
distributed within some interval. This introduces into th
problem yet another type of disorder, which is complete
absent in the Dicke effect for a gas ofidenticalatoms. As we
will see below, the interplay of the two types of disord
appears to be rather nontrivial.

An important parameter characterizing the system is
number of LS’s in the arealF

2 . For the lowest LL, this pa-
rameter is just the ‘‘filling factor’’ of LS’s,

n5~2p l 2!nLS , ~8!

where nLS is the LS concentration andl is the magnetic
length. Forn!1, the coupling between LS’s via the states
the plane is weak, andS(v) represents a convolution of SF’
of isolated LS’s~coupled to the plane!. In the opposite limit,
n@1, the coupling between LS’s is strong and, as the ab
example suggests, nearly all electronic states should
trapped by the LS’s. Note, however, that in this example
collective ~Dicke! state is characterized by the proximity o
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6644 57T. V. SHAHBAZYAN AND S. E. ULLOA
the parameterq to unity: in the limitq→1, the fraction 121/
N of electronic states is trapped forarbitrary N ~which is
analogous ton). Although it is not possible to introducea
priori a parameter similar toq in a disordered system, on
expects on physical grounds that with increasingn the sys-
tem will find itself in the Dicke state. In particular, for larg
n, one expects that the weight 121/n of the SFS(v) will be
carried by the ‘‘bare’’ SF,S0(v), calculated in theabsence
of tunneling. However, the interval ofn within which the
crossover between two regimes occurs should dep
strongly on the disorder. As we show below, under cert
conditions the transition to the Dicke state can occur at so
critical value ofn.

It is useful to view this system from a slightly differen
angle. Namely, let us consider the effect of LS’s on the el
tronic states in the plane. Clearly, as the electron ene
approaches the LS levels, the electron experiencesresonant
scattering by the LS’s. As a result, the electronic DO
should exhibit a sharp energy dependence near the r
nance. The character of this dependence can be easily u
stood from the physical picture outlined above. Since w
increasingn a larger fraction of the electronic states
trapped by the LS’s, the DOS should develop agap in the
limit of large n. The fact that resonant scattering should le
to a gap for large LS concentrations has long been know
the 3D case for identical scatterers~in the absence of mag
netic field!.25–27 The above arguments suggest that reson
scattering and the Dicke effect are, in a certain sen
complementary to each other. The goal of the present p
is to establish this relation in precise terms.

In fact, it is easy to see that the shape of the SF of LS’
determined entirely by the resonant scattering. Indeed,
electron in the ‘‘course’’ of a single transition between a L
and the plane is being scattered by the rest of the L
Therefore, the self-energy of a LS is simply proportional
the Green function of 2D electrons in the presence of re
nant scattering. This formal relation indicates, however, t
finding the SF, averaged over the positions and energie
LS’s as well as over the in-plane disorder, is, in genera
rather difficult task. In particular, it requires the calculati
of not only the averaged electron Green function28 but, in
fact, of all its moments. Nevertheless, as we show below,
the lowest LL level the problem can be solvedexactly. This
solution, which is the main result of the present paper
possible due to the hidden supersymmetry of the low
LL.6,7

Let us briefly summarize our results. The exact expr
sions for the SFS(v) and the DOSg(v) are multiparamet-
ric functions determined by the LS filling factorn, the tun-
neling strengthd, the Wegner’s widthG of the lowest LL
~characterizing the in-plane disorder!, and the distribution
function of the LS levelsf g(e2 ē ), where ē is the average
energy andg is the width. In the absence of coupling to th
plane,d50, the ‘‘bare’’ SF is simplyS0(v)5 f g(v2 ē ). In
the presence of coupling,dÞ0, we distinguish between two
regimes governed by the dimensionless parameterd2/gG.

In the weak coupling regime,d2/gG!1, we find that the
transition to the Dicke state is smooth. In the limit of largen,
the fraction 121/n of electronic states is trapped by th
LS’s, so thatS(v)5(121/n)S0(v). At the same time, the
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DOS in the presence of resonant scattering exhibits a
nounced minimum which develops into a gap with incre
ing n. The width of the gap is independent of the disord
and is determined by the tunneling strength and the LS c
centration only. We demonstrate that this behavior isuniver-
sal and persists for an arbitrary distribution of LS levels.

In the strong coupling regime,d2/gG@1, the SF and the
DOS exhibit a rather complicated behavior. In the limit
vanishing in-plane disorder and LS level spread, bothS(v)
and g(v) are nonanalytic inv, turning to zero in afinite
energy interval. This gap originates from the infinite dege
eracy of the LL in the absence of disorder and is unrelate
the gap in the weak coupling regime due to the trapping
states.

We find that in the case of strong coupling, the transiti
to the Dicke state occurs at thecritical concentration of LS’s
corresponding ton51: for arbitrary n.1, a fraction 121/n
of states is trapped by LS’s. At the same time, the D
exhibits a seemingly similar behavior forn,1: a fraction
12n of states in the LL center remains unaffected by t
resonant scattering. The origin of such ‘‘condensation
states’’ is analogous to the one in the case of nonreso
pointlike scatterers.2,3,7,9For n,1, one can choose as a bas
linear combinations of unperturbed wave functions vanish
at the positions of all LS’s. This reduces the LL degenera
by a factor of 12n, leaving this fraction of states unaffecte

In fact, the similar behavior ofS(v) for n.1 and of
g(v) for n,1 is not coincidental, but is a consequence o
rather remarkable relation between the SF and the DOS
the absence of disorder. We demonstrate thatS(v) andg(v)
turn into each other under the transformationn↔1/n and
v↔e2v. This unexpected ‘‘duality’’ relates to each othe
the two phase transitions of entirely different physical o
gins.

The paper is organized as follows. In Sec. II we formula
the model and derive the general expression for the SF
Sec. III the calculation of the averaged Green function
LS’s is performed. The analysis and numerical results
presented in Sec. IV. Section V concludes the paper.

II. LOCALIZED STATES AND RESONANT SCATTERING

Consider a 2D electron gas in strong perpendicular m
netic field in the presence of a Gaussian random poten
V(r ) with correlator

V~r !V~r 8!5wd~r2r 8!. ~9!

The electron plane is separated by a tunneling barrier fro
plane of pointlike LS’s. We assume that the energy levels
LS’s are close to the lowest LL and adopt the tunneli
Hamiltonian

Ĥ5(
m

emam
† am1(

i
e ici

†ci1(
m,i

~ tm iam
† ci1H.c.!.

~10!

Hereem , am
† , andam are the eigenenergy, creation operat

and annihilation operator of the eigenstateum& of the Hamil-
tonian H01V(r ), H0 being the Hamiltonian of a free 2D
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57 6645LOCALIZED STATES IN A STRONG MAGNETIC . . .
electron in a magnetic field,e i , ci
† , andci are those for the

i th localized state, andtm i is the tunneling matrix element
The latter is defined as

tm i5E drdzcm* ~r ,z!Vi~r ,z!c i~r ,z!

.cm* ~r i ,zi !E drdzVi~r ,z!c i~r ,z!, ~11!

where Vi(r ,z) is the LS potential andc i(r ,z) is its wave
function. In the perpendicular direction, the wave functi
cm* (r ,z) decays ase2kz, k being the decay constant, while i
the plane it behaves as an eigenfunctioncm* (r ) of the Hamil-
tonian H01V(r ). We assume that the tunneling barrier
high enough, so that the dependence ofk on m can be
neglected.22 Thus, we have

tm i5cm* ~r i ,0!e2kziE drdzVi~r ,z!c i~r ,z!5cm* ~r i !t i ,

~12!

with t i determined by the transparency of the barrier.
We are interested in the LS Green function

D~v!5N21(
i

^ i u~v2Ĥ !21u i &5N21(
i

Di~v!,

~13!

where the overbar stands for averaging over positions
energies of LS’s as well as over the random potentialV.
Each term in the sum~13! can be presented as

Di~v!5
1

v2e i2S i~v!
, ~14!

whereS i(v) is the self-energy resulting from a virtual tran
sition between thei th LS and the plane. In the presence
several LS’s, such a transition includes also transitions
tween the plane and the rest of LS’s. The latter transiti
result in a coupling between LS’s via the states in the pla
Introducing the coupling matrixT̂,

Ti j ~v!5(
m

t imtm j

v2em
, ~15!

the self-energyS i(v) can be presented as

S i~v!5Tii 1(
j

8Ti j D0 jTji 1(
jk

8Ti j D0 jTjkD0kTki1•••,

~16!

whereD0 j (v)5(v2e j )
21, and the prime indicates that th

terms j ,k5 i in the sums are omitted.
It is convenient to recastS i(v) in a different form. Using

Eq. ~12!, the coupling matrix can be written as

Ti j ~v!5t i t j G̃~r i ,r j !, ~17!

where G̃(r ,r 8)5^r u(v2H02V)21ur 8& is the Green func-
tion of a 2D electron in the absence of LS’s. After substit
ing Eq. ~17! into Eq. ~16!, the self-energy takes the form
d

f
e-
s

e.

-

S i~v!5t i
2F G̃~r i ,r i !1E drG̃~r i ,r !U~v,r !G̃~r ,r i !

1E drdr 8G̃~r i ,r !U~v,r !G̃~r ,r 8!

3U~v,r 8!G̃~r 8,r i !1••• G , ~18!

with

U~v,r !5(
j

t j
2

v2e j
d~r j2r !. ~19!

The random potentialU(v,r ) describesresonant scattering
of electrons by LS’s. It has a form similar to that of th
pointlike scatterers. The crucial difference, however, is t
here the scattering strength depends on the proximity of
electron energy to the LS levels. In particular, the poten
~19! changes from repulsive to attractive as the electron
ergy passes through the resonance. Since the LS posi
are random with uniform densitynLS , the distribution func-
tion of U(v) is Poissonian. Note that due to the spread in
LS energiese j and tunneling amplitudest j , the scattering
strengths in Eq.~19! are also random.

Finally, after summation of the series~18!, the self-energy
takes the compact form

S i~v!5t i
2G~r i ,r i !, ~20!

where

G~r ,r 8!5 K rU 1

v2H02V2U~v!
Ur 8L ~21!

is the Green function of a 2D electron in the presence
resonant scattering.

In the following we assume that the magnetic field
strong and the scattering retains the electron in the low
LL. While this condition is standard for the white-noise p
tential, it seems to be more restrictive for resonant scatter
It should be noted, however, that the scattering strengt
effectively reduced by the spread in the LS levels. We a
assume that the tunneling barrier, separating LS’s from
electron plane, is high enough and neglect the differe
between tunneling amplitudes of different LS’s, settingt i
5t in the rest of the paper.

Equations~13!, ~14!, ~20!, and ~21! determine, in prin-
ciple, the spectral function

S~v!52
1

p
ImD~v!52

1

p
ImDi~v!. ~22!

The averaged LS Green functionD(v)5Di(v) can be pre-
sented as the series

Di~v!5
1

v2e i2t2G~r i ,r i !
5 (

n50

` K t2n

~v2e!n11L
e

Gn~v!,

~23!
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6646 57T. V. SHAHBAZYAN AND S. E. ULLOA
whereGn(v)5Gn(r i ,r i) and^•••&e denotes averaging ove
e. In obtaining Eq.~23! we used the fact that in Eqs.~14! and
~18!, the contribution of thei th LS into the potential~19! is
excluded.

The ensemble averaging in Eq.~23! should be performed
over both random potentialsV and U(v). Calculation of
S(v) requires then an averaging of not only the electr
Green function~21!, but, in fact, of all the momentsGn(v).
Remarkably, for the lowest LL this averaging can be p
formedexactlyby generalizing the approach of Ref. 7.

III. CALCULATION OF THE SPECTRAL FUNCTION

In order to find the momentsGn(v), we rely on the hid-
den supersymmetry of the lowest LL.6,7 We start by noting
that Gn(r ,r ) can be presented as a Gaussian functional i
gral over bosonic fields,

Gn~r ,r !5
~2 i !n

n!
Z21E DwDw̄eiS@w~r !w̄~r !#n, ~24!

with the action~herev15v1 i0)

S@w̄,w#5E dr w̄~r !@v12H02V2U~v!#w~r !. ~25!

The normalization factorZ21 can be written as a fermioni
integral, Z215*DxDx̄eiS, with the same actionS@ x̄,x#.
The fieldsw(r ) andx(r ) are then projected onto the lowe
LL subspace according to~we measure all energies from th
lowest LL!

~v2H0!w~r !5vw~r !, ~v2H0!x~r !5vx~r !. ~26!

Choosing the symmetric gauge, this projection is achie
with the representation

w5~2p l 2!21/2e2uzu2/4l 2u~z!, x5~2p l 2!21/2e2uzu2/4l 2v~z!,
~27!

where the bosonic fieldu(z) and the fermionic fieldv(z) are
analytic functions of the complex coordinatez5x1 iy . In
terms of projected fields, Eq.~24! takes the form

Gn~r ,r !5
~2 i !n

n!

e2nuzu2/2l 2

~2p l 2!n
^@u~z!ū~z* !#n&, ~28!

where angular brackets stand for the functional integra
*DuDūDvDv̄eiS with action

S@u,v#5E d2z

2p l 2
e2uzu2/2l 2~ ūu1 v̄v !@v12V2U~v!#.

~29!

As a next step, one introduces Grassman~anticommuting!
coordinatesu andu* , satisfying

E du5E du* 50, E dudu* u* u5p21 ~30!

~normalized such that*d2zd2ue2uzu22uu* 51), which to-
gether with the coordinatesz andz* form the ‘‘superspace’’
j5(z,u). One then defines the analytic ‘‘superfields’’
n

-

e-

d

n

F~z,u!5u~z!1uv~z!/A2l ,

F̄~z* ,u* !5ū~z* !1u* v̄~z* !/A2l , ~31!

taking values in the ‘‘superspace’’j. Using the identities

^u&5^v&50, ^uū&5^vv̄&, and ^(uū)n&5n^uū&^(uū)n21&,
it is readily seen that the following chain of equalities hold

^~FF̄!n&5^~uū!n&1
n2uu*

2l 2 ^vv̄&^~uū!n21&5S 11
nuu*

2l 2 D
3^~uū!n&5enuu* /2l 2^~uū!n&. ~32!

Thus, the correlation function~28! can be presented in term
of a functional integral over superfields~31! as

Gn~r ,r !5
~2 i !n

n!

e2njj* /2l 2

~2p l 2!n E DFDF̄eiS@F~j!F̄~j* !#n,

~33!

with jj* [uzu21uu* . The actionS@F̄,F# in Eq. ~33! is
obtained from Eq.~29! by substituting

e2uzu2/2l 2

2p l 2
~ ūu1 v̄v !5E d2ue2jj* /2l 2F̄~j* !F~j![Q~z,z* !.

~34!

We now perform the ensemble averaging overV and
U(v). The Gaussian averaging of exp(2i*VQd2z) gives
exp@2(w/2)*Q2d2z#. The averaging over the LS potentia
U(v), carried out with the Poissonian distributio
function,29 yields

expS 2 i E UQd2zD
5expH 2nLSE F12 K expS 2

i t 2Q

v2e D L
e
Gd2zJ .

~35!

As a result, one obtains the effective action

iS̄@F,F̄#5 iv1E d2ja2
G2

2 E d2z

2p l 2S 2p l 2E d2ua D 2

2nE d2z

2p l 2H 12 K expF2
id2

v2e

3S 2p l 2E d2ua D G L
e
J , ~36!

with d2j5d2zd2u and

a~j,j* !5e2jj* /2l 2F̄~j* !F~j!. ~37!

HereG5(w/2p l 2)1/2 is Wegner’s width of the lowest LL in
the absence of LS’s,n5(2p l 2)nLS is the ‘‘filling factor’’ of
LS’s, and the parameterd5t/(2p l 2)1/2 characterizes the
tunneling.

The action~36! possesses a supersymmetry, characteri
for the lowest LL.6,7 This symmetry betweenz andu coor-
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dinates is evident for the first term of Eq.~36!. It can be
made explicit for the second and the third terms also
making use of the identity7

nS 2p l 2E d2ue2uu* /2l 2F̄F D n

52p l 2E d2ue2nuu* /2l 2~F̄F!n. ~38!

This allows one to replace any functional of the for
*d2z f(2p l 2*d2ua) by the functional 2p l 2*d2jh(a) with
]h(x)/]x5 f (x)/x. The result is a manifestly supersymme
ric action S̄5*d2jA(a), where

iA~a!5 iv1a2
G2a2

4
2nE

0

adb

b F12 K expS 2
id2b

v2e D L
e
G .

~39!

With all three terms now depending on superfields
a(j,j* ) only, the perturbation series~with respect to the

second and third terms! for the momentŝ @F(j)F̄(j* )#n&
drastically simplifies. One notices that transformations of
form

F~j!→F~j2h!ejh* /2l 22hh* /4l 2 ~40!

generate translations ofa in the superspace,a(j,j* )
→a(j2h,j* 2h* ), and hence leave the actionS̄
5*d2jA(a) invariant. This leads to

^@F~j!F̄~h* !#n&5Cnenjh* /2l 2, ~41!

and from Eq.~33!

Gn~v!5
~2 i !nCn

n! ~2p l 2!n , ~42!

where the coefficientsCn are j independent. For free elec
trons one hasCn5 i nn!/v1

n . With the action~39!, the coef-
ficient C1 determines the averaged electron Green func
G(v)[G1(v) in the presence of resonant scattering.28

For an arbitraryn, the momentŝ@F(j)F̄(j* )#n& can be
derived by extending the arguments of Ref. 7 to the cas
n-point correlators. A diagram withN internal lines contains

N free propagators of the form2 i ^F(j)F̄(h* )&0

5ejh* /2l 2/v1 , while the contribution of each vertex is pro
portional toe2mzz* /2l 2, 2m being the number of lines ente
ing the vertex. After extracting a common factorenjj* /2l 2, in
accordance with Eq.~41!, the contribution of a diagram ca
be written ascNKN , whereKN is a (N-fold! Gaussian inte-
gral in superspace. The value of the latter is unity due to
exact cancellation betweenz andu integrals. The remaining
coefficientscN can be generated within the zero-dimensio
field theory with partition function Z05*d2feiA(ff* ),
wheref is a complex number and the actionA(ff* ) is the
same as in Eq.~39!. The coefficientsCn are then found as
ratios of two ordinary integrals

Cn5Z0
21E d2feiA~ff* !~ff* !n. ~43!
y

e

n

of

e

l

With suchCn and with help of Eqs.~42! and~23!, we finally
arrive at the followingexactexpression for the Green func
tion of LS’s:

D~v!5
p

Z0
E

0

`

daeiA~a!K 1

v2e
expS 2

id2a

v2e D L
e

,

Z05pE
0

`

daeiA~a!, ~44!

with A(a) given by Eq.~39!.
It is also useful to present this expression in a differe

form. To do this, we introduce the distribution function
LS energies,f g(e2 ē ), whereē is the average energy andg
is the width. It can be easily seen from Eq.~39! that

K 1

v2e
expS 2

id2a

v2e D L
e

5D0~v!1
i

n

]A~a!

] ē
, ~45!

where

D0~v![^D0 j~v!&e5E de
f g~e!

v2 ē2e
~46!

is the averaged LS Green function in the absence of coup
to the electron plane. Combining Eqs.~44! and ~45!, we fi-
nally obtain

D~v!5D0~v!1
1

n

] lnZ0

] ē
. ~47!

The analysis of this expression will be performed in the f
lowing section.

IV. DISCUSSION AND NUMERICAL RESULTS

The final expression for the SF, Eq.~22!, appears to be
rather involved and its analysis requires distinguishing
tween several cases. It is convenient to perform explicitly
averaging overe in the action~39!. The result reads30

iA~a!5 iv1a2
G2a2

4
2nE

0

`dx

x
f̃ g~x!ei ~v2 ē !x

3@12J0~2dAxa!#, ~48!

where f̃ g(x) is the Fourier transform of the distributio
function f g(e). With suchA(a), one can obtain from Eq
~47!

D~v!52 i E
0

`

dx f̃ g~x!ei ~v2 ē !x^J0~2dAxa!&a , ~49!

where^•••&a stands for the average with the partition fun
tion Z0 from Eq. ~44!. The electron Green functionG(v) is
given by a slightly simpler expression

~2p l 2!G~v!52 i ^a&a , ~50!

which follows from Eqs.~42! and~43! with n51. The form
~48! of the actionA(a) introduces the dimensionless param
eterd2/gG which represents the relative strength of the co
pling between LS’s and electronic states in the plane.
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A. Weak coupling

Consider first the case of weak coupling,d2/gG!1. Sub-
stituting

^J0~2dAxa!&a5exp ln$12@12^J0~2dAxa!&a#%

.exp~2d2^a&ax!, ~51!

into the right-hand side~RHS! of Eq. ~49!, we obtain

D~v!5 K 1

v2e2S~v!L
e

, ~52!

with

S~v!52 id2^a&a5d2~2p l 2!G~v!. ~53!

Thus, the self-energy in this case is proportional to the av
aged electron Green function in the presence of reso
scattering. In particular, the width of the SF is determined
the electronic DOS,

g~v!52
1

p
ImG~v!. ~54!

Note that Eq.~52! could be also readily obtained from Eq
~14! by substituting the averagedS i(v)5S(v) from Eq.
~20!.

To simplify the analysis, let us assume that the distrib
tion of LS levels is Lorentzian~numerical calculations below
are performed with the more realistic Gaussi
distribution31!. Then the averaging in Eq.~52! can be done
analytically, yielding

S~v!5
1

p

g1g1

~v2 ē2e1!21~g1g1!2
, ~55!

with

e1~v!5d2~2p l 2!ReG~v!,

g1~v!52d2~2p l 2!ImG~v!5pd2~2p l 2!g~v!. ~56!

Consider first the case of an isolated LS, that is,n50 in Eq.
~48!. Then we haveG(v)5GW(v), whereGW(v) is Weg-
ner’s Green function.6 This leads to

e15
2d2

G F v

G
2

2

p

ev2/G2E
0

v/G

dtet2

11F ~2/Ap!E
0

v/G

dtet2G2G , ~57!

g15
2d2

ApG

ev2/G2

11F ~2/Ap!E
0

v/G

dtet2G2 . ~58!

The renormalization of the LS energye1 is a slow function
of v, e1.2d2v(p22)/pG2 for v!G and e1.d2/v for
v@G, so that its role is relatively unimportant. In contra
the renormalization of the widthg1, being proportional to the
DOS, is a sharp function ofv, g152d2/ApG for v!G and
g15(2d2Apv2/G3)e2v2/G2

for v@G. Therefore, forē&G,
r-
nt
y

-

,

the effective widthg1g1 experiences a sharp increase asv

approachesē . This, in turn, leads to a minimum in the S
~see Fig. 1!.

Let us now turn to the case of many LS’s (nÞ0). The
Bessel function in Eq.~48! can be expanded to first order i
d2/gG, yielding

G~v!5GW~v2nd2D0!, ~59!

with D0(v) given by Eq.~46!. Thus, in this case the energ
of the electron is shifted by an amount proportional to t
average potential ^U(v,r )&e,r5nd2D0(v). At the same
time, the fluctuations ofU(v,r ), which are described by
terms of higher orders ind2/gG, are small. In other words
the effect of scattering of the electron by LS’s is reduced
that of aneffective medium. For the usual, nonresonant sca
tering (v-independentU), this would merely result in a
renormalization of the energy by a constant. In the case
resonant scattering, however, the average potential is acom-
plex quantity. Its imaginary part, which originates from th
spread in the LS levels, is a sharp function ofv. This affects
strongly the shape of the DOS and, in turn, of the SF.

For a low LS concentration,nd2/gG!1, and forv;ē
!G, we find that the change in the DOS,dg(v), is given by

dg

g
5

dg1

g1
.2

p22

Ap

nd2p

G
S0~v!, ~60!

where S0(v)5p21ImD0(v) is the ‘‘bare’’ SF in the ab-
sence of coupling to the plane. We see that the DOS in
presence of resonant scattering exhibits a minimum. This
turn, leads to a maximum in the SF via the renormalizat
of its width g1. Numerical results for several sets of param
eters are shown in Figs. 1 and 2.

With increasing LS concentration, the SF develops a p
nounced peak which saturates for largen ~see Fig. 3!. In
order to understand this behavior, let us consider the c
when the LS concentration is high,n@1, so thatnd2/gG
@1, but at the same time the scattering remains weak. Th
the fluctuations of the random potentialU(v) are still sup-
pressed, but the argument ofGW in Eq. ~59! is large. Pre-
sentingGW as @see Eq.~50!#

GW~v2nd2D0!52
1

2p l 2

]

]v1
lnE

0

`

da

3expF ia~v12nd2D0!2
a2G2

4 G ,
~61!

we notice that forv2 ē;g one has ImD0;1/g, so that the
last term in the exponent can be omitted. This gives

GW~v2nd2D0!.
1

2p l 2

1

v2nd2D0~v!
. ~62!

If ē is not in the LL tail, the first term in the denominator ca
be neglected. For the Lorentzian distributionD0(v)5(v
2 ē1 ig)21, this readily leads toe15( ē2v)/n and g1
5g/n, and we obtain
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S~v!5
1

p~11n21!

g

~v2 ē !21g2
.S 12

1

n DS0~v!.

~63!

We see that for a large LS concentration, almost the en
weight ofS(v) is carried by the ‘‘bare’’ SF,S0(v), meaning
that the fraction 121/n of electronic states is trapped b
LS’s. The remaining 1/n fraction of states is carried by th
tails,v2 ē@g, which become longer asn increases~see Fig.
3!. As was discussed in the Introduction, such a form
S(v) is a manifestation of the Dicke effect. Clearly, in th
case of weak coupling, the transition to the Dicke state
smooth.

Although Eq.~63! was derived for the Lorentzian form o
f g(e), this behavior persists for an arbitrary distribution
LS levels. Indeed, forē&G and v2 ē;g, Eqs. ~52!, ~53!,
~59!, and~62! yield

D~v!5D0@v11/nD0~v!#. ~64!

FIG. 1. The SF at~a! n50 ~isolated LS! and ~b! n51.5, with

G/g51.0 andē50, is shown ford/g50.1 ~dot-dashed line!, d/g
50.5 ~long-dashed line!, d/g51.0 ~dashed line!, d/g51.5 ~dotted
line!, andd/g52.5 ~solid line!.
re

f

is

Since for suchv one hasD0(v);1/g, we see thatS(v) is
again given byS0(v) up to a small fraction 1/n.

At the same time, with increasingn the DOS exhibits a
pronounced minimum which turns into agap asn becomes
large ~see Fig. 4!. For n@1, the width of the gap is of the
order of the separation between peaks. The latter can be
timated from the condition that the argument of the Gre
function ~61! turns to zero. SinceD0(v).1/v for largev,
one easily finds that this separation is 2And. Thus, the width
of the gap is universal and independent of the disord
Within the gap, the DOS can be estimated from Eq.~62! as
(2p l 2)g(v);g/nd2.

B. Strong coupling

In the case of strong coupling,d2/gG@1, Eqs.~52! and
~53! do not apply and, in general, all momentsGn contribute
to D(v). Nevertheless, the SF and the DOS appear to
intimately related. In order to reveal this relation, let us co
sider the limit of vanishing disorder, withG/d!1 and
g/d!1. In this case the second term in the action~39! can be
omitted and no energy averaging is implied. Then it is ea
to see that in the energy intervalv(e2v).0, the integra-
tion path in thea integral for the partition function,Z0

5p*0
`daeiA(a), can be rotated bye2 ipsgn(v2e)/2, resulting

in purely realiA. After rescaling the integration variablea,
the partition function takes the form

Z05
p~v2e!

id2 E
0

`

daexpF2a
v~e2v!

d2

2nE
0

adb

b
~12e2b!G . ~65!

With this Z0, one obtains from Eq.~47! after some algebra32

FIG. 2. The DOS@in units of g15(2p l 2)21G21# for a strong

in-plane disorder,d/G50.3, with ē50 andn51.5, is shown for
g/d50.1 ~solid line!, g/d50.5 ~dotted line!, g/d51.0 ~dashed
line!, g/d52.0 ~long-dashed line!, and g/d510.0 ~dot-dashed
line!.
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D~v!5S 12
1

n D 1

v2e
1

1

n

]

]e
lnE

0

`da

an
expF2a

v~e2v!

d2

2nE
a

`db

b
e2bG . ~66!

The second term can be written as2(v/d2n)^a&a @calcu-
lated with the partition function~65!#. On the other hand, the
same manipulations with the electron Green function~50!
give G(v)5@(e2v)/d22p l 2#^a&a . This leads to the rela
tion

n~e2v!D~v!1v~2p l 2!G~v!512n. ~67!

The fact that ImlnZ0 has no energy dependence forv(e
2v).0 implies that both the SF and the DOS should e
hibit a gap in this energy interval~see Fig. 5!. However, in
contrast to the weak coupling case, here the gap is not rel
to the Dicke effect. The physical origin of this gap can

FIG. 3. ~a! The SF withG/g51.0,d/g51.0, andē50 is shown
for n50 ~dot-dashed line!, n50.8 ~long-dashed line!, n53.2
~dashed line!, n510.0 ~dotted line!, and n516.0 ~solid line!. ~b!

The SF with G/g52.0, d/g52.0, and ē50 is shown forn50
~dot-dashed line!, n50.4 ~long-dashed line!, n51.6 ~dashed line!,
n56.0 ~dotted line!, andn516.0 ~solid line!.
-

ed

understood from the following reasoning.28 In the absence of
in-plane disorder~small G), the LL broadening comes from
the resonant scattering alone. Then the scattering pote
~19! appears to be attractive forv,e, pulling the states from
the LL center to theleft, while for v.e it is repulsive,
pushing the states to theright. At the same time, in the
absence of a LS level spread~small g), the finite width of
S(v) comes from transitions between the LS’s and the el
tron plane. Therefore, the absence of states in the la
leavesS(v) unaffected@that isS(v)50# in the same energy
interval. It should be emphasized thatS(v) and g(v) are
nonanalytic, turning to zero for arbitraryn @in the weak cou-
pling case,S(v) and g(v) are finite for all v, vanishing
only in the limit n→`#.

Near the gap edges,v(v2e)→01 , the behavior ofS(v)
andg(v) depends strongly on the value ofn. The integral in
Eq. ~66! is similar to that already analyzed in Ref. 7. Co
sider first the casen,1. The second term in Eq.~66! can be
split as

FIG. 4. ~a! The DOS withg/G51.0, d/G51.0, and ē50 is
shown for n50 ~dot-dashed line!, n50.8 ~long-dashed line!, n
53.2 ~dashed line!, n510.0 ~dotted line!, andn516.0 ~solid line!.

~b! The DOS withg/G50.5, d/G51.0, andē50 is shown forn
50 ~dot-dashed line!, n50.4 ~long-dashed line!, n51.6 ~dashed
line!, n56.0 ~dotted line!, andn516.0 ~solid line!.



st
r

-
q.

th

he

c
L
n
r i
ca
e
u

,
rd

e

for

a

t a

oes
in
r
ons
ed
cat-
ch
ver-
sur-

57 6651LOCALIZED STATES IN A STRONG MAGNETIC . . .
1

n

]

]e
X~n21!ln@v~e2v!#1 lnH 12

1

G~12n!

3Fv~e2v!

d2 G12nE
0

`da

an

3e2av~e2v!/d2F12expS 2nE
a

`db

b
e2bD G J C, ~68!

whereG(x) is the gamma function. The derivative of the fir
term cancels the first term in Eq.~66!. The second term, afte
analytical continuationv(e2v) →e2 ipv(v2e), gives
near the gap edges

S~v!5
A

n

1

uv2eun
U v

d2U12n

, ~69!

whereA is a n-dependent constant33 (A;n2 asn→0).
The SF diverges at one edge of the gap,v→e, and is

continuous at the other,v→0. The exactly opposite behav
ior is exhibited by the DOS, for which we obtain from E
~67!

~2p l 2!g~v!5~12n!d~v!1n
v2e

v
S~v!. ~70!

Aside from the first term, the behavior of the DOS near
gap edges,g(v)}uvu2nuv2eu12n, ‘‘mirrors’’ that of the
SF. Figure 5 shows that the similarity is striking over t
entire energy range.

The first term in Eq.~70! indicates that a fraction 12n of
states remains unaffected by the resonant scattering. Su
‘‘condensation of states’’ originates from the residual L
degeneracy left after arranging the unperturbed wave fu
tions to vanish at the positions of all LS’s. Such a behavio
similar to the case of pointlike scatterers with constant s
tering strength.2,3,7,9 In fact, the analogy extends also to th
intricate structure of the DOS away from the gap. In partic
lar, the smaller peaks correspond to the singularities7 in
g(v) at integer values ofv(v2e)/d2; with increasingg
they are washed out. A similar structure appears also
S(v); here it is washed out with increasingG ~see Fig. 5!.

In the case ofn>1, the DOS atv(v2e)→01 can be
found in a similar manner. The result reads33

~2p l 2!g~v!}
1

uvu
ln22Fv~v2e!

d2 G ~ for n51!

}uvun22Uv2e

d2 Un21

~ for n.1!.

~71!

Note that forn>1, the LL degeneracy is lifted completely
so that no condensation of states occurs. Instead, acco
to Eq. ~67!, the SF represents a sum of two terms

S~v!5S 12
1

n D d~v2e!1
1

n

v

v2e
~2p l 2!g~v!. ~72!

Since in the absence of disorderS0(v)5d(v2e), we ob-
serve again that the fraction 121/n of all states is trapped by
e

h a

c-
s
t-

-

in

ing

LS’s, while the tails ofS(v), given by the second term, ar
suppressed by the factor 1/n. However, in contrast to the
weak coupling case, here such behavior persists not only
a large, but for anarbitrary filling factor n.1. It is instruc-
tive to compare the SF from Eq.~72! to the SF from Eq.~7!.
In the the latter case,N identical LS’s, confined to the are
lF

2 , form a coherent~Dicke! state in the limitq→1. In
former case, the transition into the Dicke state occurs a
critical filling factor n51.

Thus, in the absence of disorder, the system underg
two types of transitions atn51: the condensation of states
the LL center forn,1 and the trapping of states by LS’s fo
n.1. It should be emphasized that the two phase transiti
have entirely different physical origins. The former is caus
by the LL degeneracy and persists also for nonresonant s
tering; the latter is a manifestation of the Dicke effect, whi
takes place also in the absence of a magnetic field. Ne
theless, the one can be derived from the other due to a

FIG. 5. ~a! The SF for a small LS level spread,g/d50.1, with

n50.8 and ē /d51.0, is shown forG/d50.1 ~solid line!, G/d
50.3 ~dotted line!, G/d50.5 ~dashed line!, and G/d51.0 ~long-
dashed line!. ~b! The DOS @in units of g25(2p l 2)21d21# for a

weak in-plane disorder,G/d50.1, with ē /d51.0 andn50.8, is
shown forg/d50.1 ~solid line!, g/d50.3 ~dotted line!, g/d50.5
~dashed line!, andg/d51.0 ~long-dashed line!.



ch

t

2D
o
h
t
k

p

L,
a
S
n
. I
itio
th

s
b

s b

ct,
ion

e
cal
ty
etic

ys-
2D

tra-
eir

the
-
one

p in

ly
e-

6652 57T. V. SHAHBAZYAN AND S. E. ULLOA
prising ‘‘duality’’ relation. Namely, it is readily seen from
Eqs. ~70! and ~72! that the SF and the DOS turn into ea
other, (2p l 2)g(v)↔S(v), under the transformation

n↔1/n, v↔e2v. ~73!

It is rather remarkable that the resonant scattering and
Dicke effect can be unified in such a simple manner.

V. CONCLUSION

We have shown that a system of LS’s coupled to a
electron gas in a strong magnetic field exhibits a kind
collective behavior similar to the Dicke effect. For hig
enough LS concentrations, the trapping of electronic sta
by the LS’s takes place, which is analogous to the Dic
subradiance. Such trapping is complementary to the ga
the DOS in the presence of resonant scattering.

Although our derivation was restricted to the lowest L
we believe that our results are more general and remain v
for higher LL’s. There is little doubt that the gap in the DO
is a rather general feature. A much more subtle questio
related to the type of the transition to the Dicke state
seems obvious that in a disordered system this trans
should be smooth. In a clean system, we have shown that
is, in fact, a phase transition. However, this result appear
be specific to the system in a magnetic field, as indicated
the existence of the duality between the trapping of state
d

tt.
he

f

es
e
in

lid

is
t
n
is

to
y
y

LS’s and the condensation of states in the LL center. In fa
for identical non-resonant scatterers, the latter transit
takes place for all LL numbers9 ~as far as LL mixing is
neglected!. Therefore, we believe that for higher LL’s, th
transition to the Dicke state should also occur at a criti
filling factor n51, although we have not proved the duali
relation in the general case. In the absence of a magn
field, however, the question remains open.

As a possible experimental realization, we suggest a s
tem of self-assembled quantum dots separated from a
electron gas by a tunable tunneling barrier. Due to the ul
narrow distribution of the dots’ sizes, the spread in th
energy levels,g, does not exceed31 10.0 meV. Although, it is
hard to achieve an interdot separation much smaller than
Fermi wavelength, a conditionn;1 seems to be quite rea
sonable. For a considerable resonant scattering effect,
has to haved2/gG;1. For a typical LL widthG;1 meV,
this condition implies that the tunneling parameterd should
be about several meV. We believe that the significant dro
the mobility, observed~at zero field! by the authors of Ref.
21, should be attributed to the gap in the DOS.
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