NORMAL AUTOMORPHISMS OF A FREE PRO-p-GROUP IN THE VARIETY $\mathcal{N}_{\mathbf{2}} \mathcal{A}$

Ch. Gupta and N. S. Romanovskii*

UDC 512.5

Abstract

An automorphism of a (profinite) group is called normal if each (closed) normal subgroup is left invariant by it. An automorphism of an abstract group is p-normal if each normal subgroup of p-power, where p is prime, is left invariant. Obviously, the inner automorphism of a group will be normal and p-normal. For some groups, the converse was stated to be likewise true. N. Romanovskii and V. Boluts, for instance, established that for free solvable pro-p-groups of derived length 2, there exist normal automorphisms that are not inner. Let \mathcal{N}_{2} be the variety of nilpotent groups of class 2 and \mathcal{A} the variety of Abelian groups. We prove the following results: (1) If p is a prime number distinct from 2, then the normal automorphism of a free pro-p-group of rank ≥ 2 in $\mathcal{N}_{2} \mathcal{A}$ is inner (Theorem 1); (2) If p is a prime number distinct from 2 , then the p-normal automorphism of an abstract free $\mathcal{N}_{2} \mathcal{A}$-group of rank ≥ 2 is inner (Theorem 2).

An antomorphism of a (profinite) group is called normalif each (closed) normal subgroup is left invariant by it. An automorphism of an abstract group is said to be f-normal (p-normal) if each normal subgroup of finite index (a normal subgroup of p-power, p is prime) is left invariant. It is obvious that the inner automorphism of a group will be normal. For some groups, the converse is also true. In this direction, it is worth noting the following results:

- normal automorphisms of absolute Galois groups of finite extensions of the field of p-adic numbers are inner (see [1]);
- each normal automorphism of a pro-K-group with n generators and m defining relations, where $n-m \geq 2$ and K is a class of finite groups closed under subgroups, homomorphic images, and extensions, is inner (see [1]);
- a p-normal automorphism of an abstract free group of rank ≥ 2 is inner (see [2]);
- an f-normal antomorphism of an abstract free solvable group of derived length ≥ 2 is inner (see [3]);
- an f-normal antomorphism of an abstract free group of the variety $\mathcal{A} \mathcal{N}_{k}$ is inner, with \mathcal{A} the variety of Abelian groups and \mathcal{N}_{k} the variety of nilpotent groups of class k;

In [4], normal automorphisms of a free solvable pro-p-group of derived length 2 were described. The description implied, in particular, that for the group there exist normal automorphisms that are not inner. In the present article we prove the following basic theorem.

THEOREM 1. If p is a prime number distinct from 2, then the normal automorphism of a free pro-p-group of rank ≥ 2 in the variety $\mathcal{N}_{2} \mathcal{A}$ is inner.

From this, we infer the following:
THEOREM 2. If p is a prime number distinct from 2, then the p-normal automorphism of an abstract free $\mathcal{N}_{2} \mathcal{A}$-group of rank ≥ 2 is inner.
*Supported by RFFR grant No. 93-01-01508.

[^0]In Section 1, we also prove the general result which says that if V is the variety of profinite groups, then a certain analog of the Shmelkin embedding will be valid for groups of type $F / V(R)$.

1. PRELIMINARY REMARKS CONCERNING VARIETIES OF PROFINITE GROUPS

1.1. In what follows, when speaking about profinite groups, we use the terms a "subgroup," a "homomorphism," etc., to refer to respective notions in the category of profinite groups, that is, a closed subgroup, a continuous homomorphism and so on. The necessary definitions related to profinite groups can be found in $[5,6,7]$.

We recall that a free profinite group $F(X)$ with basis X is the completion of an abstract free group with basis X with respect to the profinite topology defined by subgroups of finite index containing almost all (that is, all but finitely many) elements from X. The basic property of that group is that any continuous map from the set $X \cup\{1\}$ to an arbitrary profinite group G such that $1 \rightarrow 1$ extends to the homomorphism $F(X) \rightarrow G$.

For a given profinite group A, consider the class of A-groups, that is, profinite groups on which A acts continuously. In this class, there are also free objects. A free profinite A-group with basis $\left\{y_{i} \mid i \in I\right\}$ can be constructed as follows. Represent A as the projective limit of finite groups $A_{\lambda}(\lambda \in \Lambda)$. For each λ, consider a free profinite group F_{λ} with basis $\left\{y_{i}^{a} \mid i \in I, a \in A_{\lambda}\right\}$. The canonical action of A_{λ} on the group F_{λ} can be treated as the continuous action of A. Consider the projective limit of groups $F_{\lambda}(\lambda \in \Lambda)$ on which A also acts. This limit is easily seen to be a free profinite A-group with basis $\left\{y_{i} \mid i \in I\right\}$.
1.2. A variety of profinite groups is the class of profinite groups closed under subgroups, homomorphic images, and direct (in the category of profinite groups) products. Varieties of profinite groups are in one-toone correspondence with the classes K of finite groups closed under subgroups, homomorphic images, and direct (in the category of abstract groups) products. A corresponding variety of profinite groups consists of pro-K-groups only. As in the case of abstract groups, the variety can be defined via identities, in which case by an identity we mean an element of the free profinite group F_{∞} with a countable basis. The identity $v \in F_{\infty}$ is satisfied on the profinite group G if, under any homomorphism $F_{\infty} \rightarrow G$, the image of an element v (the value of v) is equal to 1 . Unlike the abstract case, we note, every variety of profinite groups can be defined by a single identity.

Let G be a profinite group and v some defining identity for V. The subgroup in G generated by all values of v is called verbal and is denoted by $v(G)$ or by $V(G)$. If $F(X)$ is a free profinite group with basis X, and V is a variety, then the factor-group $F(X) / V(F(X))$ will be a free group in V.

A product variety of V and W is the class of profinite groups that are extensions of groups from V by the groups in W. A free group in the variety $V W$ is the factor-group $F(X) / V(W(F(X)))$.
1.3. For abstract groups, the Shmelkin embedding, which allows one to find a representation for the group $F / V(R)$ given F / R, is well known. Below, we give its analog for profinite groups.

Let V be some variety of profinite groups and let A be a profinite group represented as the factor-group $F(X) / R$, where $F(X)$ is a free profinite group with basis $X=\left\{x_{i} \mid i \in I\right\}$. Denote by a_{i} the canonical image of an element x_{i} in A. Consider the free profinite A-group F_{0} with basis $\left\{y_{i} \mid i \in I\right\}$. The group $B=F_{0} / V\left(F_{0}\right)$ will be a free A-group with basis $\left\{b_{i} \mid i \in I\right\}$, where b_{i} is the canonical image of y_{i} in B, in the variety V. Let C be a subgroup in the semidirect product $A B$ generated by elements $c_{i}=a_{i} b_{i}(i \in I)$.

Proposition 1. If $r: F(X) \rightarrow C$ is a homomorphism determined by the mapping $x_{i} \rightarrow c_{i}(i \in I)$, then ker $\tau=V(R)$. In other words, $C \cong F(X) / V(R)$.

Proof. Obviously, ker $r \geq V(R)$. To prove the inverse inclusion, it suffices to show that if $\psi: F(X) \rightarrow G$ is an epimorphism onto the finite group G such that $\operatorname{ker} \psi \geq V(R)$, then the map $c_{i} \rightarrow x_{i} \psi=g_{i}(i \in I)$ yields an epimorphism $C \rightarrow G$.

Let $H=R \psi, A^{\prime}=G / H, a_{i}^{\prime}$ be the canonical image of x_{i} in A^{\prime}, and $\sigma: A \rightarrow A^{\prime}$ be an epimorphism determined by the map $a_{i} \rightarrow a_{i}^{\prime}$. Consider the wreath product of finite groups, $H l A^{\prime}$, represented as the semidirect product $A^{\prime} \bar{H}$, where \bar{H} is a basis subgroup in the wreath product. We can think of \bar{H} as an A^{\prime}-group and, hence, as an A-group, putting $h^{a}=h^{a \sigma}$, where $a \in A$ and $h \in \bar{H}$. There exists an embedding of G into $H l A^{\prime}$ such that $g_{i}=a_{i}^{\prime} h_{i}, h_{i} \in \bar{H}$ (see [8, Thm. 6.2.8]). The group \bar{H} belongs to V. Therefore, the map $b_{i} \rightarrow h_{i}(i \in I)$ gives a homomorphism of the profinite A-group B into the finite A-group \bar{H}; the map $c_{i}=a_{i} b_{i} \rightarrow g_{i}=a_{i}^{\prime} h_{i}(i \in I)$ yields an epimorphism $C \rightarrow G$, as desired.
1.4. Let W be the variety of profinite groups closed under extensions. Such a variety consists of pro-Kgroups, where K is some class of finite groups closed ander subgroups, homomorphic images, and extensions. Suppose that V is a subvariety of W. Consider the free group $F_{W}(X)$ with basis $X=\left\{x_{i} \mid i \in I\right\}$ in W and its factor-group $A=F_{W}(X) / R_{W}$. As before, a_{i} denotes the canonical image of x_{i} in A, and B stands for a free A-group with basis $\left\{b_{i} \mid i \in I\right\}$ in V. From Proposition 1 , we easily infer

Proposition 2. The map $x_{i} \rightarrow a_{i} b_{i}(i \in I)$ induces an embedding of the group $F_{W}(X) / V\left(R_{W}\right)$ into the semidirect product $A B$.

Indeed, $C \cong F(X) / V(R)$ by Proposition 1. Passing to the quotients on both sides of the equation with respect to the verbal subgroups corresponding to W, we obtain $C \cong F_{W}(X) / V\left(R_{W}\right)$.
1.5. In what follows, we deal with subvarieties of the variety of all pro-p-groups. This variety is closed under extensions and satisfies the hypothesis of Proposition 2.

Let A be a free Abelian pro-p-group with a finite basis $\left\{a_{1}, \ldots, a_{n}\right\}$. The group algebra $Z_{p} A$ of a group A over the ring Z_{p} of p-adic integers is identified with the ring $Z_{p}\left[\left[t_{1}, \ldots, t_{n}\right]\right]$ of formal power series, where $t_{1}=a_{1}-1, \ldots, t_{n}=a_{n}-1$ (see [7]). The additive group of this ring is a free Abelian pro-p-group with the basis consisting of monomials $M=t_{1}^{k_{1}} \ldots t_{n}^{k_{n}}$, where k_{1}, \ldots, k_{n} are nonnegative integers. Consider a free A-pro-p-group F_{A} with basis $\left\{y_{1} \ldots y_{n}\right\}$. For the given monomial $M=t_{1}^{k_{1}} \ldots t_{s}^{k^{\prime}}$, where $k_{s}>0$, define an element y_{i}^{M} from F_{A} inductively by putting $y_{i}^{M}=\left(y_{i}^{L}\right)^{a} \cdot\left(y_{i}^{L}\right)^{-1}$, where $L=t_{1}^{k_{1}} \ldots t_{i}^{k_{1}-1}$. Obviously, y_{i}^{M} lies in the $\left(k_{1}+\ldots+k_{s}\right)$ th term of the lower central series of the pro-p-group $A F_{A}$. Therefore, the set $\Omega=\left\{y_{i}^{M} \mid M\right.$ are monomials $\}$ converges to 1 . It is easy to see that the set generates F_{A} as a pro-p-group.

LEMMA 1. F_{A} is a free pro-p-group with basis S.
Proof. Let Ω_{m} be the set of all monomials of degree $<p^{m}$ in each of the variables. Then these monomials (or rather their canonical images) form a basis for the additive group of the group algebra $Z_{p} A_{m}$, where $A_{m}=A / A^{p^{m}}$. Consider the free A_{m}-pro-p-group F_{m} with basis $\left\{y_{1}, \ldots, y_{n}\right\}$. It is a free pro-p-group with basis $\left\{y_{i}^{a} \mid i=1, \ldots, n ; a \in A_{m}\right\}$, and we can also take the set $\left\{y_{i}^{M} \mid i=1, \ldots, n ; M \in \Omega_{m}\right\}$ to be the basis of F_{m}, as a pro-p-group. The statement of the lemma now easily follows from $F_{A}=\lim F_{m}$. The lemma is proved.
1.6. We are going to treat a free $\mathcal{N}_{2} \mathcal{A}$-pro-p-group F with basis $\left\{x_{1}, \ldots, x_{n}\right\}$, where \mathcal{N}_{2} is the variety of class 2 nilpotent pro-p-groups and \mathcal{A} is the variety of Abelian pro-p-groups. Proposition 2 implies that F is embedded in the semidirect product $A H$, where A is a free Abelian pro-p-group with basis $\left\{a_{1}, \ldots, a_{n}\right\}$ and H is a free nilpotent A-pro-p-group of class 2 with basis $\left\{y_{1}, \ldots, y_{n}\right\}$. It follows from Lemma 1 that H, as a pro-p-group, is a free nilpotent group of class 2 with basis $\left\{y_{i}^{M} \mid M\right.$ are monomials in $\left.t_{1}=a_{1}-1, \ldots, t_{n}=a_{n}-1\right\}$. The embedding of F is defined by the equalities $x_{1}=a_{1} y_{1}, \ldots, x_{n}=a_{n} y_{n}$.

2. PROOF OF THEOREM 1

We adopt the notation which will be used throughout. If a and b are elements of a group, then $a^{b}=b^{-1} a b$ and $[a, b]=a^{-1} b^{-1} a b$. The inner automorphism of a group G, which is a conjugation by an element x, is denoted by \hat{x}. A (topological) commutator subgroup of a (pro-p-) group G is denoted by G^{\prime} or $[G, G] ; G^{\prime \prime}$ is, respectively, a second commutator subgroup.

Let F be a free pro-p-group with basis X in the variety $\mathcal{N}_{2} \mathcal{A}$ and let φ be the normal automorphism of F. We argue that φ is an inner automorphism.
2.1. First note that the task we face reduces to the case where F has finite rank. For this to be the case, we need to represent F as the projective limit of groups $F_{\lambda}(\lambda \in \Lambda)$, where F_{λ} is a free pro-p-group with basis X_{λ} in $\mathcal{N}_{2} \mathcal{A}_{1}$ and X_{λ} runs over all finite subsets of X. Suppose that on each group F_{λ}, φ induces an inner automorphism $\hat{f}_{\lambda}, f_{\lambda} \in F_{\lambda}$. Therefore, if f is the limit of the set $\left\{f_{\lambda} \mid \lambda \in \Lambda\right\}$, then $\varphi=\hat{f}$.
2.2. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite set, $n \geq 2$. In view of Sec. 1.6, we assume that the group F is embedded in the semidirect product $C=A H$, where A is a free Abelian pro-p-group with basis $\left\{a_{1}, \ldots, a_{n}\right\}$ and H is a free class 2 nilpotent A-pro-p-group with basis $\left\{y_{1}, \ldots, y_{n}\right\} ; x_{1}=a_{1} y_{1}, \ldots, x_{n}=a_{n} y_{n}$. Then the following equalities hold:

$$
\begin{equation*}
F \cap H=F^{\prime}, F \cap H^{\prime}=F^{\prime \prime} \tag{1}
\end{equation*}
$$

Recall that H, as a pro-p-group, is a free class 2 nilpotent group with basis $\left\{y_{i}^{M T} \mid i=1, \ldots, n ; M\right.$ are monomials in $\left.t_{1}=a_{1}-1, \ldots, t_{n}=a_{n}-1\right\}$. Order the monomials by putting $M=t_{1}^{k_{1}} \ldots t_{n}^{k_{n}}<L=t_{1}^{l_{1}} \ldots t_{n}^{l_{n}}$ if $k_{1}+\ldots+k_{n}<l_{1}+\ldots+l_{n}$, or $k_{1}+\ldots+k_{n}=l_{1}+\ldots+l_{n}$ and $k_{1}=l_{1}, \ldots, k_{i-1}=l_{i-1}, k_{i}<l_{i}$. The group H^{\prime} is a free Abelian pro-p-group with basis $\Sigma=\left\{\left[y_{i}^{M}, y_{j}^{L}\right] \mid 1 \leq i \leq j \leq n ; M\right.$ and L are monomials; if $i=$ j, then $M<L\}$. Order elements $\left[y_{i}^{M}, y_{j}^{L}\right]$ of that basis lexicographically, comparing the following parameters: the sum of degrees of the monomials M and L, i, j, M, and L. We say that an element $h \in H^{\prime}$ depends on $\left[y_{i}^{M}, y_{j}^{L}\right]$ if the latter has a nonzero coefficient in the expansion of h (into a series) with respect to the basis Σ.

LEMMA 2. The automorphism φ induces an inner automorphism on $F / F^{\prime \prime}$.
Proof. The pro-p-group $F / F^{\prime \prime}$ is free, solvable of derived length 2, and is embedded in the semidirect product $\vec{C}=A \bar{H}$, where $\bar{H}=H / H^{\prime}$. Denote by \bar{c} the canonical image of an element $c \in C$ in \bar{C}. We can treat \bar{H} as a free $Z_{p} A$-module with basis $\left\{\bar{y}_{1}, \ldots, \bar{y}_{n}\right\}$. In [4], we described normal automorphisms of free solvable pro-p-groups of derived length 2. That description implies that there exists an element $u \in Z_{p} A$ such that $\varepsilon(u)=1$ (ε is the unit augmentation map $Z_{p} A \rightarrow Z_{p}$), and that for any element $f \in F^{\prime}$, the equality $\overline{f \varphi}=\bar{f}^{u}$ holds. In addition, from [4] it also follows that φ induces an inner automorphism on $F / F^{\prime \prime}$ if and only if $u \in A$. Thus, we need only prove that u lies in A.

Let $u \equiv 1+m_{1} t_{1}+\ldots+m_{n} t_{n} \bmod \Delta^{2}$, where $m_{1}, \ldots, m_{n} \in Z_{p}$, and $\Delta=$ ker ε is the augmentation ideal of $Z_{p} A$. We have the following congruence: $u \equiv a=a_{1}^{m_{1}} \ldots a_{n}^{m_{n}} \bmod \Delta^{2}$. Replacing φ by $\varphi \cdot \hat{f}^{-1}$, where $f=x_{1}^{m_{1}} \ldots x_{n}^{m_{n}}$, reduces our problem to the case where $u \equiv 1 \bmod \Delta^{2}$. We prove that $u=1$ in this case.

Assume the contrary, letting $u=1+v$, where $0 \neq v \in \Delta^{2}$. Choose a minimal monomial P on which v depends. The degree of the monomial is ≥ 2. Consider the element $z=\left[\left[x_{1}, x_{2}\right],\left[x_{1}, x_{2}\right]^{x_{1}}\right] \in F^{\prime \prime}$. It is immediately verified that $z=\left[y_{1}^{t_{2}}, y_{2}^{t_{1}^{2}}\right]^{-1}\left[y_{1}^{t_{1} t_{2}}, y_{2}^{t_{1}}\right]\left[y_{1}^{t_{2}}, y_{1}^{t_{1} t_{2}}\right]\left[y_{2}^{t_{1}}, y_{2}^{t_{1}^{2}}\right]$. We have

$$
\begin{equation*}
z \varphi=\left[\left[x_{1}, x_{2}\right]^{u},\left[x_{1}, x_{2}\right]^{x_{1} u}\right]=\left[y_{1}^{t_{2} u}, y_{2}^{t_{1}^{2} u}\right]^{-1}\left[y_{1}^{t_{1} t_{2} u}, y_{2}^{t_{1} u}\right]\left[y_{1}^{t_{2} u}, y_{1}^{t_{1} t_{2} u}\right]\left[y_{2}^{t_{1} u}, y_{2}^{t_{1}^{2} u}\right] . \tag{2}
\end{equation*}
$$

Further note that the action of the group F by conjugation on H^{\prime} determines the structure of a $Z_{p} A$-module on the latter group. The normal subgroup in F generated by an element z is a submodule generated by z. Therefore, there exists an element $u^{\prime} \in Z_{p} A$ such that $z \varphi=z^{u^{\prime}}$. Let $u^{\prime}=\alpha+w$, where $\alpha \in Z_{p}$ and $w \in \Delta$.

In what follows, we shall often use the following formula. Let $a \in A, t=a-1$, and $h_{1}, h_{2} \in H$. Then

$$
\begin{equation*}
\left[h_{1}, h_{2}\right]^{t}=\left[h_{1}^{t}, h_{2}\right]\left[h_{1}, h_{2}^{t}\right]\left[h_{1}^{t}, h_{2}^{t}\right] . \tag{3}
\end{equation*}
$$

The formula implies that $z \varphi=z^{\alpha} z^{w}=\left[y_{1}^{t_{2}}, y_{2}^{t_{2}^{2}}\right]^{-\alpha} z^{\prime}$, where z^{\prime} does not depend on $\left[y_{1}^{t_{2}}, y_{2}^{t_{1}^{2}}\right]$. Comparing this with expression (2) produces $\alpha=1$. Let S be the minimal monomial on which w depends. From formula (3), then, we infer that a minimal element of the basis Σ of the form $\left[y_{1}^{M}, y_{2}^{L}\right.$], on which z^{w} depends, is [$\left.y_{1}^{t_{2}}, y_{2}^{t_{2}^{2} S}\right]$. We have $z^{\infty}=z \varphi \cdot z^{-1}$. By (2), the minimal element of Σ of the form $\left[y_{1}^{M}, y_{2}^{L}\right]$, on which $z \varphi \cdot z^{-1}$ depends, is $\left[y_{1}^{t_{2}}, y_{2}^{t_{2}^{2} P}\right]$. Consequently, $P=S$. The argument implies also that the monomial P has the same coefficient in the expansions of v and w. Let it be equal to β. In the expansion of $z \varphi \cdot z^{-1}$ with respect to the basis Σ, we isolate that part z_{0} which is expressed in terms of basis elements of the form $\left[y_{1}^{N}, y_{2}^{L}\right]$, where $M L=t_{1}^{2} t_{2} P$. From (2), we infer that

$$
z_{0}=\left(\left[y_{1}^{t_{2}}, y_{2}^{t_{2}^{2} P}\right]^{-1}\left[y_{1}^{t_{2} P}, y_{2}^{t_{1}^{2}}\right]^{-1}\left[y_{1}^{t_{1}^{t_{2}},}, y_{2}^{t_{1} P}\right]\left[y_{1}^{t_{1} t_{2} P}, y_{2}^{t_{1} 1}\right]\right)^{\beta} .
$$

On the other hand, if we rely on the fact that $z \varphi \cdot z^{-1}=z^{*}$, then (3) will imply that to the above-mentioned representation of z_{0}, we must add another factor equal to the product

$$
\begin{equation*}
\prod_{P_{1}, P_{2}}\left(\left[y_{1}^{t_{2} P_{2}}, y_{2}^{t_{1}^{2} P_{2}}\right]^{-1}\left[y_{1}^{t_{1} t_{2} P_{1}}, y_{2}^{t_{1} P_{2}}\right]\right)^{\beta}, \tag{4}
\end{equation*}
$$

taken over all monomials P_{1} and P_{2} such that $P_{1} \neq 1, P_{2} \neq 1$, and $P_{1} P_{2}=P$. If $P=t_{i}^{k_{i}} t_{i+1}^{k_{i+1}} \ldots t_{n}^{k_{n}}$, where $k_{i}>0$, then the element $\left[y_{1}^{t_{2} t_{i}}, y_{2}^{t_{i}^{2} t_{i}^{k_{i}-1} t_{i+1}^{k_{i}+1} \ldots t_{n}^{t_{n}^{*}}}\right]$ with exponent $-\beta$ occurs in (4) only once. Therefore, the product (4) is not equal to 1 , a contradiction. The lemma is proved.
2.3. We need a more detailed information on the group H^{\prime} and its subgroup $F^{\prime \prime}$. Obviously, H^{\prime}, as an Abelian pro-p-group or as a Z_{p}-module, is the (topological) exterior square of the Z_{p}-module H / H^{\prime}. In turn, H / H^{\prime} is identified with an additive group of the free $Z_{p} A$-module, denoted \bar{H}, with basis $\left\{\bar{y}_{1} \ldots \bar{y}_{n}\right\}$. In this section, we use the additive notation. Write $\bar{H} \wedge \bar{H}=\underset{1 \leq i \leq j \leq n}{ } H_{i} \wedge H_{j}$, where $H_{i}=\bar{y}_{i} \cdot Z_{p} A$ ($i=1, \ldots, n$). In addition, the action of the algebra $Z_{p} A$ on $\bar{H} \wedge \bar{H}$ is defined by (3). Rewrite this formula additively as follows:

$$
\begin{equation*}
(u \wedge v) t=u t \wedge v+u \wedge v t+u t \wedge v t, \tag{5}
\end{equation*}
$$

where $u, v \in \bar{H}, t=a-1$, and $a \in A$. Under this action, $\bar{H} \wedge \bar{H}$ turns into a $Z_{p} A$-module.
LEMMA 3. (a) The module $H_{i} \wedge H_{j}$ with $i<j$ is a free $Z_{p} A$-module with basis $\left\{\bar{y}_{i} \wedge \bar{y}_{j} M \mid M\right.$ are monomials in $\left.t_{1}, \ldots, t_{n}\right\}$.
(b) The module $H_{i} \wedge H_{i}$ is embedded in a free $Z_{p} A$-module.

Proof. (a) Define the weight of an element $\bar{y}_{i} M \wedge \bar{y}_{j} L(i<j)$ in the basis of the Z_{p}-module $H_{i} \wedge H_{j}$ as the sum of degrees of the monomials M and L. The weight of an arbitrary nonzero element in $H_{i} \wedge H_{j}$ is specified to be equal to the minimum of weights of the basis elements on which it depends. The weight of the zero element is assumed infinite. It is easy to see that if P is a monomial, then the weight of ($\bar{y}_{i} M \wedge \bar{y}_{j} L$) P is equal to the sum of degrees of the monomials M, L, and P. By (5), the element $\bar{y}_{i} M \wedge \bar{y}_{j} L$ of weight k can be rewritten, modulo an element of larger weight, as a linear combination of elements ($\bar{y}_{i} \wedge \bar{y}_{j} P$)S of weight k with coefficients from Z_{p}. Hence, the set $\left\{\bar{y}_{i} \wedge \bar{y}_{j} M \mid M\right.$ are monomials in $\left.t_{1}, \ldots, t_{n}\right\}$ generates $H_{i} \wedge H_{j}$ as a $Z_{p} A$-module. We argue that this is a free system of generators. Indeed, suppose that there exists a nontrivial series $v=\sum_{\alpha}\left(\bar{y}_{i} \wedge \bar{y}_{j} M_{\alpha}\right) u_{\alpha}$, where $0 \neq u_{\alpha} \in Z_{p} A$. Let $\bar{y}_{i} \wedge \bar{y}_{j} M_{0}$ be minimal among the
elements $\bar{y}_{i} \wedge \bar{y}_{j} M_{\alpha}$ and let L be the minimal monomial in the expansion of u_{0}. It then follows from (5) that v depends on $\bar{y}_{i} L \wedge \bar{y}_{j} M_{0}$; in particular, $v \neq 0$.
(b) In essence, here we must prove that $Z_{p} A \wedge Z_{p} A$ is embedded in a free $Z_{p} A$-module. Consider the algebra of formal power series, $Z_{p}\left[\left[s_{1}, \ldots, s_{n}, r_{1}, \ldots, r_{n}\right]\right]$, and the embedding of $Z_{p} A \wedge Z_{p} A$, as a Z_{p}-module, into this algebra, defined by the formula $\sigma: t_{1}^{k_{1}} \ldots t_{n}^{k_{n}} \wedge t_{1}^{l_{1}} \ldots t_{n}^{l_{n}} \rightarrow s_{1}^{k_{1}} \ldots s_{n}^{k_{n}} r_{1}^{l_{1}} \ldots r_{n}^{l_{n}}-s_{1}^{l_{1}} \ldots s_{n}^{l_{n}} r_{1}^{k_{1}} \ldots r_{n}^{k_{n}}$. If $u, v \in Z_{p} A$, then $\left((u \wedge v) t_{i}\right) \sigma=(u \wedge v) \sigma \cdot\left(s_{i}+r_{i}+s_{i} r_{i}\right)$, that is, the action of the ring $Z_{p} A$ on $Z_{p} A \wedge Z_{p} A$ corresponds to the action of $Z_{p}\left[\left[s_{1}+r_{1}+s_{1} r_{1}, \ldots, s_{n}+r_{n}+s_{n} r_{n}\right]\right]$ by multiplication on ($Z_{p} A \wedge Z_{p} A$) σ. Obviously, $Z_{p}\left[\left[s_{1}, \ldots, s_{n}, r_{1}, \ldots, r_{n}\right]\right]=Z_{p}\left[\left[s_{1}, \ldots, s_{n}, s_{1}+r_{1}+s_{1} r_{1}, \ldots, s_{n}+r_{n}+s_{n} r_{n}\right]\right]$. This implies that the algebra $Z_{p}\left[\left[s_{1}, \ldots, s_{n}, r_{1}, \ldots, r_{n}\right]\right]$, in which $\left(Z_{p} A \wedge Z_{p} A\right) \sigma$ is contained, is a free module over $Z_{p}\left[\left[s_{1}+r_{1}+s_{1} r_{1}, \ldots, s_{n}+r_{n}+s_{n} r_{n}\right]\right]$. The lemma is proved.

Thus we identify H^{\prime} with the exterior square of the Z_{p}-module \bar{H}. The group $F^{\prime \prime}$ is embedded in H^{\prime}, and its image coincides with the exterior square of the module $\Gamma_{0}=F^{\prime} / F^{\prime \prime} \leq \bar{H}$. It is known (see [5]) that the element $\bar{y}_{1} u_{1}+\ldots+\bar{y}_{n} u_{n}$ of \bar{H} lies in Γ_{0} if and only if the relation $t_{1} u_{1}+\ldots+t_{n} u_{n}=0$ holds. In other words, Γ_{0} is the kernel of the homomorphism $\tau: \bar{H} \rightarrow \Delta$, induced by the map $\bar{y}_{1} u_{1}+$ $\ldots+\bar{y}_{n} u_{n} \rightarrow t_{1} u_{1}+\ldots+t_{n} u_{n}$. Denote the algebra $Z_{p}\left[\left[t_{1}, t_{2}, \ldots, t_{i}\right]\right](i=1, \ldots, n)$ by R_{i}. Then the Z_{p}-module Δ decomposes into a direct sum $\Delta=t_{1} R_{1} \oplus t_{2} R_{2} \oplus \ldots \oplus t_{n} R_{n}$. The Z_{p}-basis of the module is composed of elements of the form $t_{1} t_{1}^{k_{1}}, t_{2} t_{1}^{k_{1}} t_{2}^{k_{2}}, \ldots, t_{n} t_{1}^{k_{1}} t_{2}^{k_{2}} \ldots t_{n}^{k_{n}}$, where k_{1}, \ldots, k_{n} are nonnegative integers. This implies that the Z_{p}-module Γ decomposes into the direct sum of the module $\Gamma_{0}=$ ker Δ and the submodule Γ_{1}, generated by elements of the form $\bar{y}_{1} t_{1}^{k_{1}}, \bar{y}_{2} \overline{1}_{1}^{k_{1}} t_{2}^{k_{2}}, \ldots, \bar{y}_{n} \overline{1}_{1}^{k_{1}} t_{2}^{k_{2}} \ldots t_{n}^{k_{n}}\left(k_{1}, \ldots, k_{n}\right.$ are nonnegative integers). By construction, Γ_{0} is a $Z_{p} A$-submodule and $\Gamma_{1} \cdot t_{1} \subseteq \Gamma_{1}$.

LEMMA 4. If $f \in \bar{H} \wedge \bar{H}$ and $f t_{1} \in \Gamma_{0} \wedge \Gamma_{0}$, then $f \in \Gamma_{0} \wedge \Gamma_{0}$.
Proof. The decomposition $\bar{H}=\Gamma_{0} \oplus \Gamma_{1}$ implies that $\bar{H} \wedge \vec{H}=\left(\Gamma_{0} \wedge \Gamma_{0}\right) \oplus\left(\Gamma_{0} \wedge \Gamma_{1}\right) \oplus\left(\Gamma_{1} \wedge \Gamma_{1}\right)$. From (5), it follows that each summand in the latter decomposition is t_{1}-invariant. Therefore, if $f=f_{1}+f_{2}+f_{3}$, where $f_{1} \in \Gamma_{0} \wedge \Gamma_{0}, f_{2} \in \Gamma_{0} \wedge \Gamma_{1}$, and $f_{3} \in \Gamma_{1} \wedge \Gamma_{1}$, then $f t_{1} \in \Gamma_{0} \wedge \Gamma_{0}$ implies that $f_{2} t_{1}=f_{3} t_{1}=0$. By the previous lemma, the module $\bar{H} \wedge \bar{H}$ is t_{1}-torsion-free. Therefore, $f_{2}=f_{3}=0$ and $f \in \Gamma_{0} \wedge \Gamma_{0}$. The lemma is proved.

For a given natural number k, consider the element $b_{k}=1+a_{1}+\ldots+a_{1}^{p^{k}-1} \in Z_{p} A$. The following equalities are satisfied:

$$
\begin{equation*}
b_{k}=p^{k}+\binom{p^{k}}{2} t_{1}+\ldots+\binom{p^{k}}{p^{k}-1} t_{1}^{p^{k}-2}+t_{1}^{p^{k}-1}, b_{k} t_{1}=a_{1}^{p^{k}}-1 . \tag{6}
\end{equation*}
$$

The factor-algebra $Z_{p}\left[\left[t_{1}\right]\right] /\left(a_{1}^{p^{k}}-1\right)$ is isomorphic to a group algebra of the cyclic group of order p^{k} over Z_{p}. As a Z_{p}-basis of this algebra we can take the set $\left\{1, t_{1}, \ldots, t_{1}^{p^{k}-1}\right\}$. The factor-algebra $Z_{p}\left[\left[t_{1}\right]\right] /\left(b_{k}\right)$ is also a free Z_{p}-module, whose basis is composed of elements $1, t_{1}, \ldots, t_{1}^{p^{k}-2}$. This implies that the Z_{p}-module \bar{H} decomposes into a direct sum $\bar{H} b_{k} \oplus D_{k}$, where D_{k} is a free Z_{p}-submodule in \bar{H} with the basis

$$
\begin{equation*}
\left\{\bar{y}_{i} t_{1}^{l} M \mid 1 \leq i \leq n, 0 \leq l \leq p^{k}-2, M \text { are monomials in } t_{2}, \ldots, t_{n}\right\} . \tag{7}
\end{equation*}
$$

We have $\bar{H} \wedge \bar{H} / \bar{H} \wedge \bar{H} b_{k} \cong D_{k} \wedge D_{k}$.
LEMMA 5. Let $p \geq 2$. If an element f in $\bar{H} \wedge \bar{H}$ is not divisible by t_{1}, then there exists a natural number k such that $f b_{k} \notin \bar{H} \wedge \bar{H} b_{k}$.

Proof. We recall that $\bar{H}=\underset{i=1, \ldots, n}{\bigoplus} H_{i}$, and so $\bar{H} \wedge \bar{H}=\bigoplus_{1 \leq i \leq j \leq n} H_{i} \wedge H_{j}$ and $\bar{H} \wedge \bar{H} b_{k}=\underset{1 \leq i \leq j \leq n}{ }\left(H_{i} \wedge\right.$ $H_{j} b_{k}+H_{i} b_{k} \wedge H_{j}$). Therefore, we need only consider the case where $f \in H_{i} \wedge H_{j}$ and prove that $f b_{k} \notin$ $H_{i} \wedge H_{j} b_{k}+H_{i} b_{k} \wedge H_{j}$ for a suitable k.
(a) First assume that $i<j$. By Lemma $3, H_{i} \wedge H_{j}$ is generated as a $Z_{p}\left[\left[t_{1}\right]\right]$-module by elements of the form $\bar{y}_{i} M \wedge \bar{y}_{j} L$, where the monomial M does not depend on t_{1}. There then exists a representation $f=f_{0}+f_{1} t_{1}$, where f_{0} belongs to the Z_{p}-module generated by the above-specified elements $\bar{y}_{i} M \wedge \bar{y}_{j} L$. Note that $f_{1} t_{1} b_{k} \in \bar{H} \wedge \bar{H} b_{k}$, which follows from $(u \wedge v) t_{1} b_{k}=(u \wedge v)\left(a_{1}^{p^{n}}-1\right)=u a_{1}^{p^{n}} \wedge v a_{1}^{p^{n}}-u \wedge v \in \bar{H} \wedge \bar{H} b_{k}$. Therefore, we must prove that $f_{0} b_{k} \notin H_{i} \wedge H_{j} b_{k}+H_{i} b_{k} \wedge H_{j}$. Assume $f=f_{0}$. Moreover, we can also think that f is not divisible by p, since the quotient module $\bar{H} \wedge \bar{H} / \bar{H} \wedge \bar{H} b_{k}$ is p-torsion-free. Reduce the objects considered modulo p and mark the result by \sim. We have $\tilde{H} / \tilde{H} b_{k} \cong \widetilde{D}_{k}$, where \widetilde{D}_{k} is a free $Z / p Z$-module with basis (7). From (6), it follows that the element $t_{1}^{p^{n}-1}$ annihilates the module $\tilde{H} / \tilde{H} b_{k}$. By assumption, $\bar{f} \neq 0$. Take the minimal element $\bar{y}_{i} M_{0} \wedge \bar{y}_{j} L_{0}$ on which \bar{f} depends. The monomial M_{0} does not depend on t_{1}, and L_{0} can be represented as $L_{0}=t_{1}^{l} S$, where S is independent of t_{1}. Finally, choose the number k such that $p^{k}-3 \geq l$. Since $t_{1}^{p^{h}-1} \equiv b_{k} \bmod p \cdot Z_{p} A$, it follows that $\bar{f} b_{k}=\vec{f}_{1}^{p^{k}-1}$. We have the following formula:

$$
(u \wedge v) t_{1}^{\prime} \equiv u t_{1}^{3} \wedge v+\binom{s}{1} u t_{1}^{\prime-1} \wedge v t_{1}+\binom{s}{2} u t_{1}^{s-2} \wedge v t_{1}^{2}+\ldots+u \wedge v t_{1}^{\prime}
$$

modulo summands of the form $u t_{1}^{s_{1}} \wedge v t_{1}^{s_{2}}$, where $s_{1}+s_{2}>s$. Note that the binomial coefficients $\binom{p^{k}-1}{m}$, where $1 \leq m \leq p^{k}-1$, are not divisible by p. Therefore, the element $\bar{f} t_{1}^{p^{k}-1}$ depends on $\bar{y}_{i} t_{1}^{p^{k}-2} M_{0} \wedge \bar{y}_{j} t_{1}^{l+1} S$, and since $l+1 \leq p^{k}-2$, we have $\widetilde{f} t_{1}^{p^{k}-1} \notin \widetilde{H} \wedge \widetilde{H} b_{k}$.
(b) Let $i=j$. We will show that $Z_{p}\left[\left[t_{1}\right]\right] \wedge Z_{p}\left[\left[t_{1}\right]\right]$ is a free $Z_{p}\left[\left[t_{1}\right]\right]$-module with basis $\left\{t_{1}^{l} \wedge t_{1}^{l+1} \mid l \geq 0\right\}$. In the first place, the module in question is generated by this set. By induction (on r), we can assume that elements of the form $t_{1}^{l_{1}} \wedge t_{1}^{l_{2}}$, where $0 \leq l_{2}-l_{1} \leq r$, are expressed via elements $t_{1}^{l} \wedge t_{1}^{l+1}$. We then have $\left(t_{1}^{l} \wedge t_{1}^{l+r}\right) t_{1}=t_{1}^{l} \wedge t_{1}^{l+r+1}+t_{1}^{l+1} \wedge t_{1}^{l+r}+t_{1}^{l+1} \wedge t_{1}^{l+r+1}$, whence the desired expression for $t_{1}^{l} \wedge t_{1}^{l+r+1}$. Second, the set $\left\{t_{1}^{l} \wedge t_{1}^{l+1} \mid l \geq 0\right\}$ is independent over $Z_{p}\left[\left[t_{1}\right]\right]$. In fact, consider the nontrivial sum $\sum_{l}\left(t_{1}^{l} \wedge t_{1}^{l+1}\right) u_{l}$, where $u_{l} \in Z_{p}\left[\left[t_{1}\right]\right]$. Choose the minimal index $l=l_{0}$ for which $u_{l} \neq 0$. If t_{1}^{m} is a minimal monomial on which $u_{l_{0}}$ depends, from (5) it follows that the sum $\sum_{l}\left(t_{1}^{l} \wedge t_{1}^{l+1}\right) u_{l}$ depends on $t_{1}^{l_{0}} \wedge t_{1}^{l_{0}+m+1}$; in particular, it cannot be zero.

The above argument implies that $H_{i} \wedge H_{i}$, if treated as an $Z_{p}\left[\left[t_{1}\right]\right]$-module, is free, and its basis is the set $\Sigma_{1} \cup \Sigma_{2}$,

$$
\Sigma_{1}=\left\{\bar{y}_{i} M \wedge \bar{y}_{i} L t_{1}^{l} \mid l \geq 0 ; \quad M \text { and } L \text { are monomials in } t_{2}, \ldots, t_{n} ; M<L\right\}
$$

and

$$
\Sigma_{2}=\left\{\bar{y}_{i} M t_{1}^{l} \wedge \bar{y}_{i} M t_{1}^{l+1} \mid l \geq 0 ; M \text { are monomials in } t_{2}, \ldots, t_{n}\right\}
$$

As in item (a), our problem reduces to the case where f is not divisible by p and expands, with respect to the basis $\Sigma_{1} \cup \Sigma_{2}$, into a series with coefficients from Z_{p}. Again we reduce all the objects modulo p. If the minimal element of the set $\Sigma_{1} \cup \Sigma_{2}$ on which \widetilde{f} depends lies in Σ_{1}, we need only repeat the argument of (a). Let that minimal element be equal to $\bar{y}_{i} M t_{1}^{l} \wedge \bar{y}_{i} M t_{1}^{l+1}$. Choose the number k satisfying $p^{k} \geq 2 l+5$. Under this condition, if $m=\frac{p^{k}-1}{2}$, then $l+1+m \leq p^{k}-2$. We have

$$
\begin{gathered}
\left(\bar{y}_{i} M t_{1}^{l} \wedge \bar{y}_{i} M t_{1}^{l+1}\right) t_{1}^{2 m}=\ldots+\binom{2 m}{m-1} \bar{y}_{i} M t_{1}^{l+m+1} \wedge \bar{y}_{i} M t_{1}^{l+m}+ \\
\binom{2 m}{m} \bar{y}_{i} M t_{1}^{l+m} \wedge \bar{y}_{i} M t_{1}^{l+m+1}+\ldots=
\end{gathered}
$$

$$
\ldots+\left(\binom{2 m}{m}-\binom{2 m}{m-1}\right) \bar{y}_{i} M t_{1}^{l+m} \wedge \bar{y}_{i} M t_{1}^{l+m+1}+\ldots
$$

It is easy to see that in the expression given, the coefficient at $\bar{y}_{i} M t_{1}^{l+m} \wedge \bar{y}_{i} M t_{1}^{l+m+1}$ is equal to $\binom{2 m}{m}-\binom{2 m}{m-1}=\binom{2 m}{m-1}: m$ and is not divisible by p. Therefore, the element $\tilde{f} t_{1}^{p^{n}-1}=\tilde{f} t_{1}^{2 m}$ depends on $\bar{y}_{i} M t_{1}^{l+m} \wedge \bar{y}_{i} M t_{1}^{l+m+1}$, whence $\tilde{f_{1}^{p}}{ }^{p^{n}-1} \notin \tilde{H} \wedge \bar{H} b_{k}$. The lemma is proved.
2.4. We turn directly to the proof of Theorem 1. Let φ be a normal automorphism of the group F. Relying on Lemma 2, we can assume that φ induces an identity automorphism on $F / F^{\prime \prime}$. Then $x_{1} \varphi=x_{1} f_{1}, \ldots, x_{n} \varphi=x_{n} f_{n}$, where $f_{1}, \ldots, f_{n} \in F^{\prime \prime}$. For a given natural number k, F_{k} denotes the normal subgroup in F generated by $x_{1}^{p_{1}^{k}}$. Since $x_{1}^{p^{k}} \varphi=\left(x_{1} f_{1}\right)^{p^{k}}=x_{1}^{p^{k}} f_{1}^{1+a_{1}+\ldots+a_{1}^{p^{k}-1}}$, we have

$$
\begin{equation*}
f_{1}^{1+a_{1}+\ldots+a_{1}^{\alpha^{k}-1}} \in F_{k} \cap F^{\prime \prime} . \tag{8}
\end{equation*}
$$

In Sec. 2.3, the group $F^{\prime \prime}$ was identified with the additive group of the submodule $\Gamma_{0} \wedge \Gamma_{0}$ of the $Z_{p} A$-module $\dot{\bar{H}} \wedge \bar{H}$. It is not hard to see that $F_{k} \cap F^{\prime \prime} \subseteq \bar{H} \wedge \bar{H} b_{k}$. From (8), we obtain the following inclusion (written additively): $f_{1} b_{k} \in \bar{H} \wedge \bar{H} b_{k}$ for any k. By Lemma 5 , then, f_{1} must be divisible by t_{1} in $\bar{H} \wedge \bar{H}$. By Lemma 4, it is divisible by t_{1} also in $\Gamma_{0} \wedge \Gamma_{0}$. Coming back to the multiplicative notation, we can assert that there exists an element $g \in F^{\prime \prime}$ such that $f_{1}=g^{a_{1}} g^{-1}=g^{x_{1}} g^{-1}$. Consider the inner automorphism \hat{g} and the automorphism $\psi=\varphi \hat{g}$. We have $x_{1} \psi=x_{1}$. Let $x_{i} \psi=x_{i} g_{i}$, where $g_{i} \in F^{\prime \prime}, 2 \leq i \leq n$. For any natural number m, we also have $\left(x_{1}^{m} x_{i}\right) \psi=\left(x_{1}^{m} x_{i}\right) g_{i}$. The preceding argument implies that g_{i}, as an element of the $Z_{p} A$-module $\bar{H} \wedge \bar{H}$, is divisible by $a_{1}^{m} a_{i}-1 \equiv m t_{1}+t_{i} \bmod \Delta^{2}$. By Lemma $3, \bar{H} \wedge \bar{H}$ is embedded in a free $Z_{p} A$-module. It is not hard to see that a nonzero element from $Z_{p} A$ cannot be divisible by elements $a_{1}^{m} a_{i}-1$ for all natural m. This means that g_{2}, \ldots, g_{n} are trivial elements, ψ is an identity automorphism, and φ is inner. The theorem is proved.

3. PROOF OF THEOREM 2

Let G be an abstract free $\mathcal{N}_{2} \mathcal{A}$-group with basis $X=\left\{x_{i} \mid i \in I\right\}$. Based on the matrix representation [9], we can assert that G is a residually finite p-group for any prime number p. Therefore, it is embedded in the completion with respect to the pro-p-topology (the latter is defined by all normal subgroups of finite p-index containing almost all elements from X), which will be the free $\mathcal{N}_{2} \mathcal{A}$-pro-p-group F with basis X. Let φ be a p-normal automorphism of G. We need to prove that φ is inner.
3.1. First we show that our problem reduces to the case where G has finite rank. Let $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X$, $n \geq 2$, and $G_{1}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then there exists a subset $\left\{x_{1}, \ldots, x_{n}, \ldots, x_{m}\right\}$ in X such that $G_{1} \varphi \leq G_{2}=$ $\left\langle x_{1}, \ldots, x_{n}, \ldots, x_{m}\right\rangle$. Represent G_{2} as the factor-group F / N, where N is a normal subgroup of F generated by all elements from $X \backslash\left\{x_{1}, \ldots, x_{n}, \ldots, x_{m}\right\}$. Let φ_{2} be a normal automorphism of the group $F / N=G_{2}$ induced by φ. We can say that φ and φ_{2} coincide on G_{1}. Let $\varphi_{2}=\hat{u}$, where $u \in G_{2}$. We prove that $\varphi=\hat{u}$. Indeed, if g is an arbitrary element in G and $g \in G_{3}=\left\langle x_{1}, \ldots, x_{n}, \ldots, x_{m}, \ldots, x_{k}\right\rangle$, the above argument implies that there exists an element $v \in F$ such that $\left.\varphi\right|_{G_{3}}=\hat{v}$. It suffices to prove that $u=v$. If not, a nontrivial element $u v^{-1}$ centralizes the subgroup G_{1}. Consider the matrix representation of G from [9] or the representation of F given in Sec. 2. We may conclude that the centralizer of G_{1} in G is equal to 1 , whence $u=v$.
3.2. Assume that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a finite set. The automorphism φ of an abstract group G uniquely extends to the normal automorphism of a pro-p-group F, denoted by the same symbol φ. By Theorem 1 , there exists an element $f \in F$ such that $\varphi=\hat{f}$. It remains to prove that $f \in G$.

Consider a nontrivial element $\bar{y}=y G^{\prime \prime} \in G^{\prime} / G^{\prime \prime}$. The group $G^{\prime} / G^{\prime \prime}$ is embedded in $F^{\prime} / F^{\prime \prime}$. The normal subgroup of $G / G^{\prime \prime}$ generated by an element \bar{y} is identified with a free one-generated module over the group ring $Z\left[G / G^{\prime}\right]$. The normal subgroup generated by \bar{y} in $F / F^{\prime \prime}$ is the corresponding module over $Z_{p} A$, where $A=F / F^{\prime}$. In a module, the action of φ on \bar{y} corresponds to multiplication by the canonical image of f in F / F^{\prime}. Therefore, there cxists $g \in G$ such that $f \equiv g \bmod F^{\prime}$, which reduces the problem to the case $f \in F^{\prime}$.
3.3. Let $f \in F^{\prime}$. We have $x_{1} \varphi=x_{1} \cdot\left[x_{1}, f\right]$ and $\left[x_{1}, f\right] \in G^{\prime}$. Recall that the group $F^{\prime} / F^{\prime \prime}$ is embedded in an additive group of the free topological $Z_{p} A$-module \bar{H} with basis $\left\{\bar{y}_{1}, \ldots, \bar{y}_{n}\right\}$. Denote by R the ring $Z\left[a_{1}, a_{1}^{-1}, \ldots, a_{n}, a_{n}^{-1}\right]$, and by R_{0} its subring $Z\left[t_{1}, \ldots, t_{n}\right]$. Also let $\bar{R}=Z_{p} A=Z_{p}\left[\left[t_{1}, \ldots, t_{n}\right]\right]$. The abstract group $G^{\prime} / G^{\prime \prime}$ is embedded in an additive group of an abstract free R-module E with basis $\left\{\bar{y}_{1}, \ldots, \bar{y}_{n}\right\}$. We have $\overline{\left[x_{1}, f\right]}=\bar{f} \cdot t_{1} \in E$. There exists an element a in the abstract group $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ such that $\bar{f} \cdot t_{1} a \in \bar{y}_{1} R_{0}+\ldots+\bar{y}_{n} R_{0}=E_{0}$. Let $\bar{f} \cdot t_{1} a=\bar{y}_{1} u_{1}+\ldots+\bar{y}_{n} u_{n}$, where $u_{1}, \ldots, u_{n} \in R_{0}$. Since the elements u_{1}, \ldots, u_{n} are divisible by t_{1} in \tilde{R}, they are also divisible by t_{1} in R_{0}. Let $u_{i}=v_{i} \cdot t_{1}$, where $v_{i} \in R_{0}(i=1, \ldots, n)$. We have $\tilde{f} \cdot a=\bar{y}_{1} v_{1}+\ldots+\bar{y}_{n} v_{n}$. Recall that the element $\bar{y}_{1} w_{1}+\ldots+\bar{y}_{n} w_{n}$ of E lies in $G^{\prime} / G^{\prime \prime}$ if and only if $w_{1} t_{1}+\ldots+w_{n} t_{n}=0$. Since $u_{1} t_{1}+\ldots+u_{n} t_{n}=0$, we have $v_{1} t_{1}+\ldots+v_{n} t_{n}=0$. Therefore, $\bar{f} \cdot a \in G^{\prime} / G^{\prime \prime}$ and $\bar{f} \in G^{\prime} / G^{\prime \prime}$, which reduces the proof to the case $f \in F^{\prime \prime}$.
3.4. Here we prove an auxiliary statement. Let $R=Z\left[a, a^{-1}\right]$ be the integral group ring of the infinite cyclic group; $t=a-1 ; R_{0}=Z[t] ; \bar{R}=Z_{p}[[t]]$. Let $e_{i} \bar{R}$ be a free (topological) one-generated R-module with generator $e_{i}(i=1,2)$. Consider the exterior product of $e_{1} \bar{R}$ and $e_{2} \bar{R}$, treated as Z_{p}-modules, on which the action of the ring \bar{R} is defined by formula (5). The exterior product of Z-modules $e_{1} R$ and $e_{2} R$ is contained in $e_{1} \bar{R} \wedge e_{2} \bar{R}$.

LEMMA 6. Let $f \in e_{1} \bar{R} \wedge e_{2} \bar{R}$ and $f t \in e_{1} R_{0} \wedge e_{2} R_{0}$. Then $f \in e_{1} R_{0} \wedge e_{2} R_{0}$.
Proof. Consider a homogeneous element g of $e_{1} R_{0} \wedge e_{2} R_{0}$ of weight n, that is, an element of the form $g=\sum_{i=0}^{n} \alpha_{i} \cdot e_{1} t^{i} \wedge e_{2} t^{n-i}, \alpha_{i} \in Z$. Define $\operatorname{tr}(g)$, the trace of that element, as $\sum_{i=0}^{n}(-1)^{i} \alpha_{i}$ and the derivative $d(g)$ as $\sum_{i=0}^{n} \alpha_{i} d\left(e_{1} t^{i} \wedge e_{2} t^{n-i}\right)$, where $d\left(e_{1} \wedge e_{2} t^{n}\right)=0, d\left(e_{1} t^{i} \wedge e_{2} t^{n-i}\right)=e_{1} t^{i} \wedge e_{2} t^{n-i+1}-e_{1} t^{i-1} \wedge e_{2} t^{n-i+2}+$ $\ldots+(-1)^{i} e_{1} t \wedge e_{2} t^{n}$ for $1 \leq i \leq n$. This definition implies that $d(g)$ is a homogeneous element of degree $n+1$. From (5), we infer that $g \equiv \operatorname{tr}(g) \cdot e_{1} \wedge e_{2} t^{n}+d(g) \bmod \left(e_{1} R_{0} \wedge e_{2} R_{0}\right) t$.

Note that an element of $e_{1} \bar{R} \wedge e_{2} \bar{R}$ of the form $\alpha \cdot e_{1} \wedge e_{2} t^{n}+u$, where $\alpha \neq 0$ and the weight $u>n$, cannot be divisible by t. Assume the contrary and represent that element as $h t$. Then the weight of h is equal to $n-1$. Let $e_{1} t^{k} \wedge e_{2} t^{n-k-1}$ be a maximal element of the form $e_{1} t^{i} \wedge e_{2} t^{n-i-1}$ in the Z_{p}-basis occurring in the expansion of h. By formula (5), then, ht should depend on $e_{1} t^{k+1} \wedge e_{2} t^{n-k-1}$, which conflicts with the initial representation of this element.

We come back to the element $f t$. Now we represent it as $f_{k}+f_{k+1}+\ldots+f_{n}$, where f_{i} is a homogeneous element of weight i in $e_{1} R_{0} \wedge e_{2} R_{0}$. The preceding remark implies that $\operatorname{tr}\left(f_{k}\right)=0$. Then $f t \equiv\left(d\left(f_{k}\right)+\right.$ $\left.f_{k+1}\right)+f_{k+2}+\ldots+f_{n} \bmod \left(e_{1} R_{0} \wedge e_{2} R_{0}\right) t$. This allows us to reduce the problem to the case where $f t$ is a homogeneous element of degree n.

Let $f t=\alpha_{k} \cdot e_{1} t^{k} \wedge e_{2} t^{n-k}+\alpha_{k-1} \cdot e_{1} t^{k-1} \wedge e_{2} t^{n-k+1}+\ldots+\alpha_{l} \cdot e_{1} t^{l} \wedge e_{2} t^{n-l}$. We have $\operatorname{tr}(f t)=$ $(-1)^{k} \alpha_{k}+\ldots+(-1)^{l} \alpha_{l}=0$ and $f t \equiv d(f t) \bmod \left(e_{1} R_{0} \wedge e_{2} R_{0}\right) t$. From the definition of a derivative, we obtain $d(f t)=-\alpha_{k} \cdot e_{1} t^{k} \wedge e_{2} t^{n-k+1}+\left(\alpha_{k}-\alpha_{k-1}\right) \cdot e_{1} t^{k-1} \wedge e_{2} t^{n-k+2}+\ldots-(-1)^{k-l}\left((-1)^{k} \alpha_{k}+\ldots+\right.$ $\left.(-1)^{l} \alpha_{l}\right) \cdot e_{1} t^{l} \wedge e_{2} t^{n-1}+\ldots+\left((-1)^{k} \alpha_{k}+\ldots+(-1)^{l} \alpha_{l}\right) \cdot e_{1} t \wedge e_{2} t^{n}$. Since $\operatorname{tr}(f t)=(-1)^{k} \alpha_{k}+\ldots+(-1)^{l} \alpha_{l}=0$, we have the expression for $d(f t)$ with a lesser number of summands $\alpha \cdot e_{1} t^{i} \wedge e_{2} t^{j}$ than for $f t$. From this, by repeatedly applying the function d to $f t$, we obtain the zero element. This means that $f t \in\left(e_{1} R_{0} \wedge e_{2} R_{0}\right) t$.

Let $f t=g t$, where $g \in e_{1} R_{0} \wedge e_{2} R_{0}$. From Lemma 3, it follows that $e_{1} \bar{R} \wedge e_{2} \bar{R}$ is a free \bar{R}-module. Therefore, $f=g \in e_{1} R_{0} \wedge e_{2} R_{0}$. The lemma is proved.
3.5. We come back to the proof of Theorem 2. Let $f \in F^{\prime \prime}$. We have $x_{1} \varphi=x_{1}\left[x_{1}, f\right]$ and $x_{2} \varphi=$ $x_{2}\left[x_{2}, f\right] \in G$, whence $\left[x_{1}, f\right],\left[x_{2}, f\right] \in G^{\prime \prime}$. In Sec. 3.4, the group $F^{\prime \prime}$ was identified with an additive subgroup of the exterior square $\bar{H} \wedge \bar{H}$. We will use the same notation as in Secs. 2.3 and 3.3. In the additive notation, we have $f t_{1}, f t_{2} \in G^{\prime \prime}$. In particular, the elements $f t_{1}$ and $f t_{2}$ lie in the exterior square of the Z-module $E=\bar{y}_{1} R+\ldots+\bar{y}_{n} R$. Moreover, we can assume that $f t_{1}, f t_{2} \in\left(E_{0} \cap G^{\prime} / G^{\prime \prime}\right) \wedge\left(E_{0} \cap G^{\prime} / G^{\prime \prime}\right)$, where $E_{0}=\bar{y}_{1} R_{0}+\ldots+\bar{y}_{n} R_{0}$.

LEMMA 7. Let w be an arbitrary element in $\bar{H} \wedge \bar{H}$. Then $w \in E_{0} \wedge E_{0}$ if $w t_{1}, w t_{2} \in E_{0} \wedge E_{0}$.
Proof. For arbitrary monomials M and L in t_{2}, \ldots, t_{n}, where $M \leq L$, write $S_{M, L}$ for a Z_{p}-module generated in $\bar{H} \wedge \bar{H}$ by all elements of the form $M t_{1}^{m} \wedge L t_{1}^{l}(m, l \geq 0)$. Obviously, $S_{M, L}$ is also a $Z_{p}\left[\left[t_{1}\right]\right]-$ module and $\bar{H} \wedge \bar{H}=\underset{M \leq L}{\bigoplus} S_{M, L}$. From $w t_{1} \in E_{0} \wedge E_{0}$, it follows that w lies in the sum of finitely many modules $S_{M, L}$. Let $w=w_{1}+w_{2}$, where $w_{1} \in \bigoplus_{M<L} S_{M, L}, w_{2} \in \bigoplus_{M} S_{M, M}$. Then $w_{1} t_{1} \in E_{0} \wedge E_{0}$, $w_{2} t_{1} \in E_{0} \wedge E_{0}$. Lemma 6 implies that $w_{1} \in E_{0} \wedge E_{0}$. Obviously, the element w_{2} is expressed over \mathcal{Z}_{p} via elements of the form $M t_{2}^{m} \wedge L t_{1}^{l}(m, l \geq 0)$, where M and L are the monomials in $t_{1}, t_{3}, \ldots, t_{n}$, and $M<L$. Since $w_{2} t_{2} \in E_{0} \wedge E_{0}$, the preceding argument (with t_{1} replaced by t_{2}) yields $w_{2} \in E_{0} \wedge E_{0}$. The lemma is proved.

It follows from the lemma that $f \in E_{0} \wedge E_{0}$. In Lemma 4, we proved that $F^{\prime \prime}=\Gamma_{0} \wedge \Gamma_{0}$, as a $Z_{p}\left[\left[t_{1}\right]\right]$-module, is a direct summand in $\bar{H} \wedge \bar{H}$. Carrying that proof over to the abstract case, we see that $\left(E_{0} \cap G^{\prime} / G^{\prime \prime}\right) \wedge\left(E_{0} \cap G^{\prime} / G^{\prime \prime}\right)$, as a $Z\left[t_{1}\right]$-module, is a direct summand in $E_{0} \wedge E_{0}$. The inclusion $f t_{1} \in\left(E_{0} \cap G^{\prime} / G^{\prime \prime}\right) \wedge\left(E_{0} \cap G^{\prime} / G^{\prime \prime}\right)$ then implies that $f \in G^{\prime \prime}=G^{\prime} / G^{\prime \prime} \wedge G^{\prime} / G^{\prime \prime}$. Theorem 2 is proved.

REFERENCES

1. M. Jarden and J. Ritter, "Normal automorphisms of absolute Galois groups of p-adic fields," Duke Math. J., 47, No. 1, 47-56 (1980).
2. A. Lubotzky, "Normal automorphisms of free groups," J. Alg., 63, No. 2, 494-498 (1980).
3. V. A.Roman'kov, "Normal automorphisms of discrete groups," Sib. Mat. Zh., 24, No. 4, 138-149 (1983).
4. N. S. Romanovskii and V. Yu. Boluts, "Normal automorphisms of free solvable pro-p-groups of derived length 2," Algebra Logika, 32, No. 4, 441-449 (1993).
5. L. Ribes, Introduction to Profinite Groups and Galois Cohomology, Queen's Papers Pure Appl. Math., 24, Queen's Univ., Kingston (1970).
6. J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic Pro-p-Groups, London Math. Soc., Lecture Note Series, 157, Cambridge Univ., Cambridge (1991).
7. H. Koch, Galoissche Theorie der p-Erweiterungen, VEB Deutscher Verlag der Wissenschaften, Berlin (1970).
8. M. I. Kargapolov and Yu. I. Merzlyakov, Foundations of Group Theory [in Russian], Nauka, Moscow (1977).
9. N. S. Romanovskii, "Bases of identities for some matrix groups," Algebra Logika, 10, No. 4, 401-406 (1971).

[^0]: Translated from Algebra i Logika, Vol. 35, No. 3, pp. 249-267, May-June, 1996. Original article submitted January 14, 1995.

