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Optical properties of two interacting electrons in quantum rings:
Optical absorption and inelastic light scattering
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Two interacting electrons confined in a quantum ring form a Wigner molecule due to the interplay between
the Coulomb repulsion and the radial confinement. The states with fixed total spin show a strong correlation
between the quantum numbers of the relative angular vibrations and the rotation of the two electrons. On the
basis of the energy band structure, which results in the occurrence of a persistent current in the ring, the optical
absorption and the differential cross section of resonant inelastic light scattering is calculated. The selection
rules are derived and discussed in dependence on the polarization of the incident light.
[S0163-18296)07531-3

[. INTRODUCTION tical ensemble of finite-width QR’s with two interacting
electrons with spin in the presence of an Aharonov-Bohm

In recent years there has been great progress in the abilitpagnetic flux, i.e., in the presence of a persistent current.
to confine electrons in semiconductor nanostructures. Mod-
ern epitaxial techniques, coupled with advances in lithogra-
phy, have made possible the fabrication of a wide variety of
structures in which carriers can be quantum-mechanically A. General

confined. Various techniques of surface preparation have The model that we use to describgtical absorptioris as
been developed, in order to impokgeral constrictions on  fg|lows. We consider two electrongu= 1,2) with the effec-
the quasi-two-dimensional electron gas. The ultimate limitsjye conduction-band-edge massg in the planez=0, con-
are quantum dots™ (QD's) and quantum rings(QR’'S).°™®  fined in a QR by the potentidl(x,) in thex-y plane. This
where the electrons are confined in all three dimensionspotential is taken as zero in the region
QD’s and QR’s can be regarded as artificial atoms. The exR—W/2<r ,<R+W/2 and infinite otherwise. It is assumed
perimental conditions allow one to tune the number of electhat astatic magnetic fieldB,=(0,0,B,), which is restricted
trons up to the limit of single electron charging of QD's. to the area of a circle with radilR,g<<R—W/2, threads the
The resulting few-electron problems have been studied thedyole of the ring with the magnetic fluxd= BowRiB
retically for QD’s (Refs. 10—18and QR's!®?2The work on  [Aharonov-Bohm(AB) geometry. This system is considered
QR'’s has been heated in recent times because in the preserinethe presence of an external electromagnetic field, de-
of a magnetic fluxpersistent currentsvere measured in an scribed by the vector potenti&l;(x,t) and the scalar poten-
ensemble of about T0copper ring€3in a single gold ring?*  tial ¢;(x,t), which are related to the time-dependent electric
and in a single GaAs rin§.The theoretical explanation of field E;(x,t)=—V ¢(x,t)—(d/dt)A(x,t) and the time-
these experiments has addressed two basic questiptise ~ dependent magnetic fieB, (x,t) =V XAy(x,t). The result-
choice of the statistical ensemBie®*and ii) the role of the  ing Hamiltonian is given by
electron-electron interactioti=*3

Besides the many-partifle combined impugity and Cou- 2 1
lomb perturbation theor§/1,3_ hopping mode_l§:°‘ 3 theory of H= Z { S [Pt eAg(X,) +eA(x, 12
coherent propagation of interacting particles in a random n=1 e
potentiaf® and Luttinger liquid theory>® it has been g* g*
shown?122.40-43 that in the ballistic regime a rigorous +Ve(x,)+ TMBBO(XM).UM—F TMBBl(th)"’;L
guantum-mechanical theory of few strongly interacting elec-
trons in QR’s can be developed. It results in the picture of a
rotating Wigner molecule; i.e., the interplay of the Coulomb —edi(Xx, ,t)] +
repulsion between the electrons and the confining potential
forms a relatively rigid rotator with internal azimuthal exci- ] -
tations and confined radial motions. On the basis of thidvhere x,=(X,.y,.z,) is the position vector and
theory the electronic states, thermodynamical properties, ank. = — 1%V is the momentum operator of theth electron
persistent currents were calculated. It was shown that theith charge—e, ug=ef/(2my) denotes Bohr's magneton
finite width of the ring plays an important role for the influ- with my the free-electron masg* is the effective spin-
ence of the electron-electron interaction. splitting factor, ando,=(oy,,0y,,0,,) stands for the

In this paper we apply this theory to calculate the opticalPauli spin vector operator, where the componente pfare
absorption and resonant inelastic light scattering of a statighe Pauli matrices. Furthegy is the permittivity in vacuum
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and g is the static dielectric constant of the host semicon-
ductor. We use the static dielectric constant because the fr
quency of the incident far-infrare@IR) light is assumed to
be low in comparison to the phonon frequencies of the ho
semiconductor. In Eq1) theinterparticle Coulomhnterac-
tion potentialVg(x;,X,) is described by thelirect part and
the image part is neglected for simplicity. Further, in the
Hamiltonian given in Eq(1), we ignore the small relativistic
effect of the spin-orbit coupling. According to the possible
gauge transformation of the vector potential
A —A" (X)) =A(xt)+VA(x,t) and of the scalar po-
tential  d(x,t)— &' (X,t) = Pp(x,t) — (d/dt)A(x,t), where
A(x,t) is a scalar function, we use different gauges for the

static and dynamic potentials. For the static vector potential H=Ho+Hin, 2
Ag(x), with By(x) =V X Ay(x), we use the Coulomb gauge

divAy(x)=0 in the form of the symmetridor circulap  with the unperturbedequilibrium) Hamiltonian

h? 1+1
2me |\ 12 13

‘?auger(x)z 1 BoX x. For the vector potential of the elec-
romagnetic field we wuse the Coulomb gauge
divA,(x,t)=0 and the gauge,(x,t)=0. We introduce po-
ﬁtar coordinates in the-y plane:x,=(r,,¢,), relative an-
gular coordinate y=¢,—¢, and angular coordinate
O =(¢1+ ¢5)/2, describing the motion of the two-electron
system as a whole. In this case the static vector potential has
only a¢ component(r,)= BORiB/(Zrﬂ) =®/(2m7r ) if
r.>Rag and Ag,(r,)=Ber,/2 if r,<Rsg. Treating
A;(x,t) as a perturbation, the Hamiltonian of E@) has the
form

+Ve(r,)

Bt

#? 1 9 2,c1>2
4o o,

. 1 1) a( ] ® . e’ @
1213 ay| @ @, Ameges\r3+15—2rr,c08y

where ®,=h/e is the flux quantum. The Hamiltonian that above the Fermi surface and, in the second step, an electron
represents the interaction of the incident light with the elecin the conduction band below the Fermi surface, with either
trons in the ring, the perturbation, consists of three parts, the same or the opposite spin as that of the “excited” elec-
tron recombines with the remaining hole in the valence band.
Hin=Hi+H>+Hs, (49 The net effect of the two interband transitions is to generate
whereH; is that of the first-order perturbation either a spin-flip or a non-spin-flip excitation within the two-
electron system of the ring. The excitation of spin-flip pro-
e 2 cesses in inelastic light scattering is made possible by the
H1=2— E [P, A(X, ) +AL(X, )P, (5) substantial spin-orbit coupling in the valence-band states of
Me n=1 l1I-V compound semiconductots such as GaAs. Thus, to
With [p,,,A;(X,,1)]=—ihV, -Ai(x, 1), Eq.(5) takes the calculate the Raman scattering thg sta_lrting _point has to be
form ® before the effective-mass approximation with the unper-
turbed Hamiltonian

L ©®) g §
1= 1 X,u, AV pp, . — W)y - -
Mes=1 Ho /Zl Mo Amege| Xy — %ol ©
The second part dff;;, where

0 < 1

H2:7MB;1 Bi(X,.1)- 0, (7) Hg”)=—2mo[pﬂ+ eAg(X,) 12+ V(x,)
represents the interaction of the spin magnetic moment of the 3
electrons with the oscillating magnetic field of the wave, and + amzl O X VV(X) ] [Pyt eAo(X,)]
: . moC
H; is the second-order perturbation
2 2 + g B .
#eBo(X,) - o (10
_ 2 2 [ e
Ho=5me 24 AL - ®)

is the Hamiltonian of theuth mobile electron in the semi-
To describe theRaman scatteringpy the two interacting conductor. Preserving complete generalitg includes in
electrons in the QR we assume a two-step scatteriny(X,) the periodic crystal potential as well as the lateral
mechanisnf# in the first step, an electron is optically excited confining potential and furtheﬂig“) includes the spin-orbit
from the valence band to a virtual state associated with coreoupling. In Eq.(10), g is the free-electrog factor. Treating
fined states of the ring potential in the conduction bandhe A;-p term of the perturbation in second order and the
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AZ term in first order, it was showf*’ that the Raman scat- Where

tering can be described by the Hamiltonian of E2), where

Ho is the same as that of E@3) but with the effective

interaction Hamiltonian M) =2, Yap CZC[;' (12)
@B

2

e
HintZZ—%M(Q)A(wL)A(ws), 1y with

alel- (m+eAg)e ks BN (B |e - (m+eAg)e ¥ B)
EB_ Eﬁr+th

NAE
= = + —
70{[3 (eL eS)gaﬁ’ mO%

N <a|Q.'("+eA0)eikL'X|l8’><,8’|e§'(1T+9Ao)e_ik5'x|,8>

Eap=(ale'"|B) (14
|
and spatial coordinategx,,} and the spin coordinatgsr,}. This

two-electron wave function must satisfy the following con-

h 2 ditions: (i) antisymmetry conditian

AlwL g)= (15

2Vepe(w 5w
oelorgoLs PV (Xy,01;X2,02)= = W(X1,01;%3,03);  (16)
are the amplitudes of the vector potential of the inciden
wave of frequencyw, and of the scattered wave of fre-
quency ws. Further, m=p+ (#/4mec?)[oXVV(X)], q
=k_—ks, V is the scattering volume, answ _g) is the
dielectric function at the respective frequency of the medium =W(r,ro;¢1,02+2m,21,25)
embedding the ring. In these equations, the statpsre the
single-particle eigenstatest{”)|a)=E,|a) of the semicon-
ductor (Bloch statey where the symbolx labels the band =W(ry,r,01,92.21,22), (17
index n, orbital and spin quantum numbers, angandc,, _ ) _
are the single-particle creation and destruction operators. TH¥hereP;, is the permutation operator. Because the Hamil-
HamiltonianH;,, of Eq. (11) is responsible for the scattering tonian of Eq. (3) does not depend on the spin oper-
of light due to|a)—|B) electronic transitions anf’) are ~ ator, the wave function separates¥(x;,0;%;,07)
intermediate states. In order to investigate the inelastic light: ¥ (X1,X2) x(0'1,0%) in the orbital part¥(x,,x;) and the
scattering, it becomes necessary to invoke a suitable mod&Pin party(o1,07). In dependence on the symmetry of the
of the band structure formation. With this scope we will useSPin  function under particle permutation, we have
below, in Sec. IV, ak-p method and the Kane two-band P12¥ (X1,X2) =7V (x2,X;), where n==1 is the parity of
model adequate for the quantum rings on GaAs. The restridhe orbital wave function. In a pure AB geometry the spin
tions imposed on the sum over the intermediate stEt@ps dlrectlon is arbitrary. But in practice, at Iea;t an |nf|n|tg5|mal
depend on the type of scattering process; thus, for resonafitadnetic field penetrates th_e el_ectron orb.|ts o stabilize the
scattering, when both the initiakr) and the final statég) z direction for the spin quantization. Thus, in dependence on
belong to the conduction band, the sum is extended to thi1€ two possible spin quantum numbeng, = =3 of both
valence-band states that are connected to the conductioflectrons, we have the following
band states by the optical transitions associated with the in- (i) para state my=-my,=my(=3 or —3) and
cident and scattered photons. 7=1,

t(ii) single-valuedness boundary conditiof®vBC'’s):

W(rq,fo;01+ 27,05+ 27;21,25)

=W(ry,roe1+2m,¢5,21,2)

B. Ground state 1
. i . i W pard X1,X2) = —=[W(Xq,%2) + W(Xz,%1) ], (18
In this section we consider the eigenvalue problem of V2

Ho; in all the other sections we discuss the perturbations
H,y. It is obvious that the component of the angular mo- and
mentum operator of the two electroris,= —i%d/90, is a
constant of motion, i.e[,L,,Hy]=0 is valid, from which the
rotational invariance of the problem follows. The corre-
sponding wave functionV(x,,01;X,,0,) depends on the (19

1
Xpara(o'lio'z): E[Xms,—ms(o'l10'2)_X—ms,ms(0'1a0'2)]v
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which is an eigenstate of both tlrecomponentS, and the W(ry,ry;9,0+2m,2,,2,)

squareS? of the total spin operato®= (%/2) (o, + o), be- ®

longing to the eigenvaluess,=AMg with Mg=0 and _ P . )

S(S+1)=0: singlet statg S=0, Mg=0); and ex I47T<IJO V(r1r2;7.0:21.2). (23

(i) ortho state mg=-my,=my(=3 or —3) and

1 The only effect of the static vector potential, which is now
7]: - 1

absent in the Hamiltonian of E@3), is to enter the TBC's.
For narrow-width rings, i.e., W<R, the radial motion is
1 much faster than the angular motions. Thus, the radial mo-
‘Pormo(xl,xz)=T[‘I’(Xl,xz)—‘l’(xzyxl)] (200 tion is adiabatically decoupled from the angular motions
2 with the resuft®
and

W(ry,rs;70:2,,2,)= =1 ry,fo.7v,0
Xm,,m(01,02) (ra.r2;y 1,22) P’KEE’KZ Ky K(1:72:7,0)

Xfms,fms(o'lao'z)

1
E[Xms,—ms(o'lrab)+X—ms,ms(0'1’0'2)]-

(21) lp(21,25)|%= 8(21) 8(2y) (25

which is an eigenstate & with S(S+1)=2 and ofS, with  for the orbital part of thewo-electron wave functiorSub-

Ms=+1, Mg=—-1 and Mg=0: triplet state gtituting Eq.(24) into the Schidinger equatiorH,¥ = EW¥

|S=1,Ms=0,=1). In the following calculation we consider jth the unperturbed Hamiltonian we obtain, according to

only the orbital part¥(x,,x;), which is a scalar, but include  the adiabatic approximation and under the condition that the

the spin of the two electrons via the Pauli principle. confinement energy of the lateral potential is much larger
Removing the magnetic flux from the Hamiltonieh, by than the typical Coulomb energy, a decoupling of the radial

a gauge transformation with\(x,)=—BoR%g¢,/2 for motions of both electrons:

r,>Rag, Where ViﬂA(xM)=O and W (x; ,x,) —ex — (ie/ ,

1)S2%_1A (X)W (x1,%;), the SVBC’s change tdwisted —p _orad =P

boundary condition§TBC's): le Hrad ') “Kviz(rl’u)_g KiKa “Klsz(rl’rZ)'

(26)

Xtpk, k,(1:0) @(21,2;),
(24)

Xorthd 1,02) =

W(ry,ry;y+2m,0+ 7,21,2,) where H{r,) is the radial part ofH, and S[fsz

=&, t&, Herein, we have defined=y ( (r1,r2)

(D)
=exp i2m—|¥(ry,r,;7,.0;2,,2,) (22
F{ Y 1oz =Eg, «,(f1,12:7,0), where the slow variabley and ®

and are fixed. The radial wave function follows in the form
XKl(rl)XKZ(rZ) if K;=K, andP=0
=P
Bk ok (rra)=9 1 . (27)
v E[XKl(rl)XKz(rZ)"'(_1)PXK2(r1)XKl(r2)] if Ky#Kz andP=1.2.

The quantity 7p=(—1)" is the parity of the two-electron radial wave functioﬁ:ﬁviz(rz,r1)=anEer(rl,rz) and
XK#(ru) are the eigenstates of the single-particle Sdimger equation of a rectangular quantum well with infinitely high
barriers. For the strong radial confinement we can use the wave functions

2 | 7K, W
XK#(HL)= m/sm m =™ R_? , (28
normalized by the relation
R-+W/2 "
JR_W/ZderMXKﬂ(rM)XK;.L(r#):5KH’K//.L' (29)
with the associated eigenenergies
#2m2K?2
_ © _ . _
SK#— P2’ K,=12,...; wn=12 (30
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In the next step, we multiply both parts of the Salirger equatioiH ¥ =EW by = MK K, (rq,r,), integrate it over, and
r, and use Eq(26). This gives

h? 1 1 ? 1 1 1 a9
- S+ — |+ | 5-5 —
2t 2 Y 272
P’ K] K 2me r{ ri dy* 400 r{ ri dy 90
P K] K}iP.Ky Ky P’ K K}iP.Ky Ky
2
e
d
+ +[EKk ,~El8pr pk; k Ok} K, ¢ ¥R k) Kk (7,0)=0, (31)

Amrege g\ I T+15— 25 11 ,c08y
P/} KL P KK,

where( >p/'Ki,Ké;P,Kl'K2 denotes the matrix element on the radial wave functions

R+W/2 R+W/2 P P
<F(r1vr2)>P/,Ki,Ké;P,K1,K2: fwamdrl rlf ledrz rzF(rl,rz)ﬂKl,Kz(rlJz):«Ki'Ké("l,rz)- (32

If the relative angular motion is much faster than the rotation of the two-electron system, these two motions can be
decoupled by asecond adiabatic approximatiomhis approximation, whose adequacy is formulated solely as a relation
between the typical energies related to the two angular motibofi$am,R3®) <4, allows one to neglect the terms with
aldyal 9O in Eq. (31) in comparison to the other ones, i.e., to separate the varigbbesd ®. This leads to an important
consequence: namely, the sets of equati@d}s describing the states of the radial motion, possessing the opposite symmetry
with respect to a permutation, occur decoupled.

As long as the above-stated criterion of the first adiabatic approximation is satisfied, the states of the radial motion are
separated by the energy intervals of the order of the ground-state eﬁéﬁﬁyhz 2/(mW?). As a consequence, we can
restrict the consideration to the matrix elements vith=K,, K;=K,, describing transitions without changing the energy
Erad,KZ of the radial motion. This restriction, in view of the above consequence of the second adiabatic approximation, implies

also P’=P. It is a fairly good approximation to restrict this average to the ground state of the radial motion, which has the
quantum number®’=P=0, K;=K;=1, K;=K,=1:

AR R ¢ 126, —E hy147,0)=0 33

me\r® [\ dy* 4007 Amreges\F2+ 15— 251,08y ' oLty '

where
1 R+W/2 Xary 1
<r—z>=f drr —7—~r2, (34)
R—Wi2
e? e? J'R+W/2d fR+W/2d x3(ro)xa(ry) e?
= ror rorp
Ameges\ri+r2—2rqr,c08y | 4mesoss)rowz bt reowe 0 \rZr2- 2r1r2008y 4megeR\V2(1—cosy)

(35

As long as in the framework of the second adiabatic apin Eq. (36) Y stands fof{P,K,,K,,p,j}. The characteristic
proximation the relative angular motion is separated from théndex p describes the possible symmetry types of the solu-
angular motion of the two-electron system in the QR as aions ®P(y) of the differential equatior(37). Namely, in
whole, we have view of the 2 periodicity of the mean Coulomb potential as

a function of y, the wave function of the relative angular
°° motion has the form ®P(y)=expipy)u(y), where
Veiyi(10)=2 2 OX()Q,(0), (3§ WP(y+2m)=ul(y) and— <p=}

If the typical Coulomb energy between the two electrons
where the wave function of the relative angulie® motionis  E ,,=€%/(8meqe<R) is much larger than the oscillation en-
a solution of the equation ergy £ {*=¢ [*P—Ecqy, the relative angular motion can be

considered in the tight-binding-like approximation:
h? (92 e?
E PP aP(y)
R?m,

37 477808 Rv2(1- COSy ! *

~0. @7 (7= 2 eniPrd(r-r (@9
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where ¢;(y— o) is the wave function of a single well with mations, the wave function can be normalized on the interval
a minimum aty=yo=(2Q+1)7, Q=0,£1,+2,....To —ow<y<w with the resuliC;=1/2/j! 7Y%, The tunneling

evaluate the relative angular motion explicitly, we expandthrough the barrier of the Coulomb potential from well to
the mean Coulomb potential in a power series of the deviawell would lead to an explicit dependence of the energy lev-

tions (y— vq) from the quasiequilibrium valuegg, els& [*F on the characteristic indgx and thus, would result
o2 o2 > mO2R? in energy minibands. As shown in Ref. 22, the widif ;* of
e L rap ; . .
~ + the minibandf *® is very small in comparison to the energy
4meoeRV2(1—cosy) 87eeesR Q=== 4 spacingé *~ &% ; Hence, the tunneling and the resulting

hybridization of the energy levels can be neglected and thus

X(y—0)?0(m—|y— ; . ;
(7= 7Q)"0(m= [y~ D), the eigenenergies are independent of the characteristic index

B9 p
where Q2=e?/(16ms,eM,R%) and O(x) is the Heaviside The solution of the Schrdinger equation for the free ro-
unit step function[®(x)=1 for x>1 and ®(x)=0 for tation of the two-electron system as a whole,
x<0]. The harmonic approximation in E€B9) is valid if the 2
typical excursions of the two electrons from their equilib- (_24”,% Q,.(0)=0, (42)
rium angular positions are small compared with the inter- de b

electronic spacing (R, which corresponds tgy= ). The

S _ - ) characterized by a rotational momentum
Schralinger equation of the relative angular motion of a y

single quantum well with minimum at, becomes the wave vy=vy(E)
equation of a shifted harmonic oscillator with eigenfunctions
and eigenenergies [ 4mR? e g e o osc v
Ly=v\%., (v LA ‘1 "2 BmegsR ’
— Q Q
#r-v0=0, o 5| 7 [ ), “3
(40 is
EP=hQ j+l) j=0,1,2 (41) 1
! 2)" W (0)=—exgivy0). 44

respectively.
In Eq. (40), é&=27/(mQ)/R is the typical width of the The curvesvy(E) define thechannelg'®=43484%gr the an-

wave function andH;(x) is Hermite’s polynomial. Within  gular motion of the two-electron system as a whole. Note

the accuracy of the tight-binding and the harmonic approxithat the wave functions are orthonormalized according to

R+W/2 . R+W/2 . 27 .
f WIZdrlrlXKl(rl)XKi(rl)fR7W/2er ) XKZ(rZ)XKz(rz)fO d@fpd)/ \Pp,Kl,Kz(%®)‘I’P',K1,Ké(%®)

= Ok, k| Ok, K, 0P,ps (49
|
where ber and that of the rotation. It is shown in Ref. 22 that
o . (vy—20/Dp)=J with J=0,£1,£2, ... isvalid and that
—20<y<26 if 0<O@<m for J=2m one obtainsy=(—1)"*) and forJ=2m+1 it
D={ —27<y<2w if @=m (46)  follows that n=—(—1)""J, where m=0,=1,=2,....
20— Ar<y<4m—20 if T<@<27. Thus, the parity of the orbital part of the two-electron wave

function isp=(—1)?*1"J. From these relations one obtains
The symmetry of the two-electron wave function resultsthe only possible combinations fandJ.
in a strong correlation between the vibrational quantum num- (i) For P=0 andP=2:

S=0 (parastate), J=2m, and j=2k, or J=2m+1 and j=2k+1;
S=1 (ortho state), J=2m+1, and j=2k, or J=2m and j=2k+1; (47)

(ii) for P=1:
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S=0 (parastate), J=2m+1, and j=2k, or J=2m and j=2k+1;
S=1 (ortho state), J=2m, and j=2k, or J=2m+1 and j=2k+1, (48
|
wherek=0,1,2,. ... In other words, for even values &  current, the persistent current*=3 which follows at

(symmetric radial wave functionsthe para state is described T=0K by IgKl'KZ’j'J)(dD,Z): —dEx, k,,jo(P,2)/dP, and

by such an angular wave function wheteandj have the

for a canonical ensemble aff#0K by [,(P,2)

same parity while the ortho state has a wave function with — _ (@ 2)/d®, where F(®,2)= —kgT InZ(T,®) is the

J andj of opposite parity The opposite is valid for od&
(antisymmetric radial wave functionsFurther, for even
J, p must be 0 and for odd, p must bej.

We finally obtain the eigenenergies Ey ,

=Ek, «,.j,0(P,2) of the two-electron QR:

Helmholtz free energykg is the Boltzmann constant, and
Z(T,®) is the partition function. Here, a canonical ensemble
means a great number of absolutely identical rifgsom-
etry, material with two electrons in each ring, which can be
in various two-electron states.

The energy bands of two interacting electrons in a

e? o5 o ot narrow-width QR,E; ;(®,2)=E; 1; 4(P,2), denoted by the
W+gj +& (D), label (J,j) are plotted in Fig. 1. It is seen that the energy
S (49) bands of a certain symmetry become degenerate at
®/dy=0 and 0.5. In the case of a mesoscopic ring with
impurities this degeneracy becomes lifted, and gaps between
52 P \2 the energy bands opéfi-*3 Further, the bands of the para
—2(J+2_> (500 and ortho states are mutually degeneratePa®,=0.25,
4meR Do which is valid also in the presence @fonmagneticimpuri-

is the rotational energy. These energy bands carry in thties. It is seen that theninimal energyin — 3 <®/®(< 3
presence of a nonvanishing magnetic flux an equilibriumbelongs to different states:

EKl’KZ’j"](q)’Z) :5K1+5K2+

where

EP(d)=

([ ® 1|2 for 1 @ 1
—_— — —_— _g__
By 2 2 B,~ 4
A 22 e? Q) A2 qa)z for 1 & 1 -
M E; (PN} = W2 T BregeR T 2 T M2 | By 4%, 4 (52)
(q) 1)2 1 & 1
—— = for - =—=<—.
LDy 2 4o, 2

The persistent currents carried by the energy bands of Egas a§ <2R, wherea} =4msqesh?/(mee?) is the effective
(49 and(51) are discussed in detail in R¢R1]. It is shown  Bohr radius. These approximations are well fulfilled for typi-
that the persistent current shows bistability and hysteresis inal semiconductor QR’s used in experiments.
dependence on the magnetic flux.

The above considered strongly correlated state of a two-
electron Wigner molecule, i.e., a relatively rigid rotator, is
based on the validity of the harmonic and the both adiabatic
approximations. For typical semiconductor rings used in ex- ) ) _ )
periments, when charged with two electrons, the Wigner, In an optlca_l absorption experiment the atter!uatlon of a
molecule in which the three types of motiofimdial mo-  light beam, which passes through a sample of thickdess
tions, relative angular motions, rotatioare adiabatically de- Measured. We assume the incident wave to be a monochro-
coupled is the expected strongly correlated state. It becomdgatic plane wave in an isotropic homogeneous medium with,
obvious that the first adiabatic approximation used abovd) general, a complex dielectric function(w)= Res(w)
becomes valid ifi Q) <#%27w%/(mW?), and the second adia- *ime(w), related by Je(w)=n(w)+tix(w), Res(w)
batic approximation becomes valid #%/(4mR2)<#Q is ~ =N*(@)—«k*(w), and Im(w)=2n(w)x(w) to the refrac-
fulfilled. A nearly rigid rotator is formed if the mean Cou- tive indexn(w) and the extinction coefficienk(w). The
lomb energy is much larger than the vibrational energy anector potential of this wave is given by
no tunneling between the wells occurs, i.e., the harmonic
approximation becomes valid. The harmonic approximation
is applicable ifi Q) <e?/(8meqeR), which can be expressed

Ill. OPTICAL ABSORPTION

A. General

As(x, 1) =APee kX eVt cc, (52
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axis. Then, it follows thatv(w) =2 (w/c) k(w). Here, we are
interested in the optical absorption of QR’s, which are syn-
thesized on semiconductor heterostructures, being multilayer
structures in general. In this case there exists no unique first-
principles derivation of an absorption coeffici€Aitdence, it

is more profitable to calculate the energy that is absorbed per
unit time and unit aregpower absorptionby the nanostruc-
tures under consideration.

The incident electromagnetic wave will induce transitions
between thenitial states|i) and thefinal states|f) of the
two-electron system, wherfr) denotes an eigenstate of
Ho, Eq.(3), with energyE, given in Eq.(49). The transition
probability from the statéi) to the statgf) under the per-
turbationH; is

28.545

28.535

28.525

E(meV)

28.515¢

(1,0) (0,0) (=1,0) P (t 1ftdt’ ioht’ it ¢
: =|— wfi Mt
28.505 - : : it (D=| 7 | dreimH(t)
-0.50 -0.25 0 0.25 0.50
/%

1\ 2 ! iwent” yint
R ! Wfn !
+(ih) ) Jodt e Hen(t)

2
, (55)

FIG. 1. The energy bands; ;(®,2)=E, 1 4(®,2) of the para
state §=0, thin solid lineg and ortho state §=1, heavy solid U et yint e
lines) labeled by ¢,j) for a two-electron quantum ring synthesized X Jo dt’e'“n® Hpi(t") + - - -
from a GaAs-Ga_,Al ,As heterostructure. Parameters used in the
calculation for the GaAs ring of radiulR = 480 nm and widthV where H‘:‘;,(t):<y||_|mt(t)|,/> and w,, =(E,—E,)/#% is
=20 nm:es = 12.87 andn, = 0.06624n,; m, denotes bare elec-  na Bohr angular frequency. As far as the separation of the
tron mass. energy bands of QR’s is in the range of meV, FIR light is
) _ ) used in the optical absorption spectroscopy. To calculate the
wherek = (ky,Ky k) is the wave vectoris the(in general 1\ ver ansorption, we identify the interaction Hamiltonian
complex polarization vectoA(lo) is the real amplitude of the H;. asH,, given by Eq.(6), and use the first summand of
plane wave, and c.c. means complex conjugate of the firgtq (55) only. Then for thetransition rate (transition prob-

summand. . . . ability per unit timé from the state]i) to the state|f) it
This plane wave propagates in a three-dimensi¢88)  to|lows that

bulk medium with the dispersion relationk= k]|

=¢(w)wl/c, assuming thak is a complex vector and the 20 2 2 A 2
(angulay frequencyw is real if ¢ () is complex; anaisthe  Wii=27 — (f] 2 AL Q%X e p I[i)] S(wr—w),
vacuum speed of light. From E2) it follows that e n=1 (56)

where we have used the fact that;>0. Because in the
usual experiments the light is incident from vacuum to the
(53)  sample, the amplitud&{”) present inside the ring can be
calculated from the amplitude outside the specimen by stan-
dard techniques, e.g., with the transfer-matrix method. Under
_ typical experimental conditions, the wavelength of the inci-
Bl(x“’t)_VXuXAl(XM’t) dent light is much larger than the characteristic dimensions
w . of the electron system in semiconductor nanostructures
=iVe(w) E[Ago)eBe'(k'Xn‘“")— cc] (54  (Ae~10 NM<\jgh~10 um). In this case one can expand
the exponentiale’*« leaving only the zeroth order, i.e.,
for the magnetic induction, where A(lo) e'kXu~1. This is theelectric dipole approximatianNotice
=—[ic/(e(w)w)]B? andes=ex g, with g=k/|k|. The that Fhe next termeik-x, r_esults in glec_tric quadrgpole
intensityl of the incident light is given by the time-averaged transitions andH, of Eq. (7) in magnetic dipole transitions
Poynting vector S= ReEX ReH according tom Both pf them are beyqnd Fhe scope of thl_s paper. Using the
T . . electric dipole approximation ang, = (m¢/i%)[x, ,Ho] in
= sl ReEq(x,,1) X ReHy(x, D] =l1(X, )&, With g4 56 and defining the electric dipole operator of the two

J )
Ei(X, 1) == 2t As(X, ) =i w[APe gk Xu=oh— ¢ c]

for the electric field, wherd\{")= — (i/w)E{”), and

(X, o) =[N(w) @’/ (2pec) I(AL)?e 2@, glactrons byd= —e(x;+X,), e obtain

where uq is the permeability in vacuum and is the mag-

netic field, assuming a nonmagnetic medium, so Bwajuq 2 On2, 2 -

H is valid. For a homogeneous 3D medium #iesorption Wir=77 (A1) wil(fle-d[i)P8(wsi—w).  (57)

coefficienta(w), which describes the fractional decrease in
the intensity with  distance, is defined as Then the power absorptioR,,s by the electronic transition
a(w)=—(1/1)dl/dx if the wave propagates along the from [i) to [f) is Pyd )= norfiwWis, wheren g is the
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number of QR’s per unit area in they plane. In Eq(57) it The relative absorption K(w) may be defined by

is assumed that the initial state is always occupied and th&(w) =P, )/, Where|1=w2(A(10))2/(2,u0C) is the in-
final one is free. For finite temperatures, one has to take intgensity of the incident wave, propagating in vacuum as usual
account the thermal occupation of the energy bands. In thith experiments. Further, from E¢58) an absorption coeffi-
case the incident wave can also induce the transfiipio  cient may be defined by (w)="P,,{ ®)/(1,d), whered is

|f) (stimulated emission for which ;<0 is valid, and one the thickness of the sample. But in general this gives no
has  Pupd @) = 7orh @ ZZi{Wei(i)[ 1—Wei() Wi — w() definite physical quantity for layered systems.

[1—wg(i)] W5}, wherewg(i) is the probability that the sys-

tem is in the two-particle statg) and Wi;=W;; is valid. B. Dipole selection rules
Thus, we obtain the f0||0WII”lg for the' power. absorption of an | ot ys examine thelectric dipole selection rulesf a
ensemble ofuncoupled QR’s per unit area: system of independent rings in tkey plane; i.e., no tunnel-
2w ing and Coulomb coupling between the rings is assumed. For
Popd @)= TnQR(Ag)ZZ Z Wi Wel(i) —We(F)] this case, we identify the statéiy and|f) by those of the

QR, given in Egs.(24), (25), (27), (28), (36), (38), (40),
)2 o and (44): |i)=|P,K1,Ky)®|p,j)®|I)®|S,Mg)  and
X[(fle-dii)Fo(wri— o). 8 Ify=|P",Ki,Ky)®|p',j"Y®|I")®|S' ,Mg). Further, we as-
It is important to note that Eq58) with the two-electron  sume a perpendicular incident plane wasee the inset of
states of Sec. Il B is valid only for such a temperature rangéig. 1) propagating in vacuum along the negativexis with
as long as both the adiabatic and the harmonic approximatioie wave vectok=(0,0,—k). The dipole operator of the two
are valid. For higher temperatures the different motions beelectrons isd= — 2eRcos(y/2)(co®,sin®,0). In the follow-
come coupled due to the thermal transitiéhsThus, the ing we consider the dipole matrix elemefite- d|i) for dif-
range of adequacy of E¢58) is at low temperatures, where ferent polarizations of the incident monochromatic plane
the final states are practically free,(f)~0. Theoscillator ~ wave.
strengthof the electronic transitiofv’)—|v) is defined by
f,=02mg/h)w,, |(v|e- (X, +X2)|v')|?, which can be . .
written as the matrix element of the total momentum opera- In this case we havee=a,e'“g+aye'“v g, with
tor with (v]e-(p1+p)|v') =mew,, (v|e- (xi+x)|v').  aZ+ a§=1, from which it follows e-d=—2eRcos@/
The oscillator strength satisfies tfiesum ruleX, f,,,=1. 2)(axei“xcos®+ayé“vsin®). We obtain

1. Elliptically polarized light

(P',K1,Ky;p',j";3";8" Mgle-d|P,Kq,Kp:p,j ;‘];S!MS>:CeéP’,P5Ki,KléKé,Kz(ép’,p+1/2+ Sp'p-112)6j7 j+(2/+1)
X[a€' (83 341+ 830 3-1)

_iayeiay(53/,;|+1_53',J—1)]5S/,S5Mé,|v|s, (59

2]]| g 2/+1 g
— i _1\It/ I |2
Ce i(—1) eRﬂzj,j,!(z ex 2

/=0,£1,+2,... under the condition that’>0 and Lj/(g) is the associated Laguerre polynomial. Note the correlation
betweenp andJ discussed above. Thus, the dipole selection rules for elliptically polarized light are

where

2

3

2
2/+1

AP=0, AK;=0, AK,=0, Ap==1, Aj=2/+1, AJ=+1, AS=0, AMgc=0. (61)

Hence, the optical transitions are between the energy bands of the para state and between that of the ortho state.

2. Circularly polarized light

For circularly polarized light we hava,=a,, ay—ay=*m/2, and assume,=0: e=e. = (1/\/5)(exiiey), from where
it follows e-d= — \2eRcos(y/2)exp(+i®). We obtain

<P’,K1,Ké;p/'j/;\]’;S’,M,S|e-d| P,Kl,Kz;p,j ;‘J;S’MS>:CC5P’,P5K1,K15Ké,K2( ﬁpr’p+1/2+ 5p/'p_1/2)

X5]’,j+(2/+1)5J’,Ji155’,S5M’S,Msy (62)
where
2Jj! § 2/+1 f 2 2
— i J+/ > |2 2/+1 >
C.=—i(—-1) \/feR\/—zj,j,!(z) exp —| 7] |Li 5 (63)
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From Eq.(62), the dipole selection rules for circularly polarized light are the same as for elliptically polarized light given by
Eq. (61).

3. Linearly polarized light

For the incident wave linearly polarized in the direction (without loss of generality we have e=g, and
e-d= —2eRcos(y/2)co®. From this we obtain

<P’,Ki ,Ké ; p’ 5j ! ,J’ ;S/,M,S|e' d| P,Kl,Kz;p,j ,J,S,Ms>: C| 5P’,PaKi,KlaKé,Kz(ép’,p+1/2+ 5pr‘p_1/2)
X8y j+2/+1)( 8y 3+1F 63 3-1) 05, s0m . Mg (64)
whereC,=C,, which results in the dipole selection rules given by Ef).

C. Power absorption

Now we calculate the power absorption at low temperatures, assuming as an example the incident light to be circularly
polarized. The Bohr angular frequencies for a narrow-width QR are

1+2J+4q) 65
By (65)

f
0=, ;= (2/+1)Q+—z

In the case of low temperatures, i.e. kfT<7%( is valid, there are no oscillations excited. Then the initial stayeis
characterized by=0 andK;=K,=1, from where it follows that we have for an initial para stdte2m, andJ=2m+1 if

the initial state is an ortho state. To calculate the power absorption, we consider a canonical ensemble of QR’s, all charged by
two electrons at low temperatures. In this case the probability distribution functionsv gi@=exd —E;/(kgT)]}/Z and
we(f)~0, where the partition functio@(T,®) has the forrf®

26, +€%/(8megeR) +H0/2
Z(T,D)=exp — T Z(T,®) (66)
B
with
Zrot(Tiq)):gparaZrec\)}er{T D)+ Jortho ZrOtc(T D), (67)
where

- #2(2m+2®/ D)2 h? in? @ 2 o
rot = — - " 2 _c —#2/(meR2%kgT)
Zeted T9)= 20 ex‘{ ImRKaT | O mRkeT P10 Vsl i R T @, ° )

mMeR?
_h2_kB , (68)

* 2 2 2 2 L0
roto(-l— D)= 2 exd — Ac(2m+1+20/D() _ _ ﬁ— 3 9 L 2 B2 (ngRT)
m=—® 4meR2kBT meRZkBT ¢O 2 meRszT q)o y
mMeR?
pz kel (69

Thus, we have

rot( T q)) [g para+ gortho] \/_2_ kB \/_2_ kBT (70)

Herein, we have used the asymptotic representations obthenctions 9,(z,q) and 95(z,q),%* € ™, <kgT(<2Q). The
statistical weights of the para state and of the ortho statgarg=1 andgm.= 3, respectively. From Eqg58), (62), (66),
and(70) it follows for the power absorption
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47TeZRCU 77QR (A&O))2|CC|2 rot
_ -£& D)/ (kgT + \2 + —\2 -
Pavd @)= fi Zio T, ®) /=0T2,... J:O,t22,i4,. . Jparf 7 (@)(kg )[(‘0/3) dw—w,5)+ (0,5 0(0-0,,)]
+ o 5T KT (07 ))28(0— ) 3) + (05) 280~ 0,5)]. (72)
J=*+1+3,+5...

In Fig. 2 we have plotted the energy bands of the para stateal representation of the derivative of the energy bands with

and in Fig. 3 those of the ortho state, where each band of theespect toP and thus gives continuous characteristics of the

ortho state is threefold degeneratd =0,+1). The arrows band structure, the absorption spectra form discrete charac-
indicate the lowest optical transitions, which gedectrio  teristics of the same band structure according to the dipole-
dipole allowed:Aj=1 andAJ==+1. The absorption peaks allowed transitions.

arise as doublets with spacing depending on the magnetic

flux. If we ConSider, for example, the two lowest transitions IV. RAMAN SCATTERING

of Fig. 2, (0,0~(%x1,1), it becomes obvious that for _

®=0 one peak arises, which separates into two peaks for A. General formulation

®+#0. The spacing between the two peaks increasg® |if In this section we consider the inelastic light scattering on

increases. Whereas the higher-frequency peak arises fah ensemble of QR’s. The Raman scattering cross section
®>0 from the transition (0,0)>(1,1), it arises for®<0 jnyolves two terms to be treated by perturbation theory, the
from the transition (0,0)>(—1,1). For the ortho statéFig. A, .p term in the second order and tAg term in first order.

3) the lowest-frequency doublet, arising from the transitionsyhe gifferential cross sectiofor scattering of a photofcor-
(—1,0—(0,1) and (-2,1), shows a maximum separation responding to a plane wav&om the statew, ,k, ,e_ to the

for ®/®y=— 3 and occurs as one peak @ ®o=3. The  state ws,ks,es and the concomitant transition of the two-
opposite is valid for the doublet, which is connected with theelectron system from the stal) to the statdf) is given
transitions (1,0}»(0,1) and (2,1). It becomes obvious that py*6
the measured absorption spectrum allows one in dependence

on the magnetic flux threading the ring, to determine if the 2

L ! d 1/2
two-electron system is in a para or in an ortho_ state. Thus, ﬁ: SE‘”S;) w—SrSE 2 We|(i)|(f|/\/l(q)|i)|2
the study of the absorption spectrum of QR’s gives comple- “® eloy @
mentary results to the observation of the persistent current. X 8w — o) (72)
While the persistent current as a functiondafgives a physi- fi ’
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FIG. 3. The optical transitions within the energy bands
FIG. 2. The optical transitions within the energy bands E; ;(®,2) of the ortho state represented in dependence on the mag-
E; :(®,2) of the para state represented in dependence on the magetic flux® for a two-electron ring. The arrows indicate the lowest
netic flux ® for a two-electron ring. These bands are labeled byoptical transitions wittAJ=+*1 andAj=1. The same transitions
(J,j). The arrows indicate the lowest optical transitions with are induced byM(q) in the polarized Raman scattering and by
AJ==*1 andAj=1. The same transitions are induced by¥;(q) M(Za)(q) in the depolarized Raman scattering. Denotations and pa-
in the polarized Raman scattering. rameters are the same as in Fig. 1.
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wherew= w| — wg is the scattering frequencyg=k, —kg is
the scattering wave vector, amg=e?/(4memyc?) is the

4805

ing mechanism. Considering in this paper resonant Raman
scattering on QR'’s synthesized on GaAs;G@\l,As het-

classical electron radius. Assuming that the many-particleerostructures, we can use the results of Refs. 46 and 52:

stategi) and|f) are within the conduction band of the semi-
conductor, the scattering tensov1(q) is given by Eaq.
(12).4647 The explicit expression of the light scattering cross
section depends on the details of the electron energy band

structure of the host semiconductor as well as on the scattewhere

Yap=(6L-A-€8)Eap—i (8 XEE) B Lup,

é‘aﬁz<a|eiq'xallg>:gaﬁ<m0z|o-| mB>'

A=1|1+ 2P S + - + B,

B 3mg Egh—ﬁzwf E5|_ wf  E5—h%wl] |
R L I S L O
BT o = = e R e BT

+
2 2 2
Evh—ﬁ oT

7 ;7.7
EvlﬁwL

(73

(74)

(79

(76)

Herein,1 is the unit dyadic tensog, is the unit vector along and for the resonance between the split-off valence band and

the direction of the momentum, andP=(S|p,|X)
=(Slpy|Y)=(S|p,|Z) is the interband matrix element of the
momentum operator in the Kane modelwith |S) the
s-like wave function of the conduction band apd), |Y),
and |Z) are associated with the valence bands. The aniso-
tropic term in the right-hand side of E(76) is smalf® and is
neglected in the following. In Eq$75), and(76), Evh, Evl,

and Egg are the energy differences between the conduction
band and the heavy-hole, light-hole, and split-off valence
bands, respectively. The spin dependencat{fq) is due to
the spin-orbit coupling in the valence band. In the b{@b)

M(q)=

the conduction band it follows that

P2 1
3mo E0+ Ao_h(l)L
2

><21e‘q'Xu[eL~e§+i<eL><e§>-a,J. (78)

We will further consider as an example in more detail the
case of the resonance with the split-off valence band in the

semiconductor GaAs, the heavy- and light-hole valencdimit q-x,<1. This means that the following inequality for

bands are degenerate at fh@oint and thu€, =E, =Eis
valid. Further, the split-off gap iEgg=Eq+ Ag, WhereAg is

the wavelength of the net excitation
Nexcitation< 2R, IS assumed to be fulfiled. The case of the

in

the OR,

the spin-orbit splitting of the top valence-band states. It is’€Sonance with the degenerate valence andondegener-
important to note that for a semiconductor heterostructuréte if the valence band forms a quantum wsliqualitatively
according to the size quantization in the growth directionduite analogous. Then we write

(along thez axis), the energy gaps increase by the energy of
the lowest quantized levels in the quantum well. Without
loss of generality this additional energy is assumed to be
incorporated intdE, andEso if necessary. If in the valence
bands a quantum well is formed, this results in a lifting of the
degeneracy of the heavy- and light-hole valence bands at the
I' point.

We are interested imesonantinelastic light scattering.
Under the resonance condition between the degenerate va-
lence band {w, ~Eg), we find from Eqgs.(12), (14), and
(73) - (76)

Pz 1
3mg Eg— g
2
x;l 9% [20 e —i(q xek)-a,], (77)

M(q)=

with

where

M(q)=My(q) + M1(q)+My(q),

i
Mo(q)=Dgo 2e|_-e§+%(e,_><e’s‘)-s ,

Mi(q)=iDsde - €5)[q- (x1+X)],

2
/\4z(q>=iDso;1 (a-x,)[(e xe)-a,],

(79

(80)

(81)

(82
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p2 1 B. Polarized spectrum

DSO:3mO Eo+ Ao_hﬁ)L ' (83)
. . g-e5=1 and g Xe£=0 is valid. In this case we have
It is obvious that the operatof does not change the
peratobo(q) ge the 1 1(a)=2Dso, My(q)=0, and

orbital part of the wave function, but can change the spin:
The operatorM(q) is connected with the center-of-mass
motion of the electrons and can change the orbital quantum y

numbers only. On the other hand, the operatds(q) de- Mq(q)=i 2R DSOCO%(chosE)nqusin@). (84)
pends on the coordinates of the electrons and includes the

Pauli spin vector operator, and hence can change the orbital

as well as the spin quantum numbers simultaneously. From this we obtain

Let us discuss the polarized spectrum for which

(P',K1,Ky;p',j"; 3758 Mg My(q)|P,Ky,Kz;p,j ;J;SaMS>:CpoI5P’P5K1K15KéK2( Op pr12t Opr p—12) 6jr jr2/+1)

X[Ax(8yr 341+ 63r,0-1) —10y (83 511~ 83r,3-1) ] 05/ sOm Mg
(85
with

2 2
§) . (86)

L12/+l

2JJ| g 2/+1 g
RPN P / s _l=
Cpo=—(—=1)"""RDso Zj/j’!<2 ex 2

Thus, theselection ruledor polarized Raman scattering spectra are identical with those for the absorption light and give rise
to transitions between the energy bands of the para state and between the energy bands of the ortho state. The differential cros:
section reads

d?o e(wg) 1/2w3 5 |Cpo||2 s o ot
_ *s + —& "% D)/(kgT) w4 -
dwd( S(wL)) erOZrot(Taq))(qx % /=0§2... L—o,tz,ﬂ,... Jpar (oot dlwmwy)]
rot, _
+J:+1+3+5 Dot © ((D)/(kBT)[ﬁ(w—w;J)-F5(w—w/J)]]. (87)

As in the power absorption we have assumed that the initial state is characterikgd=l§,=0 andj=0.

C. Depolarized spectrum

In this case we have -€5=0 ande X ek =b#0. Then, it follows thatM,(q) =0, My(q)=(i/rh)Dgdb-S, and

2i % Y Y Y
Mz(q)zgRDso qxcos@coserqysm@smz b-S+ qyco@3|n§—qXS|n®5|n§ b-AS
=M (q)+ MF(q), (69

whereAS=(#/2)(o,— 05). Let us start to investigate the Raman scattering matrix element dw,€q). The only nonzero
matrix elements between the spin states are

i i i
(1,0SJ1,.0=(1,1S,/1.0= N (1,05,01,-1)=(1,-1/S1,0)= = (1,0S,|1.=—(1,1S,|1,0= %

S

if

(1,01~ 1)=—(1-1[§[1,0=~ 7z (LUS[1.)=~(1-1[S$[1-1)=4. (89

Thus, if b- S has nonvanishing andy components, Raman scattering induces electronic transitions with a spin flip of both
electrons, but keeping the total spin of both electrons fixed. The only process with honvanishing matrix elements is between
the energy bands of the ortho state with the selection rules:

AP=0, AK;=0, AK,=0, Ap=0, Aj=0, AJ=0, AS=0, AMg¢=0,+1. (90)

In an AB geometry these state are degenerate and hence no inelastic light scattering process is involved. But for the case
where the magnetic field is present in the ring, i.e., it penetrates the electron path, this degeneracy becomes lifted. For a
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narrow-width ring the eigenenergies of two interacting electrons, E$), are shifted by the Zeeman term:
Ejyijs(QD,Z)zEJ’J(CD,2)+g*,uBBMS. Assuming, e.g.b-S=S,, the differential scattering cross section reads

:<8(ws)

d?c
dwdQ

112 2
ws , Dso

_ oot
e Er kel X S(w—wugo)

— o
e(w)] oL °2ZY(T,®)1=+15F+s5,... Mg =+1

Mo

+e—[£5°t(<b)+g*;LBB]/(kBT) E Sw—wy_ )+e—[sgm(cb)—g*MBB]/(kBT) Sw—oy_m)
Mg/ =0,-1 sUs Mg/ =0,+1 sTUS
91
WherewMS, MS: 29* MBB(M s/ — M S)/ﬁ .
We consider now the inelastic light scattering processes inducetthig). It becomes obvious that1,(q) induces the
same transitions within the spin space/eg(q), but now associated by transitions in the orbital Hilbert space. Assuming, for
example, agaifb- S=S,, the Raman scattering matrix element is easily calculated to be

(P",K{,Kp;p",j"53":S MYMP()|P,Ky,Ka:p,i §~];SaMs>:Céeé)poﬁp',Pszi,KﬁKé,Kz( Opr p+ 1121 Opr p—112)Ojr jr(2/+1)

X[Ax( 8y 341+ 8y 3-1) —1Qy(Syr 341— 6y 3-1)]

X 8s5(Ouy mgt Omy mg=1)s (92
with
RD 2JJ| g 2/+1 g 2 é: 2
(@ — _(_qy+r 2SO [ 21" |5 _|= 2/+1 S
Cdepol_ (=1 \/E 2j,j/!(2) ex 4 L] 8) . (93
This gives the selection rules
AP=0, AK;=0, AK,=0, Ap=+3%, Aj=2/+1, AJ=+1, AS=0, AMg=0,*+1, (94

i.e., results in transitions within the energy bands of the ortho étatho-ortho transitions This is true because the matrix
elements ofS between para states vanish. The scattering teM;§’?(q) gives rise to the differential scattering cross section

d?c
dwd()

1/2 (a) |2
ws , |Cdep0| 2 2 7£rot((p)/(k m + _
— IS — — + e “J B[ S(w—wy)+(w—w s
o oz Ty ) 2 2 [8(w— o)+ 8(w—op)]}

_ ( e(wg)
M(Za) 8(wL)

(99)

wherew; is given by Eq.(65). Equation(95) is valid for an Aharonov-Bohm geometry. The calculation for the case of a

magnetic field penetrating the electron paths in the ring is straightforward. The electronic transitions induldéfa bye the
same as depicted in Fig. 3.

To calculate the matrix elements M(zb) we find the only nonvanishing matrix elementsA$ to be
(0.0AS/LH=(11A8[0.0= =, (00ASIL1)=(1,-1|AS|00=
1 1 1 L \/E! 1 1 1 L \/El

if if
(0,0AS,/1.1)=—(1,1AS,/0,0=— Iﬁ (0,0AS,|1,—1)=—(1,—1|AS,|0,0 = _Iﬁ' (0,0AS,|1,0=(1,0AS,/0,0=4.
(96)

Then, we obtain assuming as an exampld S=AS; :
(P, K{,K5;p',j"53":8 MYMP(a)|P.Ky,Kasp, ] ;‘];SiMS>:Cgii)poﬁP’,P5Ki,K15Ké,K2(5p’,p+1/2+ Sprp-12) 61 j+(2/+1)

X[1Ax(837,341= 837 3-1) T Ay( Sy 3111 6y 5-1)]

X s s:1(0m; Mg~ OML Mg 1) 97)

i /
cb __(_1)J+/% 2 (6)° +1ex (&)
el 2 N2z Z

with

2
L¥ (ﬁ) : (98)
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This gives the selection rules
AP=0, AK;=0, AK,=0, Ap==*3, Aj=2/, AJ==1, AS==*1, AMg=0,+1. (99

Hence, the last process provides spin-flip transitions between the energy bands of the para and ortho state and vice versa
(para-ortho transitions The differential scattering cross section reads

d’o _[&(wg) mw_srz%( 2,93 e—£5°t(<1>)/(kBT)[5(w_a+ )+ S(w—37)]
d(l)dQ M(b) 8((1)|_) . Ozggcﬁ-l—,q)) qX qy 52| 1205 %a gpara 7/ /J
2
+ Gortho e55°‘<‘D>’<kBT>[5<w—m?J>+a(w—am)]], (100
J=+*1+3,%5,...
|
where —(kL+kScosp ez and for aconventional backscattering ge-
® ometry (y=0°): q=-—(k_tkg)e,. Further, a tilted
—~t 5 right-angle geometry (y+¢=90°) gives q=(k sine
=2/Q0+ +2J+4—|. . ;
/=270 4meR2(l 2) 4cI>0) (103 —kscosp) e,— (k_cosp+kgsing) e, and for theconventional

. i . right-angle geometry(¢=0°): q=—Kkg e,—k &, is valid.

The first term describes the transition from the energyrhen it follows for thepolarized spectra(i) if a=¢g we
bands of the para state to those of the ortho state and thg,ye es=e, or (i) if g=cospe+singe, we have
second term describes the opposite transitions. In Fig. 4 WE.= —cosy e, +sinye,; and for thedepolarized spectra(i)
have plotted the lowest transitions between the energy bangg e.=e, we have es=—cosye-+sinye, or (i) if
of para and ortho and ortho and para states. The total sc [ = cosp e+ sing e, we havees=¢, .
tering cross section for depolarized Raman scattering is just' | gt s give the Raman scattering matrix element
the sum of Eqs(95) and(100. _ (flM(q)[i) for the two conventional geometried) back-

If ¢ is the ray angle measured from tlzeaxis of the scattering geometryk, = (0,0,—k,), andks=(0,0ks), and
incident wave and that of the scattered wave, the scatteringj) right-angle geometryk, = (0,0,—k,) andks=(ks,0,0).
wave vector is given by In both cases, we considpolarized(e | es) anddepolarized

q=(k,sing— kssiny)e,— (k_cosp—kecosy)e,, (102 (@1 €) Raman scattering.

wherek, =k | andks=|kg. This gives for atilted back-

scattering geometry (y=-—¢): q=(k_+kg)sine e, D. Backscattering geometry
1. Polarized spectrum

28.525 o - v In this case, which has the usual notatipfy,y)z, we
haveg =g, andes=¢,, i.e, g -e5=1,¢ Xe5=0, andq
=—(k_+kge,, from where it follows that Mgy(q)
=2Dgo. Hence, My(q) gives no inelastic scattering pro-
cess. Further, we hava1,(q)=(i/e)Dgso(k. *+ks)e,-d=0
becaused=(d,,d,,0), andalso M,(q)=0.

28.520

;; 2. Depolarized spectrum
g 28.515f _ , -
\E'/ In this case the scattering notation 4éx,y)z, and we
M havee =g, andes=—¢g,, i.e., g -€5=0, g X€5=¢, and
, g=—(k_+kg)e,. Thus, it follows that My(Qq)
28.510F =(2ilA)DgoS,, whereS,=(#/2)(0 1+ 05) is thez com-
ponent of the total spin operator. Because of the relation
S,|S,Mg)=%MgS,Myg), the operatorM(q) does not result
in an inelastic light scattering process. Further, it is obvious
28.505 - . - that in this caseM(g) =0 andM,(qg)=0 is valid.
-0.5 -0.25 0 0.25 0.5
/P )
E. Right-angle geometry
FIG. 4. The lowest Raman scattering transitions of the depolar- 1. Polarized spectrum

ized spectrum induced by\{?(q) between the energy bands _ o
E; ;(®,2) of the para statéheavy solid linesand that of the ortho For the right-angle geometry, i.ex(y,y)z, we have

state(thin solid lineg represented in dependence on the magneti®. =€, and es=e,, i.e., e-es=1, xe5=0, and q
flux ® for a two-electron ring. Denotations and parameters are the= —kse,— k. e,. Then it follows that Mgy(q)
same as in Fig. 1. =2Dgo, M;(q) of Eq. (84) with g,=—ks andq,=0, and
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M,(g)=0. Note that for the considered case the scatterindng experiment, the scattering processes are accompanied by

matrix element is quite similar to that considered above irthe same selection rules if the polarized spectrum is mea-

Sec. IV B with the only distinction being that instead af sured. In the depolarized inelastic light scattering process

#0 we haveq,#0. From this, we obtain the Raman scatter-two types of transitions contributéi) between the energy

ing matrix element of Eq(85) and the scattering cross sec- bands of the ortho statortho-ortho transitions with

tion of Eq. (87). AJ==1, Aj=*x1,+3,%5,..., andAMg=0,=1 and (ii)
between the energy bands of the para and ortho §aia-

2. Depolarized spectrum ortho transitions and vice versa with AJ==*1,
Aj=0,£2,+4,...,AS=*1, andAMg=0,=1. The peaks
arise as doublets according to the transitions wifh=1 and
—1. The spacing between these two peaks depends on the
magnetic flux.

Absorption and Raman scattering on the one hand, and
persistent currents on the other hand, are manifestations of
the same band structure of QR’s. The persistent current as a
function of ® gives a physical representation of the deriva-
tive of the energy bands with respectdoand is a continu-
ous characteristic of the band structure. As distinct from that,
the absorption and the Raman scattering select only some

We have shown that an ensemble of QR’s in the presendeints in the® scale, at which the transitions are allowed

of an Aharonov-Bohm flux with two interacting electrons in &ccording to the selection rules discussed in this paper and
each ring having the energy spectrum hence form discrete characteristics of the same band struc-

ture. Thus, they are complementary to each other.

In this scattering geometry, whergz,y)z, is valid we
havee =g, andes=e,, i.e., g -€5=0, e Xe5=—¢, and
g=-—kse—ke, we derive My(q)=—(2i/A)DgcS,,
which gives no inelastic scattering procedd,(q)=0 and
M,(q) of Eq. (88) with g,=—ks andg,=0. The Raman
scattering matrix element is given by E¢82) and(97) and
the differential scattering cross section by E@85 and
(100.

V. CONCLUSION

2
e
EKl,KZ,j,J(CD):(C:Kl"' 5K2+ — +(c/‘ osc

8mege R !
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