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N O R M A L  A U T O M O R P H I S M S  OF A F R E E  
P R O - p - G R O U P  IN T H E  V A R I E T Y  A/'2~t 

Ch. G u p t a  and N.  S. Romanovskii* UDC 512.5 

an automo hism or a (pro nite) group is ,a l la  nor,nat if  a,h (cZosea) norm,l ,u roup is lea 
inrariant by it. An automorphism of an abstract group is p-normal if  each normal sub#roup 

of p-power, where p is prime, is left inrariant. Obviously, the inner automorphism of a group 

will be normal and p-normal. For some groups, the converse was stated to be likewise true. 
N. Romanovskii and If. Boluts, for instance, established that for free solvable pro-p-groups of 
derived length ~, there ezist normal automorphisms that are not inner. Let Yr be the variety of 
nilpotent groups of class ~ and ,4 the variety of Abelian groups. We prove the follouring results: 
(1) [f  p is a prime number distinct from f, then the normal automorphism of a free pro-p-group 

of rank >_ 2 in Af2A is inner (Theorem I); (2) l f  p is a prime number distinct from f, then the 

p-normal automorphism of an abstract free ~l'2A-#roup of rank >_ 2 is inner (Theorem ~). 

An automorphism of a (profinite) group is called normalif each (closed) normal subgroup is left invariant 

by it. An automorphism of an abstract group is said to be f-normal (p-norma 0 if each normal subgroup 

of finite index (a normal subgroup of p-power, p is prime) is left invariant. It  is obvious that  the inner 

automorphism of a group will be normal. For some groups, the converse is also true. In this direction, it is 

worth noting the following results: 

normal automorphisms of absolute Galois groups of finite extensions of the field of p-adic numbers 

axe inner (see [1]); 

m each normal automorphism of a pro-K-group with n generators and m defining relations, where 

n - m > 2 and K is a class of finite groups closed under subgroups, homomorphic images, and extensions, 

is inner (see [1]); 

- -  a p-normal automorphism of an abstract free group of rank > 2 is inner (see [2]); 

- -  an f-normal  automorphism of an abstract free solvable group of derived length _> 2 is inner (see [3]); 

a n / - n o r m a l  automorphism of an abstract free group of the variety .A)f t is inner, with .K the variety 

of Abeiian groups and Aft the variety of nllpotent groups of class k; 

In [4], normal automorphisms of a free solvable pro-p-group of derived length 2 were described. The 

description implied, in particular, that for the group there exist normal automorphisms that  are not inner. 

In the present article we prove the following basic theorem. 

T H E O R E M  1. If p is a prime number distinct from 2, then the normal automorphism of a free 

pro-p-group of rank > 2 in the variety Af2,4 is inner. 

From this, we infer the following: 

T H E O R E M  2. I fp  is a prime number distinct from 2, then the p-normal automorphism of an abstract 

free Af2.~-group of rank _> 2 is inner. 
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In Section 1, we also prove the general result which says that  if V is the variety of profinite groups, then 

a certain analog of the Shmelldn embedding will be valid for groups of type F/V(R).  

1. P R E L I M I N A R Y  R E M A R K S  C O N C E R N I N G  

V A R I E T I E S  O F  P R O F I N I T E  G R O U P S  

1.1. In what follows, when speaking about profinite groups, we use the terms a "subgroup," a "homo- 

morphism," etc., to refer to respective notions in the category of profinite groups, that  is, a closed subgroup, 

a continuous homomorphism and so on. The necessary definitions related to profinite groups can be found 

in [5, 6, 7]. 
We recall that  a free profinite group F(X) with basis X is the completion of an abstract free group with 

basis X with respect to the profinite topology defined by subgroups of finite index containing almost all 

( that is, all but finitely many) elements from X. The basic property of that  group is that  any continuous 

map from the set X U {1} to an arbitrary profinite group G such that  1 --, 1 extends to the homomorphism 

F(X) c.  
For a given profinlte group A, consider the class of A-groups, that  is, profinite groups on which A acts 

continuously. In this class, there axe also free objects. A free profinite A-group with basis {~/~l i E I} can 

be constructed as follows. Represent A as the projective limit of finite groups A~ (~ E A). For each ~, 

consider a free profinite group F~ with basis {Y~I i E I ,  a E Axe. The canonical action of Ax on the group 

F~ can be treated as the continuous action of A. Consider the projective limit of groups F~ (~ E A) on 

which A also acts. This limit is easily seen to be a free profudte A-group with basis {Yi[ i E I}. 
1.2. A variety of profinite groups is the class of profinite groups closed under subgroups, homomorphic 

images, and direct (in the  category of profinite groups) products. Varieties of profinite groups are in one-to- 

one correspondence with the classes K of finite groups closed under subgroups, homomorphic images, and 

direct (in the category of abstract groups) products. A corresponding variety of profinite groups consists 

of pro-K-groups only. As in the case of abstract groups, the variety can be defined via identities, in which 

case by an ideatity we mean an dement  of the free profinite group Foo with a countable basis. The identity 

v G Foo is satisfied on the profinite group G if, under any homomorphism Foo --* G, the image of an element 

v (the value of v) is equal to 1. Unlike the abstract case, we note, every variety of profinite groups can be 

defined by a single identity. 

Let G be a profinite group and v some defining identity for V. The subgroup in G generated by all 

values of v is called verbal and is denoted by v(G) or by V(G). If F(X) is a free profinite group with basis 

X, and V is a variety, then the factor-group F(X)/V(F(X))  will be a free group in V. 

A product variety of V and W is the class of profinite groups that  are extensions of groups from V by 

the groups in W. A free group in the variety VW is the factor-group F(X)/V(W(F(X))) .  
1.3. For abstract groups, the Shmelkin embedding, which allows one to find a representation for the 

group F/V(R) given F/R, is well known. Below, we give its analog for profinite groups. 

Let V be some variety of profinite groups and let A be a profinite group represented as the factor-group 

F(X)/R, where F(X) is a free profinite group with basis X = {z~] i E I}. Denote by a~ the canonical 

image of an element z~ in A. Consider the free profinite A-group F0 with basis {9~I i G I}. The group 

B = Fo/V(Fo) will be a free A-group with basis {b~ I i E I~, where b~ is the canonical image of y~ in B, in 

the variety V. Let C be a subgroup in the semldizect product AB generated by elements c~ - a~b~ (i E I).  

P r o p o s i t i o n  1. If 1": F(X) --* C is a homomorphism determined by the mapping z~ --* c~ (i E I),  then 

ker ~" = V(R). In other words, C ~- F(X)/V(R). 
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Proof .  Obviously, ker r > V(R). To prove the inverse inclusion, it suffices to show that if ~:  F(X) --~ G 

is an epimorphism onto the finite group G such that ker ~b > V(R), then the map c~ --, z i~  = gi (i E I) 

yields an epimorphism C ---, G. 

t be the canonical image of zl in A t, and ~ : A --, A t be an epimorphism Let H = R ~ ,  A t =  G/H,  a i 

' Consider the wreath product of finite groups, HIA', represented as the determined by the map a~ --, a i. 

semidirect product  AtH, where /~ is a basis subgroup in the wreath product.  We can think o f / ~  as an 

At-group and, hence, as an A-group, putt ing h s = h a~ where a G A and A G H. There exists an embedding 

of G into H/A t such that  gi = a~h~, h~ E / ~  (see [8, Thm.  6.2.8]). The  group H belongs to V. Therefore, 

the map bi --, h~ (i G I )  gives a homomorphism of the profinite A-group B into the finite A-group H;  the 

map c~ = a~b~ --, gl = a~l~ (i E I) yields an epimorphism C --, G, as desired. 

1.4. Let W be the variety of profinite groups dosed under extensions. Such a variety consists of pro-K- 

groups, where K is some class of finite groups dosed under subgroups, homomorphic images, and extensions. 

Suppose that  V is a subvariety of W. Consider the free group Fw(X)  with basis X = {z~]i 6 I}  in W and 

its factor-group A = F w ( X ) / R w .  As before, a~ denotes the canonical image of zi in A, and B stands for 

a free A-group with basis {bi]i 6 I}  in V. Prom Proposition 1, we easily infer 

P r o p o s i t i o n  2. The  map z~ -4 c~bi (i 6 1) induces an embedding of the group F w ( X ) / V ( R w )  into 

the semidirect product  AB. 

Indeed, C -~ F ( X ) / V ( R )  by Proposition 1. Passing to the quotients on both sides of the equation with 

respect to the verbal subgroups corresponding to W, we obtain C _~ F w ( X ) / V ( R w ) .  
1.5. In what follows, we deal with subvarieties of the variety of all pro-p-groups. This variety is closed 

under extensions and satisfies the hypothesis of Proposition 2. 

Let A be a free Abellan pro-p-group with a finite basis { a l , . . . ,  an}. The  group algebra Z1,A of a group 

A over the ring Zp of p-adic integers is identified with the ring Zp[[gt, . . .  ,~,,]] of formal power series, where 

t l  = a t  - 1 , . . . , t n  = a,, - I (see [7]). The  additive group of this ring is a free Abelian pro-p-group with 

the basis consisting of monomials M - t~ ' .  . .t,~k., where k t , . . . ,  k,~ are nonnegative integers. Consider a 

free A-pro-p-group FA with basis {~/t.. .  ~/,,}. For the given monomial M = ~ '  . . .  ~,t,, where k, > 0, define 

an element ,~-  from EA inductively by putting ,~.  = (y~/)~'(!/~) - t ,  where L = ~ '  . . . ~ , - t .  Obviously, 

,~ .  lies in the (kt + . . .  + k , ) th  term of the lower central series of the pro-p-group AFA. Therefore, the set 

f2 = { ~ I M  are monomials} converges to 1. It is easy to see that  the set generates FA as a pro-p-group. 

L E M M A  1. FA is a free pro-p-group with basis S. 

P r o o f .  Let f l , ,  be the set of all monomials of degree < p'~ in each of the variables. Then  these 

monomials (or rather their canonical images) form a basis for the additive group of the group algebra 

ZpA,,,, where A,,  = A/A~'' .  Consider the free A,~,-pro-p-group F, ,  with basis (~ / t , . . . ,  ~/,,}- It is a free 

pro-p-group with basis (~/~'1 i -- 1, . . .  ,n; a E AT,}, and we can also take the set { , ~ t  i -- 1 , . . .  ,n;  M E f2,~} 

to be the basis of F,~, as a pro-p-group. The statement of the lemma now easily follows from FA = lira g,,,. 

The  lemma is proved. 

1.6. We are going to treat  a free Af2.4-pro-p-group F with basis { z t , . . . ,  z~,}, where A/'z is the variety 

of class 2 nilpotent pro-p-groups and .4 is the variety of Abelian pro-p-groups. Proposition 2 implies 

that  F is embedded in the semidirect product AH, where A is a free Abelian pro-p-group with basis 

( a t , . . .  ,a, ,} and H is a free nilpotent A-pro-p-group of class 2 with basis ~/t  . . . .  ,y, , ) .  It follows from 

Lemma 1 that  H,  as a pro-p-group, is a free nilpotent group of class 2 with basis {,~.  t M are monomials in 

gt = at  - 1, . . . ,  h, = a~ - 1}. The embedding of F is defined by the equalities z t  = ate/t, . . . ,  z,~ = a~y,,. 
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2. P R O O F  O F  T H E O R E M  1 

We adopt  the notation which will be used throughout.  I f a  and b are elements of a group, then a b -- b-Xab 

and [a,b] = a- lb-Xab.  The inner automorphism of a group G, which is a conjugation by an element z, is 

denoted by 3. A (topological) commutator  subgroup of a (pro-p-) group G is denoted by G ~ or [G, G]; G"  

is, respectively, a second commutator  subgroup. 

Let F be a free pro-p-group with basis X in the variety A/2.4 and let ~o be the normal automorphism of 

F .  We argue that  ~o is an inner automorphism. 

2.1. First note tha t  the task we face reduces to the case where F has finite rank. For this to be the 

case, we need to represent F as the projective limit of groups F~ (~ E A), where F~ is a free pro-p-group 

with basis X~ in Af2.A~ and X~ runs over all finite subsets of X.  Suppose that  on each group F~, ~o induces 

an inner a u t o m o r p h i s m / 4 , / a  E F~. Therefore, if f is the limit of the set {f~I ~ E A}, then ~o = / .  

2 . 2 .  L e t  X = { z l , . . . ,  zn} be a finite set, n _> 2. In view of Sec. 1.6, we assume that  the group F is 

embedded in the semidi~ect product  C = A H ,  where A is a free Abelian pro-p-group with basis { a l , . . . ,  a~} 

and H is a free class 2 nilpotent A-pro-p-group wi thbas is  {Yl,...,Y,~}; z l  = a13/x, . . . ,  zn = anyn. Then  

the fonowing equalities hold: 

F n H  = F ~, F n H  ~ = F" .  (1) 

Recall that  H ,  as a pro-p-group, is a free r 2 nilpotent group with basis { ~9~w[ i = 1 , . . . , n ;  M are 

monomla~ in t l  = a l -  1 , . . . ,  t,~ = a n -  1}. Order the monomials by putt ing M = tx~x ...t~n " < L -- tzlx ...tzn ~ 

i f k l + . . . + k , ,  < l l + . . . + / n ,  or k l + . . . + k , ,  = l l + . . . + l , ,  and kl : l l , . . . ,  ki-1 = l~-1, k~ < l/. The  group 

H '  is a free Abellan pro-p-group with basis E -- {[sy u  ~ ]  I 1 _< i _< j ~ n; M and L axe monomials; if i : 

j ,  then M < L}. Order elements [,9~ f- , y~] of that  basis lexicographically, comparing the following param- 

eters: the sum of degrees of the monomials M and L, i, j ,  M, and L. We say that  an element h E H ~ 

depends on [ ~ , y ~ ]  if the latter has a nonzero coefficient in the expansion of h (into a series) with respect 

to the basis E. 

L E M M A  2. The  automotphism ~o induces an inner automorphism on F / F " .  

P r o o f .  The pro-p-group F / F "  is free, solvable of derived length 2, and is embedded in the semidirect 

product  C : A/~, where/]"  -- H / H ' .  Denote by ~ the canonical image of an element c E C in C. We can 

treat  ~ as a free ZpA-modnle with basis {91, . . - ,  9,,}. In [4], we described normal automorphisms of free 

solvable pro-p-groups of derived length 2. That  description implies that  there exists an element u E ZpA 

such that  r - 1 (~ is the unit augmentation map ZpA ---, Z1,), and that for any element f E F ' ,  the 

equality f---~ : fffi holds. In addition, from [4] it also follows that  ~o induces an inner automorphism on 

F / F "  if and only if u E A. Thus, we need only prove that  u lies in A. 

Let u --- l + r r h t l + . . . + ~ t , ,  mod A 2, where m l , . . .  ,rrtn E Zp, and A : kerr is the augmentation ideal 

,n~ modA2.  Replacing ~o by ~o ~ - 1  where of ZpA. We have the following congruence: u = a = a ~ ' . . ,  a,~ 

f - z ~  ~ . . . z ~ %  reduces our problem to the case where u = l m o d A  2. We prove that  u : 1 in this case. 

Assume the contrary, letting u : 1 + v, where 0 ~ v @ A 2. Choose a minimal monomial P on which 

v depends. The degree of the monomial is _ 2. Consider the element z : [[zl, z2], [z~, z2] ='] G F " .  It is 

immediately verified that  z = L~,~ , ~  ~ t~  , ~  ~ , ~  ~ 2  ,~/2~]. We have 

r t~u t ~ u l - l r . ~ u  o0t~,lr t~u t~t,ulr t~u t~u 1 Z~O= [[Zl, Z2]'~,[2:I, Z2]z'u]'-- []/1 ']/2 J t~l '~2 Jt~/l ']/1 ]t]]2 ']/2 J" (2) 

Further note that  the action of the group F by conjugation on H '  determines the structure of a Z~A-modnle 

on the latter group. The  normal subgroup in F generated by an element z is a submoduh generated by z. 

Therefore, there exists an element u ~ ~ ZpA such that  z~o = z ~''. Let u ~ = ~ + w, where c~ ~ Zp and w ~ A. 
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In wh~t follows, we shall often use the following formula. Let a ~ A, t = a - 1, and hi,  h~ ~ H.  Then 

[al, h~]' = [~,' a~][hl, a~][~,' ' h~].' (3) 

r.t~ tt a] The formula implies that  z~o = zaz  w = [9~, y~t]-az~, where z t does not depend on t a t ,  Y~ J" Comparing this 

with expression (2) produces a = 1. Let S be the minimal monomial on which to depends. From formula 

(3), then, we infer that  a ml-lmal  element of the basis I] of the form [yM, y~], on which z '~ depends, is 
. , t~$ I [~, ,~,~ ,. We have =" = =~,.=-I .  By (2), the ,,~,~mal element o f=  of the form [ ~ ,  ~ ] ,  on which = ~ . = - i  

depends, is till , Y2 j .  Consequently, P = S. The argument implies also that  the monomial P has the same 

coefficient in the expansions of v and to. Let it be equal to/3.  In the expansion of z~0. z -~ with respect 

to the basis ~., we isolate that  part  z0 which is expressed in terms of basis elements of the form [ ~ t  ,~/~], 

where M L  = t~t~P. From (2), we infer that  

Zo = ,r. ':, . , ' , ' 1 -  tr,,,,~..," ,,,t,1- l r . , / , , ,  y~lel[z/~,t-.P, Z/~' ])P. 
~,L.Yl , ..~2 J L..'~I , .v2 J L..~I , 

On the other hand, ffwe rely on the fact that z~o.z -1 = z" ,  then (3) will imply that  to the above-mentioned 

representation of zo, we must add another factor equal to the product 

~LSt , ~ 2  J L,Vl , ~  JI ' ( 4 )  

taken over all monomials P1 and P2 such that P1 ~ 1, P2 ~ 1, and P1P2 = P. If P = t~.'tk.~. +1 .. k~ , s~-~ .t,~ , where 

- t t .  t ~ t . ~ ' - ' t ' ~ . ' - + ' . . - t ~ -  
k /  > 0, then the element [yt 2 ", Y2 ' "*" ] with exponent -/~ occurs in (4) only once. Therefore, the 

product (4) is not equal to 1, a contradiction. The lemma is proved. 

2.3. We need a more detailed information on the group H '  and its subgroup F ' .  Obviously, H ~, as an 

Abelian pro-p-group or as a Zp-modnle, is the (topological) exterior square of the Zp-modnle H/H' .  In 

turn, H / H '  is identified with an additive group of the free ZvA-modnle , denoted H,  with b~s_i-~ {01 . . .  ~ } .  

In this section, we use the additive notation. Write /~ A H = ~ H ~  A Hi,  where Hi : Oi �9 ZpA 
l<i_<j<_, 

(i -- 1 , . . . ,  n). In addition, the action of the algebra ZpA on H A/~ is defined by (3). Rewrite this formula 

additively as follows: 

(,, ^ ,,)~ = ~,~ A ~ + ,~ A ~ + ,~ A ~ ,  (5) 

where u, v E H,  t = a - 1, and a E A. Under this ac t ion, /~  A H turns into a ZpA-modnle. 

L E M M A  3. (a) The module Hi A Hj with i < j is a free ZpA-modnle with basis {~i A ~jMI M are 

monomials in t t , . . . ,  t,,}. 

(b) The module Hi A Hi is embedded in a free ZpA-modnle. 

P r o o f .  (a) Define the weight of an element giM A ~jL (i < j )  in the basis of the Zp-modnle H~ A Hj as 

the sum of degrees of the monomials M and L. The weight of an arbitrary nonzero element in Hi A Hj is 

specified to be equal to the minimum of weights of the basis elements on which it depends. The weight of the 

zero element is assumed infinite. It is easy to see that  if P is a monomial, then the weight of (fliM A t3jL)P 

is equal to the sum of degrees of the monomials M, L, and P. By (5), the element ~iM A ~jL of weight 

k can be rewritten, modulo an element of larger weight, as a linear combination of elements (gi A f l jP)S 

of weight k with coefficients from Z~,. Hence, the set {Yi A ~jM I M are monomials in t x , . . . ,  t,~} generates 

Hi A Hj as a ZpA-modnle. We argue that  this is a free system of generators. Indeed, suppose that  there 

exists a nontrivial series ~ = ~'~.(9i A .~jMa)ua, where 0 ~ ua E ZpA. Let .~i A ~jM0 be minimal among the 
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elements Yl A ~jMa and let L be the minimal monomial in the expansion of uo�9 It then follows from (5) 

that  v depends on ~iL A ~jM0; in particular, v ~ 0. 
(b) In essence, here we must prove that  ~pA A ZpA is embedded in a tree Z~A-module. Consider the 

alsebra of formal power series, ~v[ [ s l , . . . ,  an, r l , . . . ,  rn]], and the embedding of Z p A A Z p A ,  as a Zp-module, 
into this algebra, defined by the formnla or: t~ t "''n+k"'"l^+ls .tL,, SklX k,, It -I,L _it -l,, ka k,~ "--~ " 3n 7"1 r n  ~ a l  ~n 7"1 �9 . . . .  �9 . . . .  * �9 �9 �9 ~sL  �9 

If , ZpA, then = + that is, the  tion of the on 

corresponds to the action of Zp[[sx + r l  + sxr l , . . .  ,s,, Jr rn + snrn]] by multiplication on (ZpA A ZpA)~. 
Obviously, Zp [ [81 , . . . , sn , r l , . . . , r n ] ]  = Zp[[s1,. . . ,8n,81 Jr r l  Jr $1ri, . . . , $ n  Jr 7"n Jr $~aT"n]]. This implies 

that  the algebra Z p [ [ s l , . . . , s n , r l , . . . , r n ] ] ,  in which (ZpA A ZpA)o" is contained, is a tree module over 

Zp[[sl Jr r l  Jr s l r l , . . . ,  sn Jr rn Jr 8nrn]]. The lemma is proved�9 

Thus we identify H ~ with the exterior square of the Zp-module ~r. The group F "  is embedded in 

H ~, and its image coincides with the exterior square of the module P0 : F ' / F "  _< H.  It is known (see 

[5]) that  the element ~lux Jr . . .  Jr .~,,un of / i t  lies in Po if and only if the relation t xu l  Jr . . .  Jr tnun = 0 

holds. In other words, Po is the kernel of the homomorphism r : H --, A, induced by the map ~xux Jr 

�9 . .  Jr ~nun --* t~u~ Jr . . .  Jr t~un. Denote the algebra Z~[[t l , t~, . . . , t i ] ]  (i = 1 , . . . , n )  by R/. Then the 

Zp-module A decomposes into a direct sum A = t lR1  �9 t~R~ ( ~ . . .  ~ t , ,R~. The Zp-basis of the module 

, , ~ ,  , ~ , ~ ,  . .  t,,t~st~ ~. .  ~,, is composed of elements of the form ,1,~ , '~'1 "~ ,- , .t,~ , where k l , . . . , k n  are nonnegative 

integers. This implies that  the Zv-module I' decomposes into the direct sum of the module I'o = ker A 

-~ "~"  --" " " ~ ' ~  " ' ~ " ~ ' . . . t ~ "  ( /cl , . .  /c,, a r e  and the submodule P1, generated by elements of the form ~1~1 , ~ I  ~ , ' - - ,  ~,,,'1 "~ �9 

nonnegative integers). By construction, 1`o is a g~A-submodule and F~ �9 t l  C_ P1. 

L E M M A  4. If  f ~ / i t  A H and f t x  ~ F0 A P0, then f G Po A P0. 
P roof .  The decomposit ion/~ = Po ~ P1 implies t h a t / ~  A/~ = (Po A 1`o) f13 (1`0 A I'1) ~ (1'1 ̂  1'1). From 

(5), it follows that  each summand in the latter decomposition is tl-invariant. Therefore, if f = fx Jr f~ Jr f3, 

where f~ G 1'oAPo, f~ G 1`oAP~, and f~ ~ 1'1AI'x, then f t l  ~ FoAl'0 implies that  f~tx : f~tx : 0 .  By the 

previous lemma, the module /~  A / t  is tl-torsion-tree. Therefore, f~ = f3 = 0 and f G Po A P0. The lemma 

is proved. 

For a given natural number k, consider the element b~ = 1 + al + . . .  + a~ ~-1 G ZpA.  The following 

equalities are satisfied: 

t l  J r . . .  Jr t I -t- t 1 , bit�94 = a 1 - 1. (6) b~ = p~ Jr 2 p~ - 1 

The factor-algebra Z ,  [[tx]]/(a~" - 1 )  is isomorphic to a group algebra of the cycfic group of order p~ over Z, .  

As a Zp-basis of this algebra we can take the set {1, t l ,  ~Pz'-x~" �9 " ,~1  ~. The factor-algebra Zv[[tl]]/(b~ ) is also 

a tree Z~-module, whose basis is composed of elements 1, t 1 , . . . ,  t~ ~-~. This implies that  the Z~-module/~ 

decomposes into a direct sum Hb~ (~ D~, where D~ is a tree Zp-submodule in H with the basis 

.[~t~M[ I < i < n, 0 < I < p~ - 2, M are monomials in t ~ , . . . ,  in) .  (7) 

We have ~r A / 1 / / 1  A/)b~ ~ D~ A D~. 

L E M M A  5. Let p > 2. If an element f i n / 1  A/F  is not divisible by tl ,  then there exists a natural  

number k such that  fb~ ~ H A Hb~. 

Proof .  We recall that  H = (~  H~, and so /~  A / )  = 1~ Hi A Hy and / )  A/)b~ = 1~ (Hi ^ 
i=1 ..... n l<i<_y<n l<i<j<n 

H~b~ Jr Hib~ A H~). Therefore, we need only consider the case where f ~ Hi A Hy and prove tha t  fb~ r 

H~ A H~b~ + Hibt A H~ for a suitable k. 
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(a) First assume that i < j .  By Lemma 3, Hi ^ Hj  is generated as a Zp{[tl]]-module by elements of 

the form 9iM ^ .~jL, where the monomial M does not depend on tl .  There then exists a representation 

- ~o + ~ItI, where ~o belongs to the Zp-module generated by the above-specified elements ~ M  A ~jL. 
ph 

Note that ~itlb~ E HAHbk,  which follows from (uAv)~Ib~ - (uAv)(a~ ~ -- 1) = ual  A v ~  --uAv ~ H ^ / ~ .  

Therefore, we must prove that ~ob~ ~ Hi A H~5~ + ~ib~ A H~. Assume f -- ~o. Moreover, we can also think 

that f is not divisible by p, since the quotient module /~  A/~/ /~  A/~5~ is p-torsion-free. Reduce the objects 

considered modulo p and mark the result by - We have H/Hb~ -~ D~, where D~ is a free ~ /p~-modu le  

with basis (7). From (6), it follows that the element fx "-~ annihilates the module H/Hb~. By assumption, 

7 ~ 0. Take the minimal element .~iM0 A .~yLo on which f depends. The monomial M0 does not depend 
on t l ,  and Lo can be represented as Lo = t~S, where S is independent of tl- Finally, choose the number 

k such that p~ - 3 _~ I. Since ~ - 1  = b~ modp. Z~,A, it follows that fb~ = ft~ ~-1. We have the following 

formula: 

modulo summands of the form ut~ ~ Avt~t ~, where sl +s~ > s. Note that the binomial coefficients 

- p"-2 - I + I  where 1 _~ m < p/~-1, are not divisible by p. Therefore, the element ~ - 1  depends on yit I MoAy~tl S, 

and since l + 1 < p~ - 2, we have f ~  - ~ H A/~5~. 

(b) Let i = j .  We will show that Z,[[tx]] A Z,[[tx]] is a free Z,[[tl]]-module with basis {ttx A t~x+Xll >_ 0}. 
In the first place, the module in question is generated by this set. By induction (on r), we can assume that  
elements of the form t~ ^ t~ ~, where 0 < l~ - 11 < r, are expressed via elements t~ ^ t~x +1. We then have 
(it A t~ +r) t l  ~-~-- "1 ' ' 0 1 ~ r  A ~r  TI*I~L ~ l + l  " ' ' IA t tz+f  T'I-L ~!'1"1 " ' ' 1  ^ J + , + l .  whence the desired expression for t~ A t~ +r+l. Second, 

the set {t~ A t~+ll / > 0} is independent over Zp[[tl]]. In fact, consider the nontrivial sum E(t/1 a t~+i)uh 
1 

where u~ G Zp[[tx]]. Choose the minimal index I = lo for which ut ~ 0. If t~  is a minimal monomial on 

which ut, depends, from (5) it follows that the sum ~ ( t ~  ^ t~x+x)u~ depends on t~ ~ ^ t~~ in particular, 
! 

it  c anno t  be zero. 

The above argument implies that  Hi ^ Hi, if treated as an Z:,[[t~]]-module, is free, and its basis is the 

set E1 O E2, 

El = {~iMA~Lt~[l ~_ 0; M and L are monomials in t2, . . . , t , , ;  M < L} 

and 

r2 = ^   Mt +lll _> 0; M are monomi  t2,. . .  , t . ] .  

As in item (a), our problem reduces to the case where f is not divisible by P and expands, with respect to 

the basis I]1 U E2, into a series with coefficients from Zp. Again we reduce all the objects modulo p. If the 

minimal element of the set E1 U E2 on which f" depends lies in El ,  we need only repeat the argument of 

(a). Let that minimal element be equal to ~Mt~ ^ ~jiMt~ +1. Choose the number k satisfying pk > 21 + 5. 

Under this condition, if m - r~-I  then ! + 1 + m < pk _ 2. We have 

2 , . )  ^ + . . .  = 
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m m- -1  

It is easy to see tha t  in the expression given, the coefficient at ~Mt~ +m A ~Mt~  +~+1 is equal to 

- = : m and is not divisible by p. Therefore, the element f t~ h-1 = f t~ '~ 
m m - 1  m - 1  

depends on 9{Mt~ +~ A 9~Mt~ +'~+1, whence ~ ' - 1  ~ ~ A/~bk. The lemma is proved. 

2.4. We turn directly to the proof of Theorem 1. Let ~o be a normal automorphism of  the group 

F .  Relying on Lemma 2, we can assume that  ~o induces an identity automorphism on F/F" .  Then 

z~o = z~f~ , . . . ,  z~o -- z~f~, where f ~ , . . . ,  fn @ F" .  For a given natural  number }, F} denotes the normal 
p~ a = 

subgroup in F generated by z~ . Since z~ ~ (z~f~) ~ - ~ r  : " I  J l  , we have 

f1~+"'+"'+'~'~-' F" .  n (8) 

In Sec. 2.3, the group F "  was identified with the additive group of the submodule PoAI'o of the Z~A-modu]e 

A/~. It is not hard to see that  F~ ~ F "  _C H A/~b~. From (8), we obtain the following inclusion (written 

additively): f~b~ ~ / ~  A ~b~ for any k. By Lemma 5, then, f~ must be divisible by ~ i n / ~  A H.  By Lemma 

4, it is divisible by t l  also in Po A I"0. Coming back to the multiplicative notation, we can assert tha t  there 

exists an element g ~ F "  such that  f l  = g'~g-~ = gffi~g-~. Consider the inner automorphism ~ and the 

automorphism ~ = ~o~. We have Zl~b = z~. Let z i~ = z~g~, where gi G F " ,  2 < i < r~. For any natural  

number m, we also have (z~z~)~b = (z~z~)g~. The preceding argument implies tha t  g~, as an element of 

the g~,A-module H A/] ' ,  is divisible by a~a~ - 1 --= m~l + t~ rood A2. By Lemma 3 , / ~  A H is embedded in 

a free Z~A-module. It is not hard to see that  a nonzero element from ZpA cannot be divisible by elements 

a ~ ' a / -  1 for all natural  rn. This means that  g~ , . . . ,  g,, are trivial elements, ~ is an identi ty automorphism, 

and ~o is inner. The  theorem is proved. 

3. P R O O F  O F  T H E O R E M  2 

Let G be an abstract free H2.4-group with basis X = {z~[ i E I}.  Based on the matr ix  representation 

[9], we can assert tha t  G is a residually finite p-group for any prime number p. Therefore, it is embedded 

in the completion with respect to the pro-p-topology (the latter is defined by all normM subgroups of finite 

p-index containing almost all elements from X),  which will be the free H2~t-pro-p-group F with basis X.  

Let ~o be a p-normal automorphism of G. We need to prove that ~o is inner. 

3.1. First we show that  our problem reduces to the case where G has finite rank. Let { z l , . . . ,  z,~} C X,  

n _> 2, and G1 = ( z l , . . .  ,z,~). Then there exists a subset { z l , . . . ,  z , , , . . . ,  z,n} in X such that  Gl~0 < G2 = 

I z l , . . . ,  z ~ , . . . ,  z,n). Represent G2 as the factor-group F/N ,  where N is a normal subgroup of F generated 

by all elements from X \ { z l ,  . . .  , z ~ , . . .  ,z,~}. Let ~o~ be a normal automorphism of the group F / N  = G2 

induced by ~o. We can say that  ~0 and ~2 coincide on G1. Let ~02 = ~, where u E G2. We prove that  ~o = ~. 

Indeed, if g is an arbitrary element in G and g E G3 = ( z l , . . . ,  z ,~ , . . . ,  zm . . . .  , zk~, the above argument 

implies that  there exists an element v G F such that ~0[c, -- ~. It suffices to prove that  u : v. If not, a 

nontrivial element uv -1 centralizes the subgroup G1. Consider the matr ix representation of G from [9] or 

the representation of F given in Sec. 2. We may conclude that the centralizer of G1 in G is equal to 1, 

whence u = v. 

3.2. Assume that  X = { z l , . . . ,  z,~} is a finite set. The automorphism ~ of an abstract  group G uniquely 

extends to the normal automorphism of a pro-p-group F ,  denoted by the same symbol ~o. By Theorem 1, 

there exists an element f G F such that  ~ = f .  It remains to prove that  f E G. 
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Consider a nontrivial element 9 - yG" E G'/G". The  group G'/G" is embedded in F' /F" .  The  normal 

subgroup of G / G "  generated by an element ~ is identified with a free one-generated module over the group 

ring Z[G/G~. The normal subgroup generated by .~ in F / F "  is the corresponding module over ZpA, where 

A = F / F  I. In a module, the action of ~ on ~ corresponds to multiplication by the canonical image of f in 

F / F  t. Therefore, there exists g E G such that  f -- g rood F I, which reduces the problem to the case f E F I. 

3.3. Let f E F ' .  We have zx~o = Z l "  [zx, / ]  and [zl, f ]  G G'. Recall that  the group F~/F " is 
embedded in an additive group of the free topological ZpA-module H with basis {~1, - . . ,  Yn}. Denote by 

R the ring Z[al, a~l , . . . ,a~,a~l] ,  and by R0 its subring Z[tx,. . . , tn]. Also l e t /~  = ZpA = Zp[[tx,...,tn]]. 

The  abstract  group G'/G" is embedded in an additive group of an abstract free R-module E with basis 

{Yl,... , .Vn}. We have [zl, f ]  = f - t l  E E.  There exists an element a in the abstract  group ( a l , . . . , % )  

such that  f .  t l a  G ~xR0 + . . .  + ~nR0 = E0. Let f .  tla = ~1ul + . . .  + ~,~u~, where u x , . . . ,  u~ E Ro. Since 

the elements ul ,  . . . .  u~ are divisible by t l  in /~,  they are also divisible by t l  in Ro. Let u~ = v~ �9 t l ,  where 

vi E Ro (i = 1 , . . . ,  n). We have f .  a = ~1vl + . . .  + ~nv,~. Recall that  the element 91Wl + . . .  + ~nw,~ of E 

lies in G'/G" if and only if toxtl + . . .  + w,t,~ = 0. Since ultx + . . .  + u,~tn = 0, we have vltl  + . . .  + vnt,, = O. 

Therefore, f .  a E G'/G" and f G G~/G ", which reduces the proof to the case f E F " .  

3.4. Here we prove an ancillary statement.  Let R = Z[a, a -1] be the integral group ring of the infinite 

cyclic group; t = a - 1; Ro = Z[t];/~ - ~p[[t]]. Let eiR be a free(topological) one-generated R-module with 

generator e~ (i = 1, 2). Consider the exterior product of el/~ and e~/~, treated as Z~,-modules, on which the 

action of the r ing/~ is defined by formula (5). The exterior product of Z-modules exR and e2R is contained 

in ex R ^ e~k. 

L E M M A  6. Let f ~ e , k  A e~/~ and I t  G elRO A e2Ro. Then y ~ erR0 A e,Ro. 

P r o o f .  Consider a homogeneous element g of etRo A e~Ro of weight n, that  is, an element of the form 

g = ~ ai" e~t i A e~  ~-i, ai ~ Z. Define tr (g), the trace of that  element, as ~ ( - 1 ) i n / a n d  the derivative 
i = 0  i = 0  

d(g) as ~ aid(ext i A e~tn-i),  where d(el A e~t '~) = 0, d(el  t{ ^ e2t '~-/) = el ti A e2 t~-i~rl - -  e l  ~ i -  1 A e2t ~t-{'t'2 "~- 
i----O 

. . .  + (--1){elt A e~t ~ for 1 < i < n. This definition implies that  d(g) is a homogeneous element of degree 

n + 1. From (5), we infer that  g = tr(g) �9 ex A ezt" + d(g) mod (e~Ro A e~Ro)t. 

Note that  an element of exRAe~R of the form a - e l  Ae~t '~ + u, where a ~ 0 and the weight u > n, cannot 

be divisible by t. Assume the contrary and represent that  element as h~. Then the weight of h is equal to 

n - 1. Let e~t } A e~t " - } - x  be a ma~-imal element of the form elf  { A e~t " -~-x  in the Z~-basis occurring in 

the expansion of h. By formula (5), then, ht should depend on ezt TM A e2t " - } - 1 ,  which conflicts with the 

initial representation of this element. 

We come back to the element f t .  Now we represent it as f} + f}+x §  + fn, where f~ is a homogeneous 

element of weight i in exRo A e~Ro. The preceding remark implies that  tr (f}) = 0. Then  f t  = (d(f~) + 
f}+x) -t- f}+~ + . . .  + f,, rood (exRo A e~Ro)t. This allows us to reduce the problem to the case where f t  is a 

homogeneous element of degree n. 

Let f t  = a~ �9 e~t ~ A e~t " -~  + a~_~ �9 e l  t /~-I A e2t '~-~+1 -}- . . .  -}- ~ !  �9 e1~ ,  ! A e2t '~-/ .  We have t r ( f t )  = 

( - l ) t a ~  + . . .  + ( -1) ta~ = O and f~ = d(f~) rood (e~Ro A e~Ro)L From the definition of a derivative, we 

obtain d(f$) -- - a ~ .  eli ~ A e2~ '~-~+~ + (a~ - ~ / ~ - I )  " el tk-1 / k  e 2 t  n - 1 : ' b 2  -{- . . .  - -  ( - - I ) ~ - ' ( ( - I ) ~  + . . .  + 

(-- I)/(X|)'e1~ ! Ae2tn-I +... + ((-- 1)/*~x/, -[-... + (--I)I(Xl).eltAe2t n. Since tr (It) -- (-- 1)ko~k +... + (-- l)'~x, = O, 

we have the expression for d(ft)  with a lesser number of summands a .e~t i Ae~J  than for .ft. From this, by 

repeatedly applying the function d to f t ,  we obtain the zero element. This means that  f t  E (el Ro A e~Ro)t. 
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Let f t  = gt, where g E etRoAe2R0. From Lemma 3, it follows that ex/~Ae2/% is a free/%-module. Therefore, 

f = g E etRo A e~Ro. The lemma is proved. 

3.5. We come back to the proof of Theorem 2. Let f G F" .  We have zt~o = zt[zx, f] and z2~o = 

z2[z2,f] E G, whence [zt, f], [z2, f] 6 G". In Sec. 3.4, the group F "  was identified with an additive 

subgroup of the exterior square ~r A / t .  We will use the same notation as in Secs. 2.3 and 3.3. In the 

additive notation, we have f t t ,  ft~ G G". In particular, the elements ftx and ft2 lie in the exterior square of 

the Z-module E = ~t R + . . .  + ~nR. Moreover, we can assume that f tx,  ft2 G (Eo N G'/G") A (Eo N G'/G"), 

where Eo = .~lRo + . . .  + ~nRO. 

L E M M A  7. Let w be an arbitrary element in /~  A/ i t  Then w G E0 A Eo if wtt, tot~ G Eo A Eo. 

Proof .  For arbitrary monomials M and L in t2 , . . . , t~ ,  where M < L, write SM,L for a Zp-module 

generated in H A/~ by all elements of the form Mt'{ A L$~ (m, l _> 0). Obviously, SM,z is also a Zp[[tx]]- 

module and /~ A R = ~) SM,L. From tot1 6 Eo A E0, it follows that to lies in the sum of finitely 
M<r. 

many modules SM,L. Let to = t o l  "~- to2, where tot 6 ~) SM, L, to2 6 (~ Smr,M. Then wttt 6 Eo A Eo, 
M<L M 

to2tt E Eo A Eo. Lemma 6 implies that tot 6 Eo A Eo. Obviously, the element to2 is expressed over Zp via 

elements of the form Mt~" ̂ Lttt (m, l _> 0), where M and L are the monomials in it ,  t3, . . . .  t , ,  and M < L. 

Since to2t2 6 Eo A Eo, the preceding argument (with t ,  replaced by ~2) yields to2 6 Eo A Eo. The lemma is 

proved. 

"It follows from the lemma that / 6 EoAEo.  In Lemma 4, we proved that F"  = FoAP0,  as a 

Zp[[tx]]-module, is a direct summand in H A/~. Carrying that proof over to the abstract case, we see 

that (Eo N G'/G") A (Eo N G'/G"), as a Z[tt]-module, is a direct summand in Eo A Eo. The inclusion 

f t t  G (Eo N G'/G") A (Eo N G'/G") then implies that f 6 G" = G'/G" A G'/G". Theorem 2 is proved. 
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