
Cherenkov radiation by an electron bunch that moves in a vacuum above a left-handed material

Yu. O. Averkov* and V. M. Yakovenko†

A. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine 12, Acad. Proskura str., Kharkov 61085, Ukraine
�Received 23 December 2004; revised manuscript received 18 March 2005; published 7 November 2005�

Cherenkov radiation by a nonrelativistic electron bunch that moves above an interface of a vacuum-left-
handed material has been investigated theoretically. The electron density of the bunch is described by a Gauss
distribution. Cherenkov radiation for the frequency range where the refractive index is negative is shown to
lead to simultaneous excitation of both bulk and surface electromagnetic waves over one and the same
frequency range. In this case the wave vector magnitude in the plane of the interface of surface electromagnetic
waves is larger than the corresponding wave vector magnitude of bulk electromagnetic waves. The energy
flows in a left-handed material have been calculated. The spectral density and the radiation pattern have been
investigated.
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I. INTRODUCTION

In recent years a good deal of attention has been given to
studying the electromagnetic properties of left-handed mate-
rials �LHM’s�. These materials came to be known by this
particular name because in these media the directions of
electric and magnetic field vectors as well as the direction of
a wave vector form a left-handed triplet. The unusual prop-
erties of the LHM electrodynamics were originally suggested
in the paper by Veselago in 1967.1 In Ref. 1 it was shown
that the LHM, which possesses negative permittivity � and
negative permeability � simultaneously, would exhibit un-
usual properties such as the negative index of refraction, an-

tiparallel wave vector k� and Poynting vector S� , antiparallel
phase and group velocities, and the time-averaged energy
flux opposite to the time-averaged momentum density. The
latter signifies that the wave has a negative group velocity. In
the plane-wave refraction at the interface of right- and left-
handed materials the incident and refractive waves �i.e., their
group velocities� propagate on one side of the normal to the
interface. This implies that the plane-parallel plate made of a
LHM can bring to a focus an image of a point source that is
located away from the plate at a distance which is less than
its thickness. Besides, as indicated in Ref. 1, opposite direc-

tions of vectors S� and k� in the LHM result in a reverse
Doppler shift and Cherenkov radiation and the other phe-
nomena of interest. The mere fact is that the negative group
velocity is not fundamentally new per se. As long ago as
1945 Mandelstam had stated this particular fact.2 A consid-
erably great interest in the LHM’s has been evoked after they
had been practically implemented in Refs. 3–7 in the form of
alternating layers with negative � and positive � and layers
with positive � and negative �. The permeability frequency
dispersion of complex composites is provided by a periodic
structure of nonmagnetic circular conducting units such as
the split-ring resonators, spirals, etc. The permittivity fre-
quency dispersion is provided by a periodic grating of thin
conducting wires. If a wavelength of the electromagnetic
wave that propagates in such a material is much larger than
the period of composite structure, the composite for this par-
ticular wave is similar to a continuous one. The parameters

of structural elements are selected in such a way that � and �
become negative over the GHz frequency range. The nega-
tive sign of the refractive index of LHM’s needs specifying
the fundamental principle such as Fermat’s principle.8 For
instance, in Ref. 8 it was shown that the light propagation
path in a medium corresponds to a local extremum of the
optical path length. The term “local” means that a light
propagation problem can have several possible paths for
which the Snell law is obeyed and the optical path variation
is equal to zero.

It should be pointed out that the refractive index can be-
come negative not only in the above-described composite
materials, but also in the so-called photonic crystals �see, for
example, Refs. 9–11�. In Ref. 9 a GaAs semiconductor speci-
men with a periodic set of cylindrical holes that form a two-
dimensional grating was examined and it was shown that the
electromagnetic-wave dispersion in such a crystal has a band
structure similar to that of the electronic band in semicon-
ductors. The refractive index in these structures may become
negative in the vicinity of the photonic band gap. In metallic
photonic crystals the negative refraction can be observed
over a wider frequency range as compared to that range for
dielectric photonic crystals.11 In photonic crystals the refrac-
tive index is found to be negative at wavelengths comparable
to a period of a crystal structure. At the same time the re-
quirement for homogeneity of composite media in which
both � and � may become negative restricts the wavelength
from below.

The Cherenkov energy loss by an electron bunch that
moves through the photonic crystal along one of its pores is
experimentally observed in Ref. 12. In particular, it has been
established that the dependence of the loss probability on the
energy loss qualitatively varies with the number of surround-
ing pores. This fact is explained by excitation of guided
modes of Cherenkov radiation that bounces back and forth
between the pore walls. The wavelengths are of the order of
the distance between the pores. So the change in the pore
number qualitatively varies the shape of the above-
mentioned dependence. It has been shown that fast electrons
can be used for directly probing photonic crystal band struc-
tures. In this connection Ref. 13 should be pointed out.
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In the present paper Cherenkov radiation14 of bulk and
surface electromagnetic waves by an electron bunch that
moves in a vacuum above a composite medium has been
theoretically investigated. This medium may have negative
values of � and � over a certain frequency range. Cherenkov
radiation is shown to give rise to simultaneous excitation of
bulk and surface electromagnetic waves over one and the
same frequency range. The excited bulk electromagnetic
waves comprise all electric and magnetic field components.
The excited surface electromagnetic waves can be of two
different types: namely, the electric and magnetic ones.15 It
has been shown that these surface waves can be excited and
propagate along an interface provided that the characteristic
frequencies of the composite medium and the velocity of the
bunch satisfy certain conditions. Besides, the widths of the
frequency ranges, at which surface waves exist, depend on
the electron bunch velocity. These circumstances are re-
garded to be new as compared to the known results obtained
from the analysis of surface electromagnetic waves propaga-
tion at the interface of right- and left-handed materials.16–18

The problem considered in the present paper is not only of
theoretical, but also of practical interest in terms of excita-
tion of delayed surface waves of electric type. These waves
are widely used in the investigation of surfaces. It will be
shown that the surface waves of electric type can be excited
much more easily at the interface of the vacuum-left-handed
material as compared to that of the vacuum-right-handed
one. Besides, the results obtained can be used to determine
typical frequencies of LHM’s such as the resonance fre-
quency of permeability and plasma frequency.

It should be stressed that the Cherenkov radiation by a
point charge in LHM’s with incorporation of small amount
of loss has been theoretically studied in Ref. 19. It has been
shown that when losses exist, the directions of power propa-
gation differ from those of phase propagation. Besides, it has
been noted that the radiation pattern of the Cherenkov radia-
tion presents lobes at very large angles close to 90° with
respect to the particle motion. This fact, in the authors’ view,
allows one to improve the Cherenkov detectors based on the
use of LHM’s. It is worthwhile to emphasis that in spite of
substantial progress in theoretical investigations into the
electrodynamics of LHM’s the problem of the influence of
small losses on the negative refraction is still a relevant one.

II. STATEMENT OF THE PROBLEM AND BASIC
EQUATIONS

Let us initially consider Cherenkov radiation by a single
electron that moves above a left-handed material and gener-
alize the obtained results for an electron bunch. Let the in-
terface of the vacuum-left-handed material be located in the
xy plane. An electron moves in a vacuum parallel to the
interface at a distance of h from it at a velocity v�c �where
c is the speed of light in a vacuum�. We consider the direc-
tion of the electron velocity as a positive one of axis ox. The
electron charge density is determined by the formula

��r�,t� = e��x − vt���y���z − h� , �1�

where ��x� is the Dirac delta function. The electromagnetic
fields of the electron are expressed in terms of Fourier inte-
grals:

E� e�r�,t� =� E� e�k�,��exp�i�k�r� − �t��dk�d� . �2�

The wave equation for the Fourier component E� e�r� ,�� has
the form

�E� e�r�,�� +
�2

c2 �1�1E� e�r�,��

=
4�

�1
�grad���r�,��� − i

�

c2v��1�1��r�,��� , �3�

where 	=v /c. The solutions of the wave equation for a
single electron are20

E� e�k�� =
4�i

�1

��/c2��1�1v� − k�

k2 − ��/c�2�1�1
��k�,�� , �4�

H� e�k�,�� =
�1

c
�v� ,E� e�k�,��� , �5�

where

��k�,�� =
e

�2��3 exp�− ikzh���kxv − �� . �6�

Hereafter, we shall hold symbols �1 and �1 for reasons of
generality. Upon integrating solutions �4� and �5� with re-
spect to kx and kz we obtain the following expressions for the
Fourier components of the electron field:

Ex
e�ky,�� = −

ie��1 − 	2�1�1�
2��1v

2
1
exp�− �z − h�
1� , �7�

Ey
e�ky,�� = −

ieky

2��1v
1
exp�− �z − h�
1� , �8�

Ez
e�ky,�� =

sgn�z − h�e
2��1v

exp�− �z − h�
1� , �9�

Hy
e�ky,�� = −

sgn�z − h�e
2�c

exp�− �z − h�
1� , �10�

Hz
e�ky,�� = −

ieky

2�c
1
exp�− �z − h�
1� , �11�

where


1�k��,�� =	k�
2 −

�2

c2 �1�1, �12�

k��= �kx ,ky�, and kx=� /v. We define the electromagnetic

fields of radiation in terms of the vector potential A� l
r�r� , t� in

the following way:21

E� l
r�r�,t� = −

1

c

�A� l
r�r�,t�
�t

, �13�

B� l
r�r�,t� = rotA� l

r�r�,t� , �14�
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A� l
r�r�,t� =� A� l

r�k�,��

�exp
i�k��r�� + kz,l�k��,��z − �t��dk��d� ,

�15�

where r��= �x ,y�, l=1 for vacuum and l=2 for the LHM,

kz,1�k��,�� = i
1�k��,�� , �16�

kz,2�k��,�� = − p	�2

c2 �2�2 − k�
2 , �17�

where p=1 for the right-handed material and p=−1 for the

LHM. Note that the vector potential A� l
r�r� , t� satisfies the Cou-

lomb gauge:

div A� l
r�r�,t� = 0.

The choice of sign p=−1 in Eq. �17� corresponds to propa-
gation of the radiation fields in the interface direction as �2
�0 and �2�0. Since the Cherenkov radiation condition in a
vacuum is not valid, kz,1 is a purely imaginary value and the
electromagnetic fields in a vacuum decay exponentially away
from the interface. The radiation fields in a vacuum and in
the LHM are derived from the continuity conditions for tan-
gential components of electric and magnetic fields at the in-
terface between the two media:


Ex�z=0 = 0, 
Ey�z=0 = 0, �18�


Hx�z=0 = 0, 
Hy�z=0 = 0. �19�

Substituting the expressions for the electron fields, Eqs.
�7�–�11�, and the radiation fields, Eqs. �13�–�15�, into bound-
ary conditions �18� and �19�, we have

Ex,1
r =

e� exp�− h
1�
2��1v

2kz,1
��	2�1�1 − 1�

�2kz,1 + �1kz,2

�1

− 2	2�1�1ky
2�1�1 − �2�2

�1�2
 , �20�

Ey,1
r = −

eky exp�− h
1�
��1vkz,1

� kz,1
2

�1�2
−

kz,1�2 + kz,2�1

2�2
 , �21�

Ez,1
r = −

e exp�− h
1�
2��1v

�2kz,1 + �1kz,2

�1
, �22�

Hx,1
r = −

e�ky exp�− h
1�
�vc

�1�1 − �2�2

�1�2
, �23�

Hy,1
r =

e exp�− h
1�
�c

��2

v2

�1�1 − �2�2

�1�2
−

kz,1�2 + kz,2�1

2�2
 ,

�24�

Hz,1
r =

eky

2�ckz,1
exp�− h
1�

kz,1�2 + kz,2�1

�2
�25�

and

Ex,2
r = −

e� exp�− h
1�
�v2kz,1

� kz,2

�1
�1 − 	2�1�1�

+ 	2ky
2�1

��1�1 − �2�2�
�1�2

 , �26�

Ey,2
r = −

eky exp�− h
1�
�v

kz,2�2 − kz,1�1

�1�2
, �27�

Ez,2
r = −

ekz,1 exp�− h
1�
�v�1

, �28�

Hx,2
r = Hx,1

r , �29�

Hy,2
r =

e exp�− h
1�
�c

��2kz,1

�1
− ky

2�1�1 − �2�2

�1�2
 , �30�

Hz,2
r =

e�1ky exp�− h
1�
�c�2

, �31�

where

�1 = �2kz,1 − �1kz,2, �32�

�2 = �2kz,1 − �1kz,2. �33�

The total radiation energy losses by the electron bunch
can be evaluated as the work done on the bunch per unit time
per unit volume by the radiation field:

Q = ��r�,t�vEx,1
r �r�,t�, for r� = v�t . �34�

We find the energy losses by the electron bunch to radiation
in a vacuum and in the LHM with the aid of the time-
averaged Poynting vector:

�S�� =
c

4�
Re��

−



�E� r,H� r*�dt� . �35�

From Eq. �17� it follows that for 	2�2�2�1, kz,2 is a purely
imaginary value, but for 	2�2�2�1 kz,2 can be a real one for
ky ��		2�2�2−1/v. When kz,1 and kz,2 are imaginary values
�i.e., for 	2�2�2�1� and there is no energy loss, the Fourier
component of the radiation field in a vacuum Ex,1

r �ky ,�� is
also the imaginary value and

Re��
−



d�dkyEx,1
r �ky,��

�exp�− 
1z�exp�i��

v
x + kyy − �t�� = 0, �36�

for x=vt and y=0 in the absence of a pole in Eq. �20�. At the
same time, as kz,1 is an imaginary value and kz,2 is a real one
�for 	2�2�2�1�, the value of Ex,1

r �ky ,�� is complex and the
real part of the integrand in Eq. �36� becomes nonzero. This
means that particle radiation energy losses occur. This radia-
tion is identified as Cherenkov radiation of bulk electromag-
netic waves �in the absence of a pole in Eq. �20��, since the
condition 	2�2�2�1 holds. If the integrand in Eq. �36� has a
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pole, the surface electromagnetic waves will be excited. As
follows from Eqs. �20�–�31�, the surface electromagnetic
waves, which are described by the dispersion equation �1
=0, have no perpendicular components of the magnetic
field—i.e., Hz,1

sw =Hz,2
sw =0. At the same time, the surface elec-

tromagnetic waves, which are described by the dispersion
equation �2=0, have no perpendicular components of the
electric field—i.e., Ez,1

sw =Ez,2
sw =0. If we use the terminology in

Ref. 15, we will term the surface electromagnetic waves with
�1=0 as the electric surface waves �or E-type surface
waves�, whereas the surface electromagnetic waves with �2
=0 will be represented as the magnetic surface waves �or
H-type surface waves�.

A. Regimes of electromagnetic wave excitation: Qualitative
evaluations

1. E-type surface waves

Let us consider E-type surface waves and assume that

�1 = 1, �1 = 1, �2 = � � 0, �2 = � � 0. �37�

In this case the components of wave vectors kz,1 and

kz,2 = − i
2 = − i	ky
2 −

�2

v2 �	2�� − 1�

are imaginary values and the equation �1= i��
1+
2�=0 has
the following solution:

ky
2 = −

�2

v2 �1 + 	2�
� − �

�2 − 1
 . �38�

The solution �38� will be a real one for ky
2�0. Physically this

implies that the phase velocities of surface electromagnetic
waves are less than the bunch velocity:

vph
sw =

�

	kx
2 + ky

2
� v . �39�

Substituting kx=� /v and ky from Eq. �38� into Eq. �39�, we
obtain the following condition of Cherenkov excitation of
E-type surface waves:

c

	1 +
�� − 1

1 − �2

� v . �40�

From �40� it is seen that the excitation of surface E waves is
possible when either of the two following conditions is ful-
filled:

�� � 1 and �2 � 1 �41�

or

�� � 1 and �2 � 1. �42�

Note that the E-type surface-wave excitation is also possible
when

�� � 0, � � 0, and �2 � 1. �43�

However, in this case the composite medium does not be-
have like a left-handed one. From �41� and the following

condition of bulk electromagnetic wave excitation,

�� � 	−2, �44�

it follows that, in principle, these conditions can be compat-
ible with each other. This means that the Cherenkov effect
causes the simultaneous excitation of both bulk and surface
electromagnetic waves over one and the same frequency
range.

The above-considered regimes of E-type surface-wave ex-
citation are sketched in Fig. 1. In Fig. 1 curve 1 corresponds
to the dependence for ���=1, curve 2 is for ���=	−2 / ���, and
curve 3 is for ���=1/ ���. Region 1 corresponds to the fre-
quency range at which Eqs. �41� and �44� are simultaneously
valid. Both bulk and surface electromagnetic waves are si-
multaneously excited over this frequency range. In the re-
gions which are to the right of curve 2 the bulk electromag-
netic waves are not excited. Region 2 corresponds to
condition �41� and region 3 to �42�. In regions 2 and 3 the
surface electromagnetic waves are only excited.

It should be noted that, as follows from �40�, the phase
velocities of E-type surface waves can have indefinitely
small values in the vicinity of �0. This implies that the sur-
face waves of this type can be excited much more easily at
the interface of the vacuum-left-handed material as com-
pared to that of the vacuum-right-handed material.

2. H-type surface waves

Let us examine the H-type surface waves and assume that

�1 = 1, �1 = 1, �2 = � � 0, �2 = � � 0. �45�

The solution of the dispersion equation �2= i��
1+
2�=0 is

ky
2 = −

�2

v2 �1 + 	2�
� − �

�2 − 1
 . �46�

Substituting kx=� /v and Eq. �46� into Eq. �39�, we can write
the following condition of Cherenkov excitation of H-type
surface waves:

FIG. 1. The regimes of E-type surface-wave excitation along the
interface of the vacuum-left-handed material. Region 1 corresponds
to simultaneous excitation of bulk and surface electromagnetic
waves over the same frequency range. Regions 2 and 3 correspond
to excitation of E-type surface waves only. Curve 1 is for to the
dependence for ���=1, curve 2 is for ���=	−2 / ���, and curve 3 is for
���=1/ ���.
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c

	1 +
�� − 1

1 − �2

� v . �47�

From �47� it follows that the excitation of H-type surface
waves is possible when either of the two following condi-
tions is satisfied:

�� � 1 and �2 � 1 �48�

or

�� � 1 and �2 � 1. �49�

Note that the excitation of H-type surface waves is also pos-
sible for

�� � 0, � � 0, and �2 � 1. �50�

However, in this case the composite medium does not be-
have like a left-handed one. As shown by analysis of �44�
and �48� the simultaneous excitation of bulk and surface
electromagnetic waves is made possible over a certain fre-
quency range.

The regimes of excitation of H-type surface waves are
qualitatively represented as diagrams in Fig. 2. In Fig. 2
curve 1 is for ���=1, curve 2 is for ���=	−2 / ���, and curve 3
is for ���=1/ ���. Region 1 corresponds to the frequency
range in which �44� and �48� are simultaneously met. In this
range the bulk and surface electromagnetic waves are simul-
taneously excited. In the regions lying to the right of curve 2
the bulk waves are not excited. Region 2 is appropriate to
�48�, and region 3 is for �49�. In regions 2 and 3 the surface
electromagnetic waves are only excited.

B. Regimes of electromagnetic wave excitation: Numerical
evaluations

Hereafter, we will make use of the following expressions
for permittivity � and permeability � of the �Refs. 3 and 5�:

���� = 1 −
�p

2

�2 , �51�

���� = 1 −
F�2

�2 − �0
2 , �52�

where �p is the effective plasma frequency, �0 is the reso-
nance frequency, and F�1.

1. E-type surface waves

Now consider E-type surface-wave excitation. As indi-
cated, E-type surface waves can get excited in one and the
same frequency interval with bulk waves with conditions
�41� and �44� being simultaneously satisfied. Upon substitut-
ing the corresponding dispersion dependences for ���� and
���� from Eqs. �51� and �52� into �41� and �44�, we obtain
the following condition for typical frequencies �p and �0:

��p

�0
�2

= 1 + � , �53�

where 0���1. The surface electromagnetic waves exist
along with the bulk waves over the narrow range of frequen-
cies �with 	2�1�

�0 � � � �0 + 	2�F�0

2
. �54�

For example, with �0=4 GHz, F=0.56,17 	=0.1, and �
=0.01, the width of the frequency range �54� is ���2
�10−4 GHz and the plasma frequency must be equal to �p
=4.04 GHz. In the subsequent numerical calculations we
will assume the values of �0=4 GHz and F=0.56 to be the
same as in Ref. 17 whereas the plasma frequency �p will be
fitted so that the required conditions are met. From the solu-
tion �38� for ky it follows that the magnitude of the compo-
nent ky

s of a surface wave is larger than the corresponding
component ky

b for the bulk wave—i.e.,

�ky
s � �

�

v
		2�� − 1 � �ky

b� . �55�

From �41� and �42� it follows that the Cherenkov excita-
tion of only surface waves will occur. For example, after
substituting into �41� the dispersion dependences for ����
and ����, we arrive at the following frequency interval of
surface wave existence:

0 �
�

�0
− 1 � 1,

�p

	2
� �0 � �p. �56�

For example, at �0=4 GHz, F=0.56, 	=0.1, and �p
=5 GHz the frequency range width at which 	2���1 and
v�vph

s is equal to ���6�10−3 GHz.
The analysis of �43� together with Eqs. �38�, �51�, and

�52� shows that surface waves can only be excited at ��0
and ��0 over the frequency interval

FIG. 2. The regimes of H-type surface-wave excitation along
the interface of the vacuum-left-handed material. Region 1 corre-
sponds to simultaneous excitation of bulk and surface electromag-
netic waves over the same frequency range. Regions 2 and 3 cor-
respond to excitation of H-type surface waves only. Curve 1
corresponds to the dependence for ���=1, curve 2 is for ���
=	−2 / ���, and curve 3 is for ���=1/ ���.

CHERENKOV RADIATION BY AN ELECTRON BUNCH… PHYSICAL REVIEW B 72, 205110 �2005�

205110-5



� � �0 �
�p

	2
, 0 � 1 −

�

�0
� 1. �57�

As follows from �57� the surface electromagnetic waves get
excited in the sufficiently small vicinity of �0 in which the
charge velocity exceeds the phase velocity of a surface wave
v�vph

s . For instance, at �0=4 GHz, �p=10 GHz, F=0.56,17

and 	=0.1 we have �� �3.998;4� GHz.
Figure 3 presents the dispersion dependencies of the

E-type surface waves that fit the above excitation regimes.
Dispersion curve 1 refers to surface waves being excited
over the frequency interval �54�. Dispersion curve kz,2=0
over the same frequency interval is practically coincident
with curve 1; however, it lies slightly below curve 1. Disper-
sion curve 2 corresponds to the surface waves that are ex-
cited over frequency interval �56�. As it takes place, the bulk
waves are not excited. Dispersion curve 3 depicts surface
waves which are excited over frequency interval �57�, when
the composite medium is a right-handed one. All the curves
originate at curve 4 described by equation k�=� /v. The re-
gion of the bulk waves existence is bounded by curve kz,2
=0, line �=�0, and curve 4. From Fig. 3 it follows that over
the frequency range where the composite medium behaves
like the LHM excited bulk and surface waves are reverse
�curves 1 and 2�. For the frequency region where the com-
posite medium is the right-handed one the dispersion of ex-
cited surface wave is positive �curve 3�.

2. H-type surface waves

Let us consider H-type surface-wave excitation. As the
analysis of �44� and �48� and Eqs. �51� and �52� suggests the
excitation of bulk and surface waves can be made possible in
the same frequency interval under the following condition:

��p

�0
�2

� 	−2 for 	2 � 1. �58�

The frequency range at which this surface waves tend to
emerge is approximately described by the following inequal-
ity:

�* � � �
�0

	1 − F
�1 − 	−2F�0

2

2�p
2 � , �59�

where �*=	2/ �2−F��0 is found from ����=−1 �because
�2�1 in accordance with �48��. For �0=4 GHz, F=0.56,
	=0.1, and �p=80 GHz the frequency interval �59� is ��
� �4.7;5.2� GHz. The excited surface wave is a reverse one.
In that part of the frequency range �59� where conditions �48�
are satisfied while �44� is not satisfied, the surface waves are
only excited.

The above-mentioned case �50� is found to be unrealiz-
able for ���� and ����, which are specified by Eqs. �51� and
�52�. Indeed, as �50� is satisfied and from the requirement
ky

2�0, it follows that � must be greater than unity. At the
same time, as evident from Eq. �51�, � cannot be a positive
value which is greater than unity.

Figure 4 presents the dispersion curves for bulk and
H-type surface waves which correspond to the above-
mentioned excitation regimes. Dispersion curve 1 corre-
sponds to surface waves being excited over the frequency
interval �59�. In Fig. 4 this frequency interval is appropriate
to the straight-line segment along the frequency axis from
the dashed-line curve up to intersection point of curves 1 and
3. Dispersion curve 2 corresponds to kz,2=0. Dispersion
curve 3 corresponds to kx=� /v. The region of the bulk
waves existence is bounded by curve 2, line �=�0, and
curve 3. The bulk and surface waves are reverse. As seen
from Fig. 4, over the frequency range where the bulk and
surface waves exist simultaneously, the wave vector of the
surface wave is greater than that of the bulk one.

III. ENERGY FLOWS

We generalize the above-derived expressions for the ra-
diation fields to the case of an electron bunch. The charge
density of the electron bunch is determined by the formula

��r�,t� = �0�0� x − vt

ax
��0� y

ay
��0� z − h

az
� , �60�

where �0 is the effective electron density being determined
from the charge conversion law,

FIG. 3. The dispersion curves of E-type surface waves. Curves 1
and 2 refer to surface waves being excited over the frequency range
where ���0. Curve 3 corresponds to the surface wave over the
frequency range where ���0. Curve 4 is for k�=� /v.

FIG. 4. The dispersion curves of H-type surface waves �curves
1� and kz,2=0 �curve 2�. Curve 3 is for k�=� /v.
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�0 =
eN

23/2�3/4axayaz
, �61�

N is the number of electrons in a bunch, aj are the typical
dimensions of the bunch along the coordinate axes �j
=x ,y ,z�, and �0�x� is the Hermit function with index 0. By
representing the bunch field as the Fourier integral �2� we
find the solutions from the Maxwell equation, which are
similar to Eqs. �4� and �5�, where the Fourier component of
charge density ��k� ,�� is specified in the following way:

��k�,�� =
eN

�2��3 exp�− ikzh −
1

2�
j

aj
2kj

2��kxv − �� .

�62�

In the long run, the introduction of a bunch gives rise to the
emergence of a complementary multiplier in the expression
for the spectral energy density of the radiation of a single
electron, the so-called geometrical factor of bunch fb. For the
Gaussian bunch, fb is given as

fb = N2 exp�− kx
2ax

2 − ky
2ay

2 + 
1
2az

2� . �63�

A. Bulk waves

In the absence of losses in the LHM the vector kz,1 is a
purely imaginary value and the bulk waves are irradiated into
the LHM alone. The energy losses by the bunch for bulk
wave radiation in the LHM will be calculated as follows:

Wj,2
bw = �

−



dy�Sj,2�r�,t�� , �64�

where j=x ,y ,z. The quantities Wj,2
bw have the meaning of

time-averaged energy radiation losses by the bunch per unit
length. Integration over y is performed due to the symmetry
of the problem with respect to plane xz. Consequently, Wx,2

bw

has the time-averaged meaning of energy flow along axis ox
per unit length in the direction of the normal to the interface.
The quantity Wz,2

bw has the time-averaged meaning of energy
flow along axis oz per unit length in the direction of bunch
motion. The quantity Wy,2

bw =0 in view of the symmetry of the
problem relative to plane xz. In mathematical terms the inte-
grand in Wy,2

bw is a odd function of ky. Introduce the azimuthal
angle � between the projection of the wave vector to plane
yz and positive axis direction oy. This angle obviously
ranges between 0 and �. Then, in Eq. �64� one can go over
from integration over y to that over angle � by means of the
following formula:

ky = p
�

v
		2�� − 1 cos��� . �65�

In this case the integrand in Eq. �64� will describe the radia-
tion intensity distribution from the generatrix lines of the
Cherenkov cone which is defined as follows:1

cos��� =
1

p�	���	
. �66�

Since the equation can be satisfied in the composite medium
only, the cone will be semicircular. Besides, for p=−1 the
Cherenkov angle will be obtuse ���� /2�. From Eqs.
�26�–�31� it follows that the wave polarization in the second
medium will be elliptical. Because the analytical expressions
are cumbersome for the bulk-wave radiation energy losses,
we only present numerical estimates of these quantities.

Now consider the spherically shaped electron bunch with
radius a. Substituting kx=� /v and Eq. �65� into Eq. �63� we
derive the following compact formula for fb:

fb = N2 exp�−
�2

c2 a2� . �67�

From Eq. �67� it follows that the coherence length of bunch
radiation is equal to lcoh=c /�. If the bunch radius is less than
this length, then fb�N2 and the bunch radiates as a single
whole.

Here and in what follows, we will examine the bunch
having these parameters: a=10−3 m, N�109, h=1.5
�10−3 m, and 	=0.1. Numerical estimates of energy flow
densities of bulk waves excited in regime �41� in the LHM
with �p=4.04 GHz, �0=4 GHz, and F=0.56 yield the fol-
lowing values: Wx,2

bw �−6�10−12 J /cm and Wz,2
bw �−1.5

�10−12 J /cm.
The radiation intensity distribution in a composite me-

dium �i.e., dependence d2Wj,2
bw /d�d� on �� for the above-

mentioned parameters of the bunch and medium for �
=4.0002 GHz in regime �41� is shown in Fig. 5. Numerical
evaluations of the densities of energy flows of bulk waves
excited in regime �48� and �p=80 GHz, �0=4 GHz, and F
=0.56 yield the following values: Wx,2

bw �−4.5�10−10 J /cm
and Wz,2

bw �−3�10−10 J /cm. The radiation intensity distribu-
tion in a composite medium for this regime is qualitatively
consistent with the distribution in Fig. 5. Curve 1 corre-
sponds to the � dependence for d2Wx,2

bw /d�d�, while curve 2
is for d2Wz,2

bw /d�d�. As evident from Fig. 5, the radiation
intensity distribution in the LHM is nonuniform for angle �
as compared with the case of a continuous medium. Indeed,
as indicated by the Frank-Tamm formula20 for energy radi-
ated by an electron in a continuous medium, the radiation

FIG. 5. The distribution of bulk waves radiation intensity in the
composite medium. Curve 1 is for the energy flow in the direction
of axis ox, and curve 2 in the direction of axis oz.
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intensity distribution for an azimuthal angle � in the plane
which is perpendicular to the particle path has a circular
form.

B. Surface waves

The surface-wave radiation fields are obtained by using a
common approach—i.e., by substituting Eqs. �20�–�31� into
Fourier integral definitions and by taking into account the
corresponding poles in integrands while integrating over
ky.

20 In the absence of energy losses the time-averaged Poyn-
ting vector component in the direction of the normal to the
interface will equal to zero �Sz,l

sw�=0. Using the direct calcu-
lations one can make sure that the Poynting vector compo-
nent �Sy,l

sw� is an odd function of coordinate y—i.e., �Sy,l
sw�

�sgn�y� �where sgn�y�=1 for y�0 and sgn�y�=−1 for y
�0�. Therefore the sum of components �Sy,l�sw for y�0 and
y�0 is equal to zero. The flow component �Sx,l

sw� is an even
function relative to coordinate y. Hence, the resultant flow of
surface waves energy in the absence of losses will be di-
rected along axis ox. The bunch energy losses of surface
waves are estimated as follows:

Wx,1
sw = 2�

0



dz�Sx,1�r�,t�� �68�

and

Wx,2
sw = 2�

−

0

dz�Sx,2�r�,t�� , �69�

where the multiplier 2 before the integrals occurs due to
summation of corresponding flows for y�0 and y�0. The
quantities Wx,l

sw have the meaning of time-averaged energy
flows of surface waves in the direction of axis ox related to
the unit length along axis oy.

1. E-type surface waves

Consider the bunch energy radiation losses of E-type sur-
face waves. The analytical calculation indicates that the
spectral densities of energy flows, dWx,l

sw,E /d�, in the absence
of losses tend to diverge at ky���→0 when the frequency
tends to the upper boundary of the frequency range in which
the surface waves are existent �see �54�, �56�, and �57��. In
the vicinity of these frequencies one can obtain the following
approximate expressions for these quantities:

dWx,1
sw,E/d� �

4e2�3�4

v4ky
2���

fb exp�− 2h
�

v
� for ky → 0,

�70�

dWx,2
sw,E/d� � −

4e2�3�2

v4ky
2���

fb exp�− 2h
�

v
� for ky → 0.

�71�

From �70� and �71� it follows that dWx,1
sw,E /d��0,

dWx,2
sw,E /d��0, and

dWx,1
sw,E/d�

dWx,2
sw,E/d�

� − �2 for ky → 0. �72�

Over the frequency range where the composite medium be-
haves like a LHM the frequencies of surface waves exceed
the frequency of the surface plasmon, �sp=�p /	2 �at which
���sp�=−1�. This can be seen from �54� and �56�. Therefore,
over the frequency range where ��0, ��0, and ���0 we
have �2�1 and the sum of E-type surface-wave energy
flows in a vacuum and in the LHM is a negative one:

Wx,1
sw,E + Wx,2

sw,E � 0. �73�

For the frequency range �57� in which the composite medium
is a right-handed material the inequalities ���sp and �2

�1 are satisfied and the sum of these energy flows in a
vacuum and in the LHM is positive:

Wx,1
sw,E + Wx,2

sw,E � 0. �74�

The expressions for � and � with existing small losses are

���� = 1 −
�p

2

��� + i���
, �75�

���� = 1 −
F�2

�2 − �0
2 + i���

, �76�

where �� and �� are the dissipation factors.
The quantities Wx,1

sw,E and Wx,2
sw,E are numerically calculated

for the above-mentioned parameters of the bunch with due
account of low losses �� /�p�10−5 and �� /�p�10−5. The
low losses have to be allowed for to eliminate the divergen-
cies of frequency integrals in expressions for Wx,1

sw,E and Wx,2
sw,E

at ky���→0. Note that with no small losses it is impossible
to indicate an adequate way of the pole detour in integrals
over ky in calculating the field of the E-type surface-wave
radiation.22 To illustrate the above statement we rewrite the
Ex,1

r Fourier component as follows:

Ex,1
r =

e� exp�− h
1���kz,1 + kz,2�
2�v2kz,1��2 − 1� ��	2 − 1���kz,1 + kz,2�

− 2	2ky
2 �1 − ���

�2
 1

ky
2 − ky,0

2 , �77�

where ky,0
2 is given as

ky,0
2 = −

�2

v2 �1 + 	2�
� − �

�2 − 1
 .

It follows from Eq. �77� that, as the small losses do not exist
at ky =ky,0, it is impossible to point out an integration path
over ky, which makes this particular integral devoid of physi-
cal meaning. This suggests that the method for calculating
the integral over ky is mathematically incorrect, because it
does not take into account the small losses in a medium,
which always tend to occur. Henceforth it is necessary that
the value ky,0

2 should be complex. The pole detour direction
�for ky =ky,0� is chosen according to the rule in Ref. 22. Be-
sides, the small losses should be allowed for to satisfy the
conditions of surface wave propagation Re
ky,0

2 �
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� Im
ky,0
2 �.23,24 Consequently formulas �70� and �71� for

spectral densities of energy flows of the E-type surface wave
have physical meaning solely with regard to the small losses
in a medium. As the losses increase �even at ������10−3�
the E-type surface waves cease to be surface ones, because
the aforementioned conditions for Re
ky,0

2 � and Im
ky,0
2 � are

violated. For the surface waves corresponding to curve 1 in
Fig. 3 we get Wx,1

sw,E�4�10−17 J /cm and Wx,2
sw,E�

−10−13 J /cm. For surface waves described by curves 2 and 3
in Fig. 3 we obtain Wx,1

sw,E�8�10−9 J /cm, Wx,2
sw,E�−3

�10−8 J /cm and Wx,1
sw,E�5�10−9 J /cm, Wx,2

sw,E�−2
�10−10 J /cm, respectively. It is evident that the above-cited
qualitatively estimates of Wx,1

sw,E and Wx,2
sw,E hold true.

2. H-type surface waves

Let us examine H-type surface waves. Numerical esti-
mates indicate that for the above-discussed excitation re-
gimes of these waves the inequality ���1 is satisfied. In
this approximation the expressions for energy flow densities
in a vacuum and in the LHM will be quite straightforward:

dWx,1
sw,H/d� �

2e2

vc

�

	���
fbexp�− 2h

�

c
	 ��

1 − �2�
�

���7/2

�1 − �2�3/2 , �78�

dWx,2
sw,H/d� � −

2e2

vc

�

	���
fbexp�− 2h

�

c
	 ��

1 − �2�
�

���3/2

�1 − �2�3/2 . �79�

From �78� and �79� it follows that these densities do not have
divergencies at any of the points of the frequency interval
where the H-type surface waves exist �see �59��. Moreover,
from �78� and �79� it also follows that dWx,1

sw,H /d��0,
dWx,2

sw,H /d��0 and

dWx,1
sw,H/d�

dWx,2
sw,H/d�

� − ���2. �80�

For the regime of the H-type surface-wave excitation which
was previously discussed �curve 1 in Fig. 4� the inequality
����1 is satisfied and the sum of surface wave energy flows
in a vacuum and in the LHM is found to be negative:

Wx,1
sw,H + Wx,2

sw,H � 0. �81�

For the spherical bunch with the above-mentioned param-
eters and including low losses ��� /�p�10−5, �� /�p�10−5�,
we obtain the following numerical estimates for the energy
flow densities: Wx,1

sw,H�10−9 J /cm and Wx,2
sw,H�−1.5

�10−9 J /cm. We can see that the numerical calculations bear
out the correctness of the above qualitative estimates of
Wx,1

sw,H and Wx,2
sw,H. Here the low losses have been taken into

account so that one could make a comparison between the
above numerical estimates and the analogous ones for E-type
surface waves.

C. Comparison of bulk and surface flow characteristics

From the above-mentioned calculations it follows that for
the regime of simultaneous excitation of bulk and E-type
surface electromagnetic waves over one and the same fre-
quency range the time-averaged energy flow densities of the
bulk waves are much greater than the similar ones for the
E-type surface waves. For the regime of simultaneous exci-
tation of bulk and H-type surface electromagnetic waves
their time-averaged energy flow densities are comparable
ones on the order of a magnitude. For the regimes under
which the surface electromagnetic waves are only excited the
time-averaged energy flow densities of these waves can be
considerably greater than the similar ones for the bulk wave
excitation regimes.

The wave vector and Poynting vector directions of both
bulk and surface electromagnetic waves at the interface are
sketched in Fig. 6. The crosshatched region corresponds to
the positions of wave vectors of bulk electromagnetic waves
��bw. The wave vectors of the surface waves �� sw are disposed
to the left of axis oy outside the crosshatched region. These
regions are separated by critical value �cr, which is defined
from kz,2

2 =0:

�cr =
�

c
�	��� . �82�

Indeed, the quantities �bw, �sw, and �cr are related to each
other in the following way:

�bw � �cr � �sw. �83�

The angle �cr between �� cr and the positive direction of axis
ox is defined as

�cr = � − arctan�		2�� − 1� . �84�

Figure 6 actually shows the field distributions behind the
moving bunch in the interface plane.

IV. CONCLUSIONS

The problem of Cherenkov radiation by a moving electron
bunch above a left-handed material has been theoretically
examined. The electron bunch density is described by a
Gaussian distribution. The Cherenkov effect is shown to lead
to the excitation of both bulk and surface electromagnetic
waves along the interface of vacuum-left-handed material. It

FIG. 6. The directions of wave vectors and Poynting vector of
both bulk and surface waves at the interface.
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is found that the surface electromagnetic waves can be ex-
cited over one and the same frequency range with bulk elec-
tromagnetic waves. However, as compared to the latter, the
surface electromagnetic waves have a larger value of the
wave vector in the interface plane. In addition, the possibility
for Cherenkov excitation of the surface electromagnetic
waves alone is demonstrated. The excited surface waves may
be of E and H types and exist over different frequency
ranges. It has been shown that the E-type surface waves with
very low phase velocities can be excited in the near vicinity
of the resonance frequency of the magnetic permeability. The
time-averaged energy flow densities of bulk and surface
waves are investigated. It has been revealed that the Cheren-
kov angle between the bunch movement direction and the
generatrix of the Cherenkov’s half of the cone in the LHM is
obtuse. The excited bulk electromagnetic waves are featured
by negative dispersion and comprise all electric and mag-
netic field components. The distribution of the bulk electro-
magnetic waves intensity in the LHM is a nonsymmetric one
with respect to the azimuthal angle in the plane, which is
perpendicular to the bunch velocity. It has been established
that under the regime of simultaneous excitation of both bulk
and surface electromagnetic waves over one and the same
frequency range the time-averaged energy flow density of the
bulk waves is much greater than the similar one for the
E-type surface waves. At the same time, the time-averaged

energy flow density of the bulk waves is of the order of the
similar one for the H-type surface waves. For the regimes in
which the surface electromagnetic waves are only excited the
time-averaged energy flow densities of these waves can be
much greater than the similar ones for the bulk waves for the
regimes under which the bulk waves are excited. The time-
averaged energy flow densities of the bulk and the surface
waves are directed at different angles with respect to the
bunch path in the interface plane. The time-averaged energy
flow densities of the surface waves in a vacuum are positive
and the similar ones in the composite medium are negative.
Over the frequency range where the refraction index of the
composite medium is negative the surface waves have nega-
tive dispersion and their total time-averaged energy flow
density is also negative. Over the frequency region where the
refraction index of the composite medium is positive the
surface waves have positive dispersion and their total time-
averaged energy flow density is positive too. The choice of
the electron bunch to excite the electromagnetic waves is
governed by the possibility of coherent radiation of its elec-
trons for certain bunch dimensions. The results obtained al-
low one to solve the problem of excitation of delayed E-type
surface electromagnetic waves with high intensity by the
beam instability effect. Besides, the results obtained can be
used to determine typical frequencies of the LHM such as the
resonance frequency of permeability and plasma frequency.

*Electronic address: yuaver@online.kharkiv.com
†Electronic address: yakovenko@ire.kharkov.ua
1 V. G. Veselago, Usp. Fiz. Nauk 92, 517 �1967� �Sov. Phys. Usp.

10, 509 �1968��.
2 L. I. Mandelstam, Zh. Eksp. Teor. Fiz. 15, 475 �1945�.
3 J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys.

Rev. Lett. 76, 4773 �1996�.
4 J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J.

Phys.: Condens. Matter 10, 4785 �1998�.
5 D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S.

Schultz, Phys. Rev. Lett. 84, 4184 �2000�.
6 R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz,

Appl. Phys. Lett. 78, 489 �2001�.
7 R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77

�2001�.
8 V. G. Veselago, Usp. Fiz. Nauk 173, 1215 �2002� �Phys. Usp. 45,

1097 �2002��.
9 M. Notomi, Phys. Rev. B 62, 10696 �2000�.

10 S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, Phys.
Rev. Lett. 90, 107402 �2003�.

11 P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S.
Sridhar, Phys. Rev. Lett. 92, 127401 �2004�.

12 F. J. Garcia de Abajo, N. Zabala, A. Rivacoba, A. G. Pattantyus-
Abraham, M. O. Wolf, and P. M. Echenique, Phys. Rev. Lett.
91, 143902 �2003�.

13 C. Luo et al., Science 299, 368 �2003�.
14 P. A. Cherenkov, Dokl. Akad. Nauk SSSR 2, 451 �1934�.
15 M. I. Kaganov, N. B. Pustyl’nik, and T. I. Shalaeva, Usp. Fiz.

Nauk 167, 191 �1997� �Phys. Usp. 40, 181 �1997��.
16 R. Ruppin, Phys. Lett. A 277, 61 �2000�.
17 R. Ruppin, J. Phys.: Condens. Matter 13, 1811 �2001�.
18 Yu. I. Bespyatykh, I. E. Dikshtein, and D. I. Ermakov, Radiotekh.

Elektron. �Moscow� 48, 449 �2003� �J. Commun. Technol. Elec-
tron. 48, 406 �2003��.

19 J. Lu et al., Opt. Express 11, 723 �2003�.
20 J. D. Jackson, Classical Electrodynamics �Wiley, New York,

1998�.
21 M. Danos, J. Appl. Phys. 26, 1 �1955�.
22 L. D. Landau, J. Phys. �Moscow� 10, 25 �1946�.
23 J. Nkoma, R. Loudon, and D. R. Tilley, J. Phys. C 7, 3547

�1974�.
24 B. G. Martin, A. A. Maradudin, and R. F. Wallis, Surf. Sci. 77,

416 �1978�.

YU. O. AVERKOV AND V. M. YAKOVENKO PHYSICAL REVIEW B 72, 205110 �2005�

205110-10


