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The carrier dynamics in InAs double-cap quantum dots �DC-QDs� grown on InP�113�B are
investigated. The shape of these QDs can be controlled during the growth, yielding an emission
wavelength of the system of about 1.55 �m at room temperature. The DC-QD dynamics is studied
by time-resolved photoluminescence experiments at low temperature for various excitation
densities. A simplified dynamic model is developed, yielding results consistent with experimental
data. This analysis yields the determination of the Auger coefficients and the intradot relaxation time
in this system. © 2009 American Institute of Physics. �DOI: 10.1063/1.3078290�

Reduced dimensions of semiconductor quantum dots
�QDs� offer a three-dimensional carrier confinement, yield-
ing discrete atomlike energy spectra. This property is prom-
ising for more efficient optoelectronic devices.1,2 Properties
of III–V systems such as InAs/GaAs QDs are now well
known.2,3 Many studies have also been devoted to growth
and analyses of optical properties of InAs/InP QDs4,5 or
quantum dashes.6,7 But information on the carrier dynamics
and energy relaxation processes in such InAs/InP QDs are
still lacking. Recently, the growth of self-organized InAs
QDs on misoriented InP�113�B substrates has been proposed
to get QDs with both quantum sizes and a high surface
density.8 The control of the maximum QD height of the
sample yields the control of their wavelength emission.9

These structures are named double-cap quantum dots �DC-
QDs� and emit at 1.55 �m at room temperature.10 The opti-
cal properties of a single DC-QD layer have been
analyzed10–12 and lasing structures were obtained with such
nanostructures with low threshold current densities13,14 In a
previous study, we managed to dissociate the two capture �or
relaxation� mechanisms described in literature: phonon and
Auger assisted relaxations.15

In this paper, we report on the analysis of the dynamic
properties of InAs DC-QD layers grown on InP�113�B sub-
strate. The samples are obtained by the spontaneous
Stranski–Krastanow growth mode after the deposition of 2.1
InAs monolayers �ML� at 480 °C on InP�311�B substrate.
The DC growth method10 is then used to control the QD
maximum height. The maximum height of the DC-QDs here
is of 2 nm,10 the average DC-QD diameter of about 35 nm,
and the surface density of about 1010 cm−2.16

Samples are characterized by tr-PL spectroscopy at low
temperature. The experiments were performed at 10 K using
a 790 nm Ti-sapphire laser producing 1.2 ps long light pulses
with a repetition rate of about 82 MHz. The tr-PL is then
recorded using a synchro-scan streak camera with an overall
time resolution of �8 ps.17

A simple model described elsewhere10,11 and including
the DC-QD shape, strain, and surface orientation effects is
used for the description of the confined electronic states. This
model gives the probability densities ���r ,z��2, the energies,
and the oscillator strengths obtained for a polarization �� in
the electric dipole approximation by

f i→f
�� =

2m0�Ef − Ei�
e2�2 ����� i→f

�� � ,

with Ef and Ei as the energies of the final and initial states,
respectively, and �� i→f

�� = �f �−er��i� as the dipole of the transi-
tion. Experimental points extracted from tr-PL analysis under
high excitation density �see Ref. 10� are reported in Fig. 1�a�.
The experimental points correspond to the energies of the
fundamental �QD0� and first excited �QD1� states of the DC-
QDs, and of two states of the wetting layer �WL� visible in
the tr-PL spectra. The error bars of the confined energy states
correspond to the full width at half maximum of the Gauss-
ian fit of the tr-PL spectra. Calculated dipole lengths are
reported in Fig. 1�b� as a function of the energy for a trun-
cated lens shaped QD. The model only gives the energies and
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FIG. 1. �a� Experimental and �b� calculated energies and dipole lengths of
the two confined states QD0 and QD1 of the DC-QD. The error bars of the
experimental data correspond to the full width at half maximum of the
Gaussian fit of the tr-PL spectra. Experimental data taken from Ref. 10.
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oscillator strengths of the confined states. The WL propaga-
tive states can not be determined �they are represented with a
grey area in the spectrum of Fig. 1�b�. A reasonable agree-
ment between theoretical and experimental results is ob-
tained despite the simple model used. It confirms the exis-
tence of confined levels in our system.

A complete analysis of the carrier dynamics has been
done by combining tr-PL experiments and a dynamic model.
The different relaxation paths and the corresponding relax-
ation times we considered are depicted in Fig. 2�a�. Based on
the experimental results described above, we choose a three-
level model �Fig. 1� to model the DC-QD: the WL level
where the carriers are created and two QD confined exciton
states QD0 and QD1. We considered the respective spontane-
ous emission lifetimes of the three levels �spon

WL , �spon
1 , and

�spon
0 . The values of �spon

WL and �spon
1 taken from Refs. 15 and

18 are 500 and 900 ps, respectively �the fit is not really
sensitive to the �spon

WL value�. The value of �spon
0 taken from

Ref. 16 is of 1150 ps. For The WL and the first excited state
level QD1, we also took into account the capture �WL→1 and
intradot relaxation �1→0 times and the reverse processes
�1→WL and �0→1 due to the thermal equilibrium of the sys-
tem. �1→WL and �0→1 are then calculated as in Ref. 19 by
applying the detailed balance principle

�0→1 = �1→0
�0

�1
e	EQD1

−EQD0

kBT



�1→WL = �WL→1
2�1NQDVQD��2

WLme
�kBT

e	EWL−EQD1

kBT

 ,

with �0, �1 and E0, E1 the degeneracy and energies of the
confined levels QD0 and QD1, respectively ��0=1, �1=2�.
NQD is the QD volume density, VQD is the total QD volume
inside a square surface with lateral dimension W, and L is the
WL thickness. The considered surface corresponds to the la-
ser spot. Capture �WL→1 and intradot relaxation �1→0 times
are defined using Auger �CWL→1 and C1→0� and phonon
�AWL→1 and A1→0� coefficients as proposed in Ref. 19,

�WL→1 =
1

AWL→1 + CWL→1NWL

�1→0 =
1

A1→0 + C1→0NWL
.

We assume here a geminate capture process of the electron-
hole pairs. Moreover, we introduced the occupation rates
f0�t�, f1�t�, and fWL of the QD0, QD1, and WL levels, respec-
tively. They are defined by

f1�t� = 1 − P1�t� , f0�t� = 1 − P0�t� ,

P1�t� =
N1�t�V1QD

4
, P0�t� =

N0�t�V1QD

2
,

fWL = 1,

with V1QD as the volume of one QD and N0�t� and N1�t� as
the populations of the QD0 and QD1 levels, respectively. We
consider the WL as an exciton reservoir. Solving this first set
of rate equations with those parameters did not give a good
fit of the tr-PL curves. We have evidenced in former study15

the existence of a direct capture process from the WL onto
the QD0 level for all the excitation optical density ranges. We
introduced then in the model a direct relaxation path between
the WL and the QD0 level characterized by a capture time
�WL→0=�WL→1. This model yields the resolution of the fol-
lowing rate equations:

dNWL

dt
=

NWL

�0
+

N1

�1→WL

VQD

VWL
fCM −

NWL

�WL→1
f1 −

NWL

�spon
WL

−
NWL

�WL→0

VQD

VWL
f0 = 0,

dN1

dt
=

VWL

VQD

NWL

�WL→1
f1 +

N0

�0→1
f1 −

N1

�1→WL
fWL −

N1

�spon
1

−
N1

�1→0
f0 = 0,

dN0

dt
=

N1

�1→0
f0 −

N0

�0→1
f1 −

N0

�spon
0 +

NWL

�WL→0

VQD

VWL
f0 = 0.

The number of photogenerated carriers in the WL is given by

NWL�t = 0� =
Pexc

fh�
Ttrans�1 − e−	Lz� ,

with Pexc as the average laser excitation power of the tr-PL
setup, h� as the energy of the incident photons, f as the
repetition rate of the laser source, 	 ��104 cm−1� as the

FIG. 3. Experimental rise time �WL→0 �=�WL→1 in our model� of the funda-
mental state QD0 as a function of the excitation intensity �full circles�. The
fit extracted from the rate equation model is shown with a continuous line.
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FIG. 2. �a� Sketch of the radiative and nonradiative mechanisms used to
described the exciton dynamics and �b� experimental tr-PL curves under
high excitation density for the first excited state �QD1, circles� and the
fundamental state �QD0, squares�. The fit extracted from the rate equation
model is shown with continuous line.
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absorption coefficient in the InP barriers, Lz �30 nm� as the
thickness of the InP barrier crossed by the photons before
reaching the WL, and Ttrans=4nopt

InP / �1+nopt
InP�2 as the air/InP

transmission coefficient evaluated with nopt
InP �3.9� the optical

index of the InP. �0 is the duration of the laser pulse. With
this model the fitting parameters are AWL→1, CWL→1, A1→0,
and A1→0.

The tr-PL curves obtained from these equations give a
good fit of both the experimental rise and decay times of the
QD0 and QD1 levels in a large excitation intensity range
�Fig. 2�b��. The rise and decay curves at low excitation den-
sity have exponential shape. Under high optical excitation,
the QD1 rise and decay curves also have exponential shape,
but QD0 decay curve shows a plateau. This plateau is due to
the saturation of the PL signal corresponding to a complete
filling QD0 confined state. Our model gives a good descrip-
tion of this phenomenon.

Important information for the realization of high fre-
quency lasers is the carrier capture time into the QDs. An
evaluation of this parameter can be obtained here by evalu-
ating the tr-PL rise time. We have reported in Fig. 3 the
experimental and theoretical values of the capture time
�WL→0 �=�WL→1 in our model� as a function of the excitation
intensity. We find a good correspondence between the experi-
mental and calculated values. The exciton rise time decreases
from 70 to 8 ps and we can identify two regimes: under
�50 W cm−2, a phonon-assisted regime �where the capture
time does not depend on the carrier density�, and above
50 W cm−2, an Auger regime. Then, the values of phonon
�AWL→1 and A1→0� and Auger �CWL→1 and C1→0� coefficients
of our system were extracted from the fit. We found
AWL→1=1.35
1010 s−1, A1→0=1
1010 s−1, CWL→1=5

10−15 m3 s−1, and C1→0=9
10−14 m3 s−1. These values
are close to the ones found in the literature for similar
systems.19–21

To complete the study, we extracted from the model the
intradot relaxation time �1→0 between the QD0 and QD1 con-
fined states. This time could be measured directly with reso-
nant excitation tr-PL experiment. This calculated intradot re-
laxation time is reported in Fig. 4 as a function of the

excitation intensity. The values obtained under high excita-
tion are compatible with the data found in the literature.22,23

In conclusion, we have analyzed the carrier dynamics in
DC InAs/InP QDs emitting around 1.55 �m. We identified
two confined energy levels and gave their energies and os-
cillator strengths. A dynamic study, coupling tr-PL experi-
ments with a simple rate equation model, has revealed the
energy relaxation and recombination processes of the exci-
ton. The values of the phonon and Auger coefficients have
been deduced and the intradot relaxation time between the
two confined levels has been estimated.
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