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NORMAL AUTOMORPHISMS OF A FREE
PRO-p-GROUP IN THE VARIETY A,A

Ch. Gupta and N. S. Romanovskii* UDC 512.5

An automorphism of a (profinite) group is called normal if each (closed) normal subgroup is left
invariant by it. An automorphism of an abstract group is p-normal if each normal subgroup
of p-power, where p is prime, is left invariant. Obviously, the inner automorphism of a group
will be normal and p-normal. For some groups, the converse was stated to be likewise true.
N. Romanovskii and V. Boluts, for instance, established that for free solvable pro-p-groups of
derived length 2, there ezist normal automorphisms that are not inner. Let Ny be the variety of
nilpotent groups of class 2 and A the variety of Abelian groups. We prove the following results:
(1) If p is a prime number distinct from 2, then the normal automorphism of a free pro-p-group
of rank > 2 in N3 A is inner (Theorem 1); (2) If p is a prime number distinct from 2, then the
p-normal automorphism of an abstract free N2 A-group of rank > 2 is inner (Theorem 2).

An automorphism of a (profinite) group is called normalif each (closed) normal subgroup is left invariant
by it. An automorphism of an abstract group is said to be f-normal (p-normal) if each normal subgroup
of finite index (a normal subgroup of p-power, p is prime) is left invariant. It is obvious that the inner
automorphism of a group will be normal. For some groups, the converse is also true. In this direction, it is
worth noting the following results:

— normal automorphisms of absolute Galois groups of finite extensions of the field of p-adic numbers
are inner (see [1]);

— each normal automorphism of a pro-K-group with n generators and m defining relations, where
n—m > 2 and K is a class of finite groups closed under subgroups, homomorphic images, and extensions,
is inner (see [1]);

— a p-normal automorphism of an abstract free group of rank > 2 is inner (see [2]);

— an f-normal automorphism of an abstract free solvable group of derived length > 2 is inner (see [3]);

— an f-normal antomorphism of an abstract free group of the variety AN} is inner, with A the variety
of Abelian groups and A} the variety of nilpotent groups of class k;

In {4], normal automorphisms of a free solvable pro-p-group of derived length 2 were described. The
description implied, in particular, that for the group there exist normal automorphisms that are not inner.
In the present article we prove the following basic theorem.

THEOREM 1. If p is a prime number distinct from 2, then the normal automorphism of a free
pro-p-group of rank > 2 in the variety M,A is inner.

From this, we infer the following:

THEOREM 2. If pis a prime number distinct from 2, then the p-normal automorphism of an abstract
free M3 A-group of rank > 2 is inner,
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In Section 1, we also prove the general result which says that if V' is the variety of profinite groups, then
a certain analog of the Shmelkin embedding will be valid for groups of type F/V(R).

1. PRELIMINARY REMARKS CONCERNING
VARIETIES OF PROFINITE GROUPS

1.1. In what follows, when speaking about profinite groups, we use the terms a “subgroup,” a “homo-
morphism,” etc., to refer to respective notions in the category of profinite groups, that is, a closed subgroup,
a continuous homomorphism and so on. The necessary definitions related to profinite groups can be found
in [5, 6, 7).

We recall that a free profinite group F(X) with basis X is the completion of an abstract free group with
basis X with respect to the profinite topology defined by subgroups of finite index containing almost all
(that is, all but finitely many) elements from X. The basic property of that group is that any continuous
map from the set X U{1} to an arbitrary profinite group G such that 1 — 1 extends to the homomorphism
F(X)—-aG.

For a given profinite group A, consider the class of A-groups, that is, profinite groups on which 4 acts
continuously. In this class, there are also free objects. A free profinite A-group with basis {y;| i € I} can
be constructed as follows. Represent A as the projective limit of finite groups Ay (A € A). For each A,

_consider a free profinite group F) with basis {¢| i € I, a € A)}. The canonical action of A, on the group
F) can be treated as the continuous action of A. Consider the projective limit of groups Fy (A € A) on
which A also acts. This limit is easily seen to be a free profinite A-group with basis {y:| i € I'}.

1.2. A variety of profinite groups is the class of profinite groups closed under subgroups, homomorphic
images, and direct (in the category of profinite groups) products. Varieties of profinite groups are in one-to-
one correspondence with the classes K of finite groups closed under subgroups, homomorphic images, and
direct (in the category of abstract groups) products. A corresponding variety of profinite groups consists
of pro-K-groups only. As in the case of abstract groups, the variety can be defined via identities, in which
case by an identity we mean an element of the free profinite group Fo, with a countable basis. The identity
v € F, is satisfied on the profinite group G if, under any homomorphism Fo, — G, the image of an element
v (the value of v) is equal to 1. Unlike the abstract case, we note, every variety of profinite groups can be
defined by a single identity.

Let G be a profinite group and v some defining identity for V. The subgroup in G generated by all
values of v is called verbal and is denoted by v(G) or by V(G). If F(X) is a free profinite group with basis
X, and V is a variety, then the factor-group F(X)/V(F(X)) will be a free group in V.

A product variety of V and W is the class of profinite groups that are extensions of groups from V by
the groups in W. A jfree group in the variety VW is the factor-group F(X)/V(W(F(X))).

1.3. For abstract groups, the Shmelkin embedding, which allows one to find a representation for the
group F/V(R) given F/R, is well known. Below, we give its analog for profinite groups.

Let V be some variety of profinite groups and let A be a profinite group represented as the factor-group
F(X)/R, where F(X) is a free profinite group with basis X = {z;| ¢ € I'}. Denote by a; the canonical
image of an element z; in A. Consider the free profinite A-group Fy with basis {y;| ¢ € I'}. The group
B = Fy/V(Fp) will be a free A-group with basis {b;| i € I'}, where b; is the canonical image of y; in B, in
the variety V. Let C be a subgroup in the semidirect product AB generated by elements ¢; = a;b; (i € I).

Proposition 1. If 7: F(X) — C is a homomorphism determined by the mapping z; — ¢; (¢ € I), then
ker 7 = V(R). In other words, C = F(X)/V(R).
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Proof. Obviously, ker ¥ > V(R). To prove the inverse inclusion, it suffices to show thatif : F(X) —» G
is an epimorphism onto the finite group G such that ker¢) > V(R), then the map ¢; — z;% = g; (i € I)
yields an epimorphism C — G.

Let H = Ry, A’ = G/H, a! be the canonical image of z; in A’, and 0: A — A’ be an epimorphism
determined by the map a; — a]. Consider the wreath product of finite groups, HIA', represented as the
semidirect product A’H, where H is a basis subgroup in the wreath product. We can think of H as an
A'-group and, hence, as an A-group, putting h* = h®’, where a € A and h € H. There exists an embedding
of G into HIA' such that g; = alh;, h; € H (see [8, Thm. 6.2.8]). The group H belongs to V. Therefore,
the map b; — h; (i € I) gives a homomorphism of the profinite A-group B into the finite A-group H; the
map ¢; = a;b; — g; = alh; (i € I) yields an epimorphism C — G, as desired.

1.4. Let W be the variety of profinite groups closed under extensions. Such a variety consists of pro-K-
groups, where K is some class of finite groups closed under subgroups, homomorphic images, and extensions.
Suppose that V is a subvariety of W. Consider the free group Fy (X)) with basis X = {z;]: € I} in W and
its factor-group A = Fy (X)/Rw. As before, a; denotes the canonical image of z; in A, and B stands for
a free A-group with basis {b;|i € I} in V. From Proposition 1, we easily infer

Proposition 2. The map z; — a;b; (i € I) induces an embedding of the group Fy (X)/V(Rw) into
the semidirect product AB.

Indeed, C 2% F(X)/V(R) by Proposition 1. Passing to the quotients on both sides of the equation with
respect to the verbal subgroups corresponding to W, we obtain C = Fiy (X)/V(Rw).

1.5. In what follows, we deal with subvarieties of the variety of all pro-p-groups. This variety is closed
under extensions and satisfies the hypothesis of Proposition 2.

Let A be a free Abelian pro-p-group with a finite basis {ay,...,as}. The group algebra Z, A of a group
A over the ring Z, of p;adic integers is identified with the ring Z,[[t1,...,ta]] of formal power series, where
t1 =ay—1,...,t, = a, — 1 (see [7]). The additive group of this ring is a free Abelian pro-p-group with
the basis consisting of monomials M = t'{‘ ...tk~, where ky,...,k, are nonnegative integers. Consider a
free A-pro-p-group F4 with basis {y;...yn}. For the given monomial M = t'l“ ...tk where k, > 0, define
an element yX from F, inductively by putting y¥ = (y£)* (yF)~!, where L = t*...t5~1. Obviously,
v lies in the (ky 4 ...+ k,)th term of the lower central series of the pro-p-group AF,. Therefore, the set
Q = {yM|M are monomials} converges to 1. It is easy to see that the set generates F, as a pro-p-group.

LEMMA 1. F,4 is a free pro-p-group with basis S.

Proof. Let 0, be the set of all monomials of degree < p™ in each of the variables. Then these
monomials (or rather their canonical images) form a basis for the additive group of the group algebra
ZpAm, where A, = A/AP". Consider the free An,-pro-p-group F,, with basis {y,...,¥a}. It is a free
pro-p-group with basis {y#|i =1,...,n; a € An}, and we can also take the set {yM|i=1,...,n; M € Qm}
to be the basis of Fy,, as a pro-p-group. The statement of the lemma now easily follows from F4 = lim Fy;,.
The lemma is proved. -

1.6. We are going to treat a free Nz.A-pro-p-group F with basis {z1,...,2,}, where A; is the variety
of class 2 nilpotent pro-p-groups and A is the variety of Abelian pro-p-groups. Proposition 2 implies
that F' is embedded in the semidirect product AH, where A is a free Abelian pro-p-group with basis
{21,...,a,} and H is a free nilpotent A-pro-p-group of class 2 with basis {y1,...,yn}. It follows from
Lemma 1 that H, as a pro-p-group, is a free nilpotent group of class 2 with basis {y¥| M are monomials in
ti=a1—1,...,ty =ay, —1}. The embedding of F is defined by the equalities z; = a1¥1, ..., Tn = Gn¥n-
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2. PROOF OF THEOREM 1

We adopt the notation which will be used throughout. If a and b are elements of a group, then a® = b~1ab
and [a,b] = a~'b~'ab. The inner automorphism of a group G, which is a conjugation by an element z, is
denoted by . A (topological) commutator subgroup of a (pro-p-) group G is denoted by G' or [G, G]; G”
is, respectively, a second commutator subgroup.

Let F be a free pro-p-group with basis X in the variety A3.A and let ¢ be the normal automorphism of

F. We argue that ¢ is an inner automorphism.

2.1. First note that the task we face reduces to the case where F has finite rank. For this to be the
case, we need to represent F as the projective limit of groups Fy (A € A), where F) is a free pro-p-group
with basis X in N3.4, and X runs over all finite subsets of X. Suppose that on each group Fj, ¢ induces
an inner automorphism frs fr € Fa. Therefore, if f is the limit of the set {fi| A € A}, then ¢ = f.

2.2. Let X = {z1,...,Za} be a finite set, n > 2. In view of Sec. 1.6, we assume that the group F is
embedded in the semidirect product C = AH, where A is a free Abelian pro-p-group with basis {a,...,a,}
and H is a free class 2 nilpotent A-pro-p-group with-basis {y1,...,¥n}; €1 = @11, .-+, Zn = @nyn. Then
the following equalities hold:

FNH=F', FNnH =F". (1)

Recall that H, as a pro-p-group, is a free class 2 nilpotent group with basis {yM|i=1,...,n; M are
monomials in t; = @y —1,..., tx = an—1}. Order the monomials by putting M =t%* .. .th~ < L =t} ...t}
Hfhki+...t+ba<h+...+h,0tk1+...+kys=lL+...+lgand ky =1,..., ki_y = L1, ki < ;. The group
H' is a free Abelian pro-p-group with basis T = {[y,y/] [1<i < j <n; M and L are monomials; if i =
j, then M < L}. Order elements [y ,yﬂ of that basis lexicographically, comparing the following param-
eters: the sum of degrees of the monomials M and L, %, j, M, and L. We say that an element h € H'
depends on [yM, yJL] if the latter has a nonzero coefficient in the expansion of h (into a series) with respect
to the basis X.

LEMMA 2. The automorphism ¢ induces an inner automorphism on F/F".

Proof. The pro-p-group F/F" is free, solvable of derived length 2, and is embedded in the semidirect
product C = AH, where H = H/H'. Denote by ¢ the canonical image of an element ¢ € C in . We can
treat H as a free Z; A-module with basis {§1,...,#a}. In [4], we described normal automorphisms of free
solvable pro-p-groups of derived length 2. That description implies that there exists an element u € Zp A
such that e(u) = 1 (¢ is the unit augmentation map Z,A — Z,), and that for any element f € F’, the
equality fo = f* holds. In addition, from [4] it also follows that ¢ induces an inner automorphism on
'F/F" if and only if u € A. Thus, we need only prove that u lies in A.

Let u = 14+ myt; +...+ mnt, mod A%, where my,...,m, € Z,, and A = ker¢ is the augmentation ideal
of Z,A. We have the following congruence: u = a = o™
f =z ...z, reduces our problem to the case where u = 1 mod A%, We prove that © = 1 in this case.

...a™~ mod A?. Replacing ¢ by ¢ - f~1, where

Assume the contrary, letting u = 1 + v, where 0 # v € A%, Choose a minimal monomial P on which
v depends. The degree of the monomial is > 2. Consider the element z = [[z1, 23], [z1, z2]**] € F". It is
tits

3 2
immediately verified that z = [¢2, y5 |~ [yt**, v5 1 [v8?, vi47) v, v3']. We have

tau titau _ti1u tauy _titau tiu

zp = [[z1, z2]", [21,22] ] = [1 »y;:u]-l[yl ¥ 1 vt e ’y;:u]' (2)

Further note that the action of the group F by conjugation on H' determines the structure of a Z, A-module
on the latter group. The normal subgroup in F generated by an element 2 is a submodule generated by z.
Therefore, there exists an element «' € Z, A such that zp = 2. Letw =a+ w, where « € Z, and w € A.
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In what follows, we shall often use the following formula. Let a € A, ¢t =a — 1, and hy, h2 € H. Then
[h1, ha]* = [AY, ha](ha, R3)[A3, B3] (3)

The formula implies that zp = z%2% = [yi?, y“]‘“z’ where z’ does not depend on [y7?, yz‘] Comparing this
with expression (2) produces o = 1. Let S be the minimal monomial on which w depends. From formula
(3), then, we infer that a minimal element of the basis T of the form [yM,y¥], on which z* depends, is
[t y, ®]. We have z = zp-z~1, By (2), the minimal element of T of the form [y, y¥], on which zp.z~?
depends, is [v3?, yz‘ ] Consequently, P = S. The argument implies also that the monomial P has the same
coefficient in the expansions of v and w. Let it be equal to 8. In the expansion of zy - z~! with respect
to the basis I, we isolate that part z which is expressed in terms of basis elements of the form [yM, 4],
where ML = t3t;P. From (2), we infer that

= ([‘.’/1 'yz ] l[yt’P: yz‘]—llyhh» yz,P][yt,t,P ;;])p_

On the other hand, if we rely on the fact that z¢p-z~! = 2%, then (3) will imply that to the above-mentioned
representation of zg, we must add another factor equal to the product

P -
H ( t,P;,y; :] l[yt;tzP; t;P;])p’ (4)
P, P,

taken over all monomials Py and P; such that P; #1, P;#1,and PP, =P. If P = t"‘tﬂ‘j‘ ...tE» where
k; > 0, then the element [y{**,y, GO :‘] with exponent —f occurs in (4) only once. Therefore, the
product (4) is not equal to 1, a contradiction. The lemma is proved.

2.3. We need a more detailed information on the group H' and its subgroup F”. Obviously, H’, as an
Abelian pro-p-group or as a Zp-module, is the (topological) exterior square of the Z,-module H/H'. In
turn, H/H' is identified with an additive group of the free Z, A-module, denoted H, with basis {§1...9n}-

In this section, we use the additive notation. Write BEAR = @ H:,AH j» where H; = §; - Z,A
1<i<j<n

({=1,...,n). In addition, the action of the algebra Z,4 on H A H is defined by (3). Rewrite this formula
additively as follows:
(uAvt=ut Av+uAvt+ut Avt, (5)

where u,v € H,t=a — 1, and a € A. Under this action, H A H turns into a Z, A-module.

LEMMA 3. (a) The module H; A H; with i < j is a free Z, A-module with basis {§; A §; M| M are
monomials in ¢y,...,%,}.

(b) The module H; A H; is embedded in a free Z, A-module.

Proof. (a) Define the weight of an element %M A§; L (i < j) in the basis of the Z,-module H; A H; as
the sum of degrees of the monomials M and L. The weight of an arbitrary nonzero element in H; A H; is
specified to be equal to the minimum of weights of the basis elements on which it depends. The weight of the
zero element is assumed infinite. It is easy to see that if P is a monomial, then the weight of (%M A §; L)P
is equal to the sum of degrees of the monomials M, L, and P. By (5), the element ;M A §; L of weight
k can be rewritten, modulo an element of larger weight, as a linear combination of elements (% A §; P)S
of weight k with coefficients from Z,. Hence, the set {§; A #; M| M are monomials in ¢,,...,,} generates
H; A Hj as a Z, A-module. We argue that this is a free system of generators. Indeed, suppose that there
exists a nontrivial series v = ) (% A §j Ma)ua, where 0 # uy € Zp A, Let §; A §; Mo be minimal among the
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elements §; A §; M, and let L be the minimal monomial in the expansion of uo. It then follows from (5)
that v depends on §; L A §; Mo; in particular, v # 0.

(b) In essence, here we must prove that Z,A A Z, A is embedded in a free Z, A-module. Consider the
algebra of formal power series, Zp[[81,...,8,T1,---,7n]], and the embedding of Z,AAZ, A, as a Z,-module,
into this algebra, defined by the formula oz t5* ... th~ Al . th — st L osknrl L rle sl sl pRe
If u, v € ZpA, then ((uAv)t)o = (uAv)o-(s; +ri +sir;), that is, the action of the ring Z,4 on ZpyANZ,A
corresponds to the action of Z,[[sy + r1 + $171,..., 34 + ra + 8a7,]] by multiplication on (Z,4 A ZpA)o.
Obviously, Z,[[81,..,2n,71,-- 1 Pall = Zp[[81)---1 80481 + 71 + 8171, ..., 80 + 7o + spy]]. This implies
that the algebra Zp[[s1,...,3a,71,...,n]], in which (Z,A A Z,A)o is contained, is a free module over
Zp[[s1+ 71+ 8171,...,8n + Tn + 8n7y]]. The lemma is proved.

Thus we identify H’' with the exterior square of the Z,-module H. The group F” is embedded in
H', and its image coincides with the exterior square of the module I'o = F//F” < H. It is known (see
[5]) that the element §ius + ...+ Jntn of H lies in T if and only if the relation tyu; +... +tau, = 0
holds. In other words, Tg is the kernel of the homomorphism r: A — A, induced by the map Hu; +
oot Untn — t1uy + ... + taun. Denote the algebra Z,[[t),¢2,...,%]] (# = 1,...,n) by R;. Then the
Zp-module A decomposes into a direct sum A = {1 Ry @ 13R; @ ... ® taRs. The Zp-basis of the module
is composed of elements of the form tlt’f‘,tgt'f‘t’;’, .. .,tnt’f‘t'," .. .tﬁ', where k,,...,k, are nonnegative
integers. This implies that the Z,-module ' decomposes into the direct sum of the module I'y = ker A
and the submodule I';, generated by elements of the form ﬁltf‘, ﬁgt:‘t:’, cen ,gnt’f*t;" voothn (ky,..., kg are
nonnegative integers). By construction, I'g is a Zp A-submodule and I'; -¢; C T;.

LEMMA 4. If fc HAH and ft; € Tg ATy, then f € To AT,

Proof. The decomposition H = I'o & I'; implies that H A H = (To ATg) ® (To AT1) ® (T AT;). From
(5), it follows that each summand in the latter decomposition is ¢;-invariant. Therefore, if f = fi + f2+ fa,
where fi € To AT, f2 EToATl, and f3 € T3 AT, then fty; € ['g AL implies that fot; = f3t; = 0. By the
previous lemma, the module H A H is t;-torsion-free. Therefore, f3 = f3 = 0 and f € 'y ATy. The lemma
is proved.

For a given natural number k, consider the element by = 1+4ay +...+ a.‘l’k_1 € Z,A. The following
equalities are satisfied:

k k » "
bk=Pk+(p2 )t1+...+(p"p l)t}; el bty =ad -1 (6)

The factor-algebra Z[[t.]]/ (a’l’h —1) is isomorphic to a group algebra of the cyclic group of order p* over Z,.
As a Z,-basis of this algebra we can take the set {1,t1,.. .,t’l’b'l}. The factor-algebra Z,[{t1]]/(bi) is also
a free Z,-module, whose basis is composed of elements 1,14,... ,t’l'b_z. This implies that the Z,-module ): 4
decomposes into a direct sum Hby @ Dy, where D is a free Zy-submodule in H with the basis

{#ttM|1<i<n, 0 <1< p* —2, M are monomials in t3,...,¢,}. N

We have H A H/H A Hb; = Dy A Dy.
LEMMA 5. Let p > 2. If an element f in H A H is not divisible by ¢;, then there exists a natural

number k such that fbr ¢ H A Hbg.

Proof. Werecall that H= @ Hi,andso HAH= @ HiAHjand HAHb= @ (H:iA
i=1,...n 1<i<s<n 1<i<j<n
H;by + H;be A Hj). Therefore, we need only consider the case where f € H; A H; and prove that fby ¢

H; A H,‘bk + H;b A Hj for a suitable k.
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(a) First assume that i < j. By Lemma 3, H; A H; is generated as a Z,[{t;]]-module by elements of
the form §M A §;L, where the monomial M does not depend on ;. There then exists a representation
f = fo + fit1, where fo belongs to the Z,-module generated by the abov&specxﬁed elements %M Ay;L.
Note that fit1bx € HAHby, which follows from (uAv)t b = (uAv)(a} —1) = ua} Ava’ —uAv € HARY,.
Therefore, we must prove that foby & H; A Hjby + Hiby A Hj. Assume f = f;. Moreover, we can also think
that f is not divisible by p, since the quotient module HA H/H A H bk is p—torsion—free Reduce the objects
considered modulo p and mark the result by ~. We ha.ve H / Hbp == Dk, where Dy is a free Z /pZ-module
with basis (7). From (6), it follows that the element t’ ! annihilates the module A /H bx. By assumption,
f # 0. Take the minimal element ;Mo A §; Lo on which f depends. The monomial M, does not depend
on ty, and Lo can be represented as Ly = t,S, where S is independent of ¢;. Finally, choose the number
k such that p* — 3 > I. Since t’l’h—1 = bymodp- Z, A, it follows that fbr = f-"t’l’k_l. We have the following
formula:

(uAv)ti S utiAv+ ( : ) ut{"t A vty + ( ; ) i 2 Avtd 4.t unvt]

k
modulo summands of the form ut}* Avt}?, where s;+32 > s. Note that the binomial coefficients ( r-l ) ,
m

- h
where 1 < m < p*—1, are not divisible by p. Therefore, the element ft ~! depends on ¥ t{h_zMo Agtits,
-~k -~ P

and since [ + 1 < p* — 2, we have ft} ~l¢ HAHb.

(b) Let i = j. We will show that Z,[[t1]] A Zp[[t1]] is a free Z,[[t1]]-module with basis {t} AtiF| I > 0}.
In the first place, the module in question is generated by this set. By induction (on r), we can assume that
elements of the form ti* At}?, where 0 < I; —I; < r, are expressed via elements t} A ti*). We then have
(ALYt = S AL L LA L ALY whence the desired expression for th AtiT"t!, Second,
the set {t} A¢.¥1| I > 0} is independent over Z,[[t:]]. In fact, consider the nontrivial sum ;(t’1 At )y,

where u; € Z,[[t1]]. Choose the minimal index | = lp for which v # 0. If {T* is a minimal monomial on
which u;, depends, from (5) it follows that the sum 3 (¢} At;"')u; depends on ti° A tl*™*+1; in particular,
1

it cannot be zero.
The above argument implies that H; A H;, if treated as an Z,[[t1]]-module, is free, and its basis is the
set 21 ) 22,

Ty ={ZMAGLE |1 >0; M and L are monomials in ¢3,...,t0; M < L}

and
T, = {H Mt} /\37.~Mt'1+1|l >0; M are monomials in ¢3,...,t,}.

As in item (a), our problem reduces to the case where f is not divisible by p and expands, with respect to
the basis I; U I, into a series with coefficients from Z,. Again we reduce all the objects modulo p. If the
minimal element of the set £; U X, on which f depends lies in ¥;, we need only repeat the argument of
(a). Let that minimal element be equal to §; Mt\ A f;: M t1*1, Choose the number k satisfying p* > 21 + 5.
Under this condition, if m = L,‘z:l, then | + 1+ m < p* — 2. We have

2m

(HMEAGMETYE™ =+ ( 1 ) GFMEF™ A G M

2
( m ) GMET™ Ag M L =

m
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o+ (( 2’“)-( Im )) GMEF™ AGMET™
m m-—1

It is easy to see that in the expression given, the coefficient at g,-Mt'{’"" A 37,-Mt’1+""*'1 is equal to
( m ) - ( 2m ) = ( m ) : m and is not divisible by p. Therefore, the element ft‘l’h"l = f't';'"‘
m m-—1 m-—1
= oapdtm oA = arpltml 721 2 oA H :
depends on §; Mty A G Mt) , whence ft§ 7" & H A Hbi. The lemma is proved.
2.4. We turn directly to the proof of Theorem 1. Let ¢ be a normal automorphism of the group
F. Relying on Lemma 2, we can assume that ¢ induces an identity automorphism on F/F”. Then

210 =21f1,.++Zn® = Tnfa, Where f1,..., fa € F"'. For a given natural number k, F; denotes the normal
" 1+a;+...+a{""
T

subgroup in F generated by z’l’h. Since z’l’htp = (z1 fl)”h =z , we have
-1
11+m+---+¢l € Fk n F". (8)

In Sec. 2.3, the group F'’ was identified with the additive group of the submodule T'o AT of the Z, A-module
B AH. It is not hard to see that F N F” C A A Hby. From (8), we obtain the following inclusion (written
additively): fiby € H A Hb; for any k. By Lemma 5, then, f, must be divisible by ¢, in # A . By Lemma
4, it is divisible by ¢; also in T'g A Tg. Coming back to the multiplicative notation, we can assert that there
exists an element ¢ € F” such that f; = g%1g~1 = g*1g~!
automorphism ¥ = p§. We have =19 = z;. Let z;9 = z;gi, where g; € F”, 2 < i < n. For any natural
number m, we also have (zPz;)¥ = (z]*z;)g;. The preceding argument implies that g;, as an element of
the Z,A-module H A H, is divisible by al®a; — 1 = mt; + t;mod A%. By Lemma 3, A A A is embedded in
a free Z, A-module. It is not hard to see that a nonzero element from Z, A cannot be divisible by elements

. Consider the inner automorphism § and the

aPa; — 1 for all natural m. This means that g,...,¢a are trivial elements, 3 is an identity automorphism,
and ¢ is inner. The theorem is proved.

3. PROOF OF THEOREM 2

Let G be an abstract free A3 A-group with basis X = {z;| i € I'}. Based on the matrix representation
[9], we can assert that G is a residually finite p-group for any prime number p. Therefore, it is embedded
in the completion with respect to the pro-p-topology (the latter is defined by all normal subgroups of finite
p-index containing almost all elements from X), which will be the free M;.A-pro-p-group F with basis X.
Let ¢ be a p-normal antomorphism of G. We need to prove that  is inner.

3.1. First we show that our problem reduces to the case where G has finite rank. Let {z;,...,z,} C X,
n>2,and Gy = (21,...,2s). Then there exists a subset {z1,...,2n,...,Zm} in X such that G;9p < Gz =
(21,...1%n,...,Zm). Represent G; as the factor-group F/N, where N is a normal subgroup of F generated
by all elements from X\{z1,...,%n,...,Zm}. Let @3 be a normal automorphism of the group F/N = G,
induced by ¢. We can say that ¢ and ¢, coincide on Gy. Let 3 = 4, whete u € G3. We prove that ¢ = i.
Indeed, if g is an arbitrary element in G and ¢ € G3 = (z1,...,Zn,...,Zm,..-,Tx), the above argument
implies that there exists an element v € F such that pl¢, = 9. It suffices to prove that u = v. If not, a
nontrivial element uv~! centralizes the subgroup G;. Consider the matrix representation of G from [9] or
the representation of F' given in Sec. 2. We may conclude that the centralizer of G, in G is equal to 1,
whence u = v,

3.2. Assume that X = {z,...,2,} is a finite set. The automorphism ¢ of an abstract group G uniquely
extends to the normal automorphism of a pro-p-group F, denoted by the same symbol ¢. By Theorem 1,
there exists an element f € F such that ¢ = f It remains to prove that f € G.
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Consider a nontrivial element § = yG” € G'/G". The group G'/G" is embedded in F'/F". The normal
subgroup of G/G" generated by an element § is identified with a free one-generated module over the group
ring Z[G/G']. The normal subgroup generated by § in F/F" is the corresponding module over Z, A, where
A= F/F'. In a module, the action of ¢ on § corresponds to multiplication by the canonical image of f in
F/F'. Therefore, there exists g € G such that f = g mod F', which reduces the problem to the case f € F'.

3.3. Let f € F'. We have z19 = 21 - [z1,f] and [z3,f] € G’. Recall that the group F'/F” is
embedded in an additive group of the free topological Z, A-module A with basis {§,...,%.}. Denote by
R the ring Z[ay,a7%,...,6n,0; ], and by Ry its subring Z[ty,...,t,). Also let R = Z,4 = Z,[[ty,...,t,]].
The abstract group G’'/G" is embedded in an additive group of an abstract free R-module E with basis
{F1,---1Tn}. We have [z1,f] = f-t1 € E. There exists an element a in the abstract group (ay,... ) Gn)
such that f-tja € 1Ry + ... + §nRo = Eo. Let ftia=g1u; + ...+ Jnta, where uy,...,u, € Ro. Since
the elements uy, ..., u, are divisible by ¢; in R, they are also divisible by t; in Rg. Let % = v; - t;, where
v, ERy (i=1,...,n). We have f-a =93 +... + §iav,. Recall that the element §wy + ...+ Jow, of E
lies in G'/G" if and only if wyt; +...+ wut, = 0. Since usty +...+ tnty = 0, we have vyt +... 4 vat, = 0.
Therefore, f-a € G'/G" and f € G'/G", which reduces the proof to the case f € F”.

3.4. Here we préve an auxiliary statement. Let R = Z[a,a~!] be the integral group ring of the infinite
cyclic group; t = a—1; Rp = Z[t); R = Z,[[t]]. Let e; R be a free (topological) one-generated R-module with
generator e; (i = 1,2). Consider the exterior product of e1R and ez R, treated as Zp-modules, on which the
action of the ring R is defined by formula (5). The exterior product of Z-modules e; R and e; R is contained
in 61R Aey R.

LEMMA 6. Let f ce;RAesR and ft € eyRo AeaRo. Then f € e; Ry A eaRo.

Proof Consider a homogeneous element g of e; Rg A e2Rg of weight n, that is, an element of the form

g= Z a; - e1t* Aegt™ ™, a; € Z. Define tr(g), the trace of that element, as Z( 1)'a; and the derivative
=0 =0

d(g) as Z a;d(et’ Aeat™ %), where d(eg Aegt™) =0, d(eyt* Aegt““) = egtt Aeatn it o il A gt it 4
=0
c. 4+ (—1)eyt Aegt™ for 1 < i < n. This definition implies that d(g) is a homogeneous element of degree
( <ig P 8 g

n+ 1. From (5), we infer that g = tr(g) - ey A e3t™ + d(g) mod (e; Ro A ez Ro)t.

Note that an element of e; RAe3 R of the form a-e; Aeat™ +u, where a # 0 and the weight u > n, cannot
be divisible by ¢. Assume the contrary and represent that element as ht. Then the weight of h is equal to
n— 1. Let e1t* A e3t" %! be a maximal element of the form e;t* A e;t"~*~! in the Z,-basis occurring in
the expansion of h. By formula (5), then, ht should depend on e;t*+! A e3¢ ~%~1, which conflicts with the
initial representation of this element.

We come back to the element ft. Now we represent it as fi + fry1+...+ fa, where f; is a homogeneous
clement of weight i in e; Ry A e2Rg. The preceding remark implies that tr(fi) = 0. Then ft = (d(fi) +
fe+1) + fetva + ...+ famod (eg Ro A ea Ro)t. This allows us to reduce the problem to the case where ftis a
homogeneous element of degree n.

Let ft = o -eytF Aeat™ ¥ 4 ap_y - estF P Aeat™ %t 4 [ 4 o - eyt! A est™!. We have tr(ft) =
(=1)*ag + ...+ (~1)'a; = 0 and ft = d(ft)mod (e; Ry A e3Ro)t. From the definition of a derivative, we
obtain d(ft) = —ay - etk Aeat" 5t 4 (ap — ap_y) - ertF L Aept" Rt 4 — (—1)FN(— ko + ..+
(=) aq)-ert' Aeat™ ...+ ((—1)*ar+...+(—1)ar)-e1t Aest™. Since tr(ft) _—:( ear+...+(— l)la; =0,
we have the expression for d(ft) with a lesser number of summands «-e;t' Aejt? than for ft. From this, by
repeatedly applying the function d to ft, we obtain the zero element. This means that ft € (e; RoAe2Ro)t.
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Let ft = gt, where g € 3 RoAez Ro. From Lemma 3, it follows that e; RAez Ris a free R-module. Therefore,
f =g €e1Ro AeaRy. The lemma is proved.

3.5. We come back to the proof of Theorem 2. Let f € F”. We have 2,0 = z4[z1, f] and z29 =
z3(z3, f] € G, whence [z, f], [z2,f] € G”. In Sec. 3.4, the group F” was identified with an additive
subgroup of the exterior square A A H. We will use the same notation as in Secs. 2.3 and 3.3. In the
additive notation, we have ft;, fts € G”. In particular, the elements ft; and ft; lie in the exterior square of
the Z-module E = §# R+ ...+ §, R. Moreover, we can assume that ft,, ft; € (EoNG'/G") A (EonG'/G"),
where Fg = 1 Ro + ... + 7. Ro-

LEMMA 7. Let w be an arbitrary element in A A H. Then w € Eg A Eq if wty, wt, € Eg A E,.

Proof. For arbitrary monomials M and L in ¢3,...,%,, where M < L, write Sy for a Zp-module
generated in A A H by all elements of the form Mi] A Lt} (m,I > 0). Obviously, Sa,p is also a Z,[[t]]-

module and H A B = @ Sum,r- From wty € Eg A Ey, it follows that w lies in the sum of finitely
M<L

many modules Sps,z. Let w = w; + w3, where wy € @ SM,L, w2 € @SMM Then wit; € Eg A E,,
waty € Eg A Eg. Lemma 6 implies that w, € Eg A Eg. Obvxously, the element wy is expressed over Z, via
elements of the form MtJ* A Lt} (m,l > 0), where M and L are the monomials in #,¢3,...,ts, and M < L.
Since waty € FEo A Ey, the preceding argument (with ¢; replaced by t3) yields w, € Eg A Eo. The lemma is
proved.

It follows from the lemma that f € Ep A Ep. In Lemma 4, we proved that F/' = Tg ATy, as a
Zy[[t1]]-module, is a direct summand in H A H. Carrying that proof over to the abstract case, we see
that (Eo N G'/G") A (Eo N G'/G"), as a Z[t;]-module, is a direct summand in Eg A Eg. The inclusion
ft1 € (BoNG'/G") A(Eg N G'/G") then implies that f € G" = G'/G" A G’'/G". Theorem 2 is proved.
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