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Two interacting electrons confined in a quantum ring form a Wigner molecule due to the interplay between
the Coulomb repulsion and the radial confinement. The states with fixed total spin show a strong correlation
between the quantum numbers of the relative angular vibrations and the rotation of the two electrons. On the
basis of the energy band structure, which results in the occurrence of a persistent current in the ring, the optical
absorption and the differential cross section of resonant inelastic light scattering is calculated. The selection
rules are derived and discussed in dependence on the polarization of the incident light.
@S0163-1829~96!07531-5#

I. INTRODUCTION

In recent years there has been great progress in the ability
to confine electrons in semiconductor nanostructures. Mod-
ern epitaxial techniques, coupled with advances in lithogra-
phy, have made possible the fabrication of a wide variety of
structures in which carriers can be quantum-mechanically
confined. Various techniques of surface preparation have
been developed, in order to imposelateral constrictions on
the quasi-two-dimensional electron gas. The ultimate limits
are quantum dots1–5 ~QD’s! and quantum rings~QR’s!,6–8

where the electrons are confined in all three dimensions.
QD’s and QR’s can be regarded as artificial atoms. The ex-
perimental conditions allow one to tune the number of elec-
trons up to the limit of single electron charging of QD’s.9

The resulting few-electron problems have been studied theo-
retically for QD’s~Refs. 10–18! and QR’s.19–22The work on
QR’s has been heated in recent times because in the presence
of a magnetic fluxpersistent currentswere measured in an
ensemble of about 107 copper rings,23 in a single gold ring,24

and in a single GaAs ring.8 The theoretical explanation of
these experiments has addressed two basic questions:~i! the
choice of the statistical ensemble25–30and~ii ! the role of the
electron-electron interaction.31–43

Besides the many-particle combined impurity and Cou-
lomb perturbation theory,31,34hopping models,33–37theory of
coherent propagation of interacting particles in a random
potential38 and Luttinger liquid theory,32,39 it has been
shown,21,22,40–43 that in the ballistic regime a rigorous
quantum-mechanical theory of few strongly interacting elec-
trons in QR’s can be developed. It results in the picture of a
rotating Wigner molecule; i.e., the interplay of the Coulomb
repulsion between the electrons and the confining potential
forms a relatively rigid rotator with internal azimuthal exci-
tations and confined radial motions. On the basis of this
theory the electronic states, thermodynamical properties, and
persistent currents were calculated. It was shown that the
finite width of the ring plays an important role for the influ-
ence of the electron-electron interaction.

In this paper we apply this theory to calculate the optical
absorption and resonant inelastic light scattering of a statis-

tical ensemble of finite-width QR’s with two interacting
electrons with spin in the presence of an Aharonov-Bohm
magnetic flux, i.e., in the presence of a persistent current.

II. THE MODEL

A. General

The model that we use to describeoptical absorptionis as
follows. We consider two electrons (m51,2) with the effec-
tive conduction-band-edge massme in the planez50, con-
fined in a QR by the potentialVC(xm) in thex-y plane. This
potential is taken as zero in the region
R2W/2,rm,R1W/2 and infinite otherwise. It is assumed
that astaticmagnetic fieldB05(0,0,B0), which is restricted
to the area of a circle with radiusRAB,R2W/2, threads the
hole of the ring with the magnetic fluxF5B0pRAB

2

@Aharonov-Bohm~AB! geometry#. This system is considered
in the presence of an external electromagnetic field, de-
scribed by the vector potentialA1(x,t) and the scalar poten-
tial f1(x,t), which are related to the time-dependent electric
field E1(x,t)52“f1(x,t)2(]/]t)A1(x,t) and the time-
dependent magnetic fieldB1(x,t)5“3A1(x,t). The result-
ing Hamiltonian is given by

H5 (
m51

2 H 1

2me
@pm1eA0~xm!1eA1~xm ,t !#

2

1VC~xm!1
g*

2
mBB0~xm!•sm1

g*

2
mBB1~xm ,t !•sm

2ef1~xm ,t !J 1
e2

4p«0«sux12x2u
, ~1!

where xm5(xm ,ym ,zm) is the position vector and
pm52 i\“xm

is the momentum operator of themth electron

with charge2e, mB5e\/(2m0) denotes Bohr’s magneton
with m0 the free-electron mass,g* is the effective spin-
splitting factor, andsm5(sxm ,sym ,szm) stands for the
Pauli spin vector operator, where the components ofsm are
the Pauli matrices. Further,«0 is the permittivity in vacuum
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and «s is the static dielectric constant of the host semicon-
ductor. We use the static dielectric constant because the fre-
quency of the incident far-infrared~FIR! light is assumed to
be low in comparison to the phonon frequencies of the host
semiconductor. In Eq.~1! the interparticle Coulombinterac-
tion potentialVee

s (x1 ,x2) is described by thedirect part and
the image part is neglected for simplicity. Further, in the
Hamiltonian given in Eq.~1!, we ignore the small relativistic
effect of the spin-orbit coupling. According to the possible
gauge transformation of the vector potential
A(x,t)→A8(x,t)5A(x,t)1“L(x,t) and of the scalar po-
tential f(x,t)→f8(x,t)5f(x,t)2(]/]t)L(x,t), where
L(x,t) is a scalar function, we use different gauges for the
static and dynamic potentials. For the static vector potential
A0(x), with B0(x)5“3A0(x), we use the Coulomb gauge
divA0(x)50 in the form of the symmetric~or circular!

gaugeA0(x)5
1
2 B03x. For the vector potential of the elec-

tromagnetic field we use the Coulomb gauge
divA1(x,t)50 and the gaugef1(x,t)50. We introduce po-
lar coordinates in thex-y plane:xim5(rm ,wm), relative an-
gular coordinate g5w12w2 and angular coordinate
Q5(w11w2)/2, describing the motion of the two-electron
system as a whole. In this case the static vector potential has
only aw componentA0w(rm)5B0RAB

2 /(2rm)5F/(2prm) if
rm.RAB and A0w(rm)5B0rm/2 if rm<RAB . Treating
A1(x,t) as a perturbation, the Hamiltonian of Eq.~1! has the
form

H5H01H int , ~2!

with the unperturbed~equilibrium! Hamiltonian

H05 (
m51

2 H F2
\2

2me
S ]2

]rm
2 1

1

rm

]

]rm
D 1VC~rm!G J 2

\2

2me
H S 1r 12 1

1

r 2
2D F ]2

]g2 1
1

4 S ]

]Q
22i

F

F0
D 2G

1S 1r 12 2
1

r 2
2D ]

]g S ]

]Q
22i

F

F0
D J 1

e2

4p«0«sAr 121r 2
222r 1r 2cosg

, ~3!

whereF05h/e is the flux quantum. The Hamiltonian that
represents the interaction of the incident light with the elec-
trons in the ring, the perturbation, consists of three parts,

H int5H11H21H3 , ~4!

whereH1 is that of the first-order perturbation

H15
e

2me
(
m51

2

@pm•A1~xm ,t !1A1~xm ,t !•pm#. ~5!

With @pm ,A1(xm ,t)#52 i\“xm
•A1(xm ,t), Eq. ~5! takes the

form

H15
e

me
(
m51

2

A1~xm ,t !•pm . ~6!

The second part ofH int ,

H25
g*

2
mB(

m51

2

B1~xm ,t !•sm ~7!

represents the interaction of the spin magnetic moment of the
electrons with the oscillating magnetic field of the wave, and
H3 is the second-order perturbation

H35
e2

2me
(
m51

2

A1
2~xm ,t !. ~8!

To describe theRaman scatteringby the two interacting
electrons in the QR we assume a two-step scattering
mechanism:44 in the first step, an electron is optically excited
from the valence band to a virtual state associated with con-
fined states of the ring potential in the conduction band

above the Fermi surface and, in the second step, an electron
in the conduction band below the Fermi surface, with either
the same or the opposite spin as that of the ‘‘excited’’ elec-
tron recombines with the remaining hole in the valence band.
The net effect of the two interband transitions is to generate
either a spin-flip or a non-spin-flip excitation within the two-
electron system of the ring. The excitation of spin-flip pro-
cesses in inelastic light scattering is made possible by the
substantial spin-orbit coupling in the valence-band states of
III-V compound semiconductors45 such as GaAs. Thus, to
calculate the Raman scattering the starting point has to be
before the effective-mass approximation with the unper-
turbed Hamiltonian

H05 (
m51

2

H0
~m!1

e2

4p«0«sux12x2u
, ~9!

where

H0
~m!5

1

2m0
@pm1eA0~xm!#21V~xm!

1
\

4m0c
2 @sm3“V~xm!#•@pm1eA0~xm!#

1
g

2
mBB0~xm!•sm ~10!

is the Hamiltonian of themth mobile electron in the semi-
conductor. Preserving complete generality,H0

(m) includes in
V(xm) the periodic crystal potential as well as the lateral
confining potential and further,H0

(m) includes the spin-orbit
coupling. In Eq.~10!, g is the free-electrong factor. Treating
the A1•p term of the perturbation in second order and the
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A1
2 term in first order, it was shown46,47 that the Raman scat-

tering can be described by the Hamiltonian of Eq.~2!, where
H0 is the same as that of Eq.~3! but with the effective
interaction Hamiltonian

H int5
e2

2me
M~q!A~vL!A~vS!, ~11!

where

M~q!5(
a,b

gab ca
†cb , ~12!

with

gab5~eL•eS* !jab1
1

m0
( 8
b8

F ^aueS* •~p1eA0!e
2 ikS•xub8&^b8ueL•~p1eA0!e

ikL•xub&
Eb2Eb81\vL

1
^aueL•~p1eA0!e

ikL•xub8&^b8ueS* •~p1eA0!e
2 ikS•xub&

Eb2Eb82\vL
G , ~13!

jab5^aueiq•xub& ~14!

and

A~vL,S!5S \

2V«0«~vL,S!vL,S
D 1/2 ~15!

are the amplitudes of the vector potential of the incident
wave of frequencyvL and of the scattered wave of fre-
quency vS . Further, p5p1(\/4m0c

2)@s3“V(x)#, q
5kL2kS , V is the scattering volume, and«(vL,S) is the
dielectric function at the respective frequency of the medium
embedding the ring. In these equations, the statesua& are the
single-particle eigenstates:H0

(m)ua&5Eaua& of the semicon-
ductor ~Bloch states!, where the symbola labels the band
index n, orbital and spin quantum numbers, andca

† andca

are the single-particle creation and destruction operators. The
HamiltonianH int of Eq. ~11! is responsible for the scattering
of light due toua&→ub& electronic transitions andub8& are
intermediate states. In order to investigate the inelastic light
scattering, it becomes necessary to invoke a suitable model
of the band structure formation. With this scope we will use
below, in Sec. IV, ak•p method and the Kane two-band
model adequate for the quantum rings on GaAs. The restric-
tions imposed on the sum over the intermediate states(b8

8
depend on the type of scattering process; thus, for resonant
scattering, when both the initialua& and the final stateub&
belong to the conduction band, the sum is extended to the
valence-band states that are connected to the conduction-
band states by the optical transitions associated with the in-
cident and scattered photons.

B. Ground state

In this section we consider the eigenvalue problem of
H0; in all the other sections we discuss the perturbations
H int . It is obvious that thez component of the angular mo-
mentum operator of the two electrons,Lz52 i\]/]Q, is a
constant of motion, i.e.,@Lz ,H0#50 is valid, from which the
rotational invariance of the problem follows. The corre-
sponding wave functionC(x1 ,s1 ;x2 ,s2) depends on the

spatial coordinates$xm% and the spin coordinates$sm%. This
two-electron wave function must satisfy the following con-
ditions: ~i! antisymmetry condition:

P12C~x1 ,s1 ;x2 ,s2!52C~x1 ,s1 ;x2 ,s2!; ~16!

~ii ! single-valuedness boundary conditions~SVBC’s!:

C~r 1 ,r 2 ;w112p,w212p;z1 ,z2!

5C~r 1 ,r 2 ;w1 ,w212p;z1 ,z2!

5C~r 1 ,r 2 ;w112p,w2 ;z1 ,z2!

5C~r 1 ,r 2 ;w1 ,w2 ;z1 ,z2!, ~17!

whereP12 is the permutation operator. Because the Hamil-
tonian of Eq. ~3! does not depend on the spin oper-
ator, the wave function separates:C(x1 ,s1 ;x2 ,s2)
5C(x1 ,x2)x(s1 ,s2) in the orbital partC(x1 ,x2) and the
spin partx(s1 ,s2). In dependence on the symmetry of the
spin function under particle permutation, we have
P12C(x1 ,x2)5hC(x2 ,x1), whereh561 is the parity of
the orbital wave function. In a pure AB geometry the spin
direction is arbitrary. But in practice, at least an infinitesimal
magnetic field penetrates the electron orbits to stabilize the
z direction for the spin quantization. Thus, in dependence on

the two possible spin quantum numbersmsm56 1
2 of both

electrons, we have the following

~i! para state: ms152ms2[ms(5
1
2 or 2 1

2 ) and
h51,

Cpara~x1 ,x2!5
1

A2
@C~x1 ,x2!1C~x2 ,x1!#, ~18!

and

xpara~s1 ,s2!5
1

A2
@xms ,2ms

~s1 ,s2!2x2ms ,ms
~s1 ,s2!#,

~19!
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which is an eigenstate of both thez componentSz and the
squareS2 of the total spin operatorS5(\/2)(s11s2), be-
longing to the eigenvaluesSz5\MS with MS50 and
S(S11)50: singlet stateuS50,MS50&; and

~ii ! ortho state: ms152ms2[ms(5
1
2 or 2 1

2 ) and
h521,

Cortho~x1 ,x2!5
1

A2
@C~x1 ,x2!2C~x2 ,x1!# ~20!

and

xortho~s1 ,s2!55
xms ,ms

~s1 ,s2!

x2ms ,2ms
~s1 ,s2!

1

A2
@xms ,2ms

~s1 ,s2!1x2ms ,ms
~s1 ,s2!#,

~21!

which is an eigenstate ofS2 with S(S11)52 and ofSz with
MS511, MS521 and MS50: triplet state
uS51,MS50,61&. In the following calculation we consider
only the orbital partC(x1 ,x2), which is a scalar, but include
the spin of the two electrons via the Pauli principle.

Removing the magnetic flux from the HamiltonianH0 by
a gauge transformation withL(xm)52B0R AB

2 wm/2 for
rm.RAB , where“xm

2 L(xm)50 andC(x1 ,x2)→exp@2(ie/

\)(m51
2 L(xm)]C(x1 ,x2), the SVBC’s change totwisted

boundary conditions~TBC’s!:

C~r 1 ,r 2 ;g12p,Q1p;z1 ,z2!

5expS i2p
F

F0
DC~r 1 ,r 2 ;g,Q;z1 ,z2! ~22!

and

C~r 1 ,r 2 ;g,Q12p;z1 ,z2!

5expS i4p
F

F0
DC~r 1 ,r 2 ;g,Q;z1 ,z2!. ~23!

The only effect of the static vector potential, which is now
absent in the Hamiltonian of Eq.~3!, is to enter the TBC’s.

For narrow-width rings, i.e., ifW!R, the radial motion is
much faster than the angular motions. Thus, the radial mo-
tion is adiabatically decoupled from the angular motions
with the result40

C~r 1 ,r 2 ;g,Q;z1 ,z2!5 (
P,K1 ,K2

JK1 ,K2
P ~r 1 ,r 2 ;g,Q!

3cP,K1 ,K2
~g,Q! w~z1 ,z2!,

~24!

uw~z1 ,z2!u25d~z1!d~z2! ~25!

for the orbital part of thetwo-electron wave function. Sub-
stituting Eq.~24! into the Schro¨dinger equationH0C5EC
with the unperturbed Hamiltonian we obtain, according to
the adiabatic approximation and under the condition that the
confinement energy of the lateral potential is much larger
than the typical Coulomb energy, a decoupling of the radial
motions of both electrons:

(
m51

2

H rad~rm! JK1 ,K2
P ~r 1 ,r 2!5E K1K2

rad JK1 ,K2
P ~r 1 ,r 2!,

~26!

where H rad(rm) is the radial part ofH0 and E K1K2
rad

5EK11EK2. Herein, we have definedJK1 ,K2
P (r 1 ,r 2)

[JK1 ,K2
P (r 1 ,r 2 ;g,Q), where the slow variablesg and Q

are fixed. The radial wave function follows in the form

JK1 ,K2
P ~r 1 ,r 2!5H xK1

~r 1!xK2
~r 2! if K15K2 and P50

1

A2
@xK1

~r 1!xK2
~r 2!1~21!PxK2

~r 1!xK1
~r 2!# if K1ÞK2 and P51,2.

~27!

The quantityhP5(21)P is the parity of the two-electron radial wave function:JK1 ,K2
P (r 2 ,r 1)5hPJK1 ,K2

P (r 1 ,r 2) and

xKm
(rm) are the eigenstates of the single-particle Schro¨dinger equation of a rectangular quantum well with infinitely high

barriers. For the strong radial confinement we can use the wave functions

xKm
~rm!5A 2

RW
sinH pKm

W F rm2SR2
W

2 D G J , ~28!

normalized by the relation

E
R2W/2

R1W/2

drm rm xKm
* ~rm!xK

m8
~rm!5dKm ,K

m8
, ~29!

with the associated eigenenergies

EKm
5

\2p2Km
2

2meW
2 , Km51,2, . . . ; m51,2. ~30!
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In the next step, we multiply both parts of the Schro¨dinger equationH0C5EC by JK1 ,K2
P (r 1 ,r 2), integrate it overr 1 and

r 2 and use Eq.~26!. This gives

(
P8,K18 ,K28

H 2
\2

2meF K S 1

r 1
2 1

1

r 1
2D L

P8,K18 ,K28 ;P,K1 ,K2

S ]2

]g2 1
1

4

]2

]Q2D 1K S 1

r 1
2 2

1

r 1
2D L

P8,K18 ,K28 ;P,K1 ,K2

]

]g

]

]QG
1K e2

4p«0«sAr 121r 2
222r 1r 2cosg L

P8,K18 ,K28 ;P,K1 ,K2

1@E K1K2
rad 2E#dP8,PdK

18 ,K1
dK

28 ,K2J cP8,K18 ,K28
~g,Q!50, ~31!

where^ &P8,K18 ,K28 ;P,K1 ,K2
denotes the matrix element on the radial wave functions

^F~r 1 ,r 2!&P8,K18 ,K28 ;P,K1 ,K2
5E

R2W/2

R1W/2

dr1 r 1E
R2W/2

R1W/2

dr2 r 2F~r 1 ,r 2!JK1 ,K2
P ~r 1 ,r 2!JK

18 ,K28
P8 ~r 1 ,r 2!. ~32!

If the relative angular motion is much faster than the rotation of the two-electron system, these two motions can be
decoupled by asecond adiabatic approximation. This approximation, whose adequacy is formulated solely as a relation
between the typical energies related to the two angular motions:\2/(4meR

3)!\V, allows one to neglect the terms with
]/]g]/]Q in Eq. ~31! in comparison to the other ones, i.e., to separate the variablesg andQ. This leads to an important
consequence: namely, the sets of equations~31! describing the states of the radial motion, possessing the opposite symmetry
with respect to a permutation, occur decoupled.

As long as the above-stated criterion of the first adiabatic approximation is satisfied, the states of the radial motion are
separated by the energy intervals of the order of the ground-state energyE 1,1

rad5\2p2/(meW
2). As a consequence, we can

restrict the consideration to the matrix elements withK185K1 , K285K2, describing transitions without changing the energy
EK1
rad,K2 of the radial motion. This restriction, in view of the above consequence of the second adiabatic approximation, implies

alsoP85P. It is a fairly good approximation to restrict this average to the ground state of the radial motion, which has the
quantum numbersP85P50, K185K151, K285K251:

H 2
\2

me
K 1r 2 L S ]2

]g2 1
1

4

]2

]Q2D 1K e2

4p«0«sAr 121r 2
222r 1r 2cosg

L 12E12EJ c0,1,1~g,Q!50, ~33!

where

K 1r 2 L 5E
R2W/2

R1W/2

dr r
x1
2~r !

r 2
'

1

R2 , ~34!

K e2

4p«0«sAr 121r 2
222r 1r 2cosg

L 5
e2

4p«0«s
E
R2W/2

R1W/2

dr1 r 1E
R2W/2

R1W/2

dr2 r 2
x1
2~r 1!x1

2~r 1!

Ar 121r 2
222r 1r 2cosg

'
e2

4p«0«sRA2~12cosg!
.

~35!

As long as in the framework of the second adiabatic ap-
proximation the relative angular motion is separated from the
angular motion of the two-electron system in the QR as a
whole, we have

cP,K1 ,K2
~g,Q!5(

p
(
j50

`

F j
p~g!QnY

~Q!, ~36!

where the wave function of the relative angular~ra! motion is
a solution of the equation

H 2
\2

R2me

]2

]g2 1
e2

4p«0«sRA2~12cosg!
2E j

ra,pJ F j
p~g!

50. ~37!

In Eq. ~36! Y stands for$P,K1 ,K2 ,p, j %. The characteristic
index p describes the possible symmetry types of the solu-
tions F j

p(g) of the differential equation~37!. Namely, in
view of the 2p periodicity of the mean Coulomb potential as
a function ofg, the wave function of the relative angular
motion has the form F j

p(g)5exp(ipg)uj
p(g), where

uj
p(g12p)5uj

p(g) and2 1
2,p< 1

2 .
If the typical Coulomb energy between the two electrons

E Coul5e2/(8p«0«sR) is much larger than the oscillation en-
ergy E j

osc5E j
ra,p2ECoul, the relative angular motion can be

considered in the tight-binding-like approximation:

F j
p~g!5 (

Q52`

`

exp~ ipgQ!f j~g2gQ!, ~38!
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wheref j (g2gQ) is the wave function of a single well with
a minimum atg5gQ5(2Q11)p, Q50,61,62, . . . . To
evaluate the relative angular motion explicitly, we expand
the mean Coulomb potential in a power series of the devia-
tions (g2gQ) from the quasiequilibrium valuesgQ ,

e2

4p«0«sRA2~12cosg!
'

e2

8p«0«sR
1 (

Q52`

`
meV

2R2

4

3~g2gQ!2Q~p2ug2gQu!,

~39!

whereV2[e2/(16p«0«smeR
3) andQ(x) is the Heaviside

unit step function@Q(x)51 for x.1 and Q(x)50 for
x,0#. The harmonic approximation in Eq.~39! is valid if the
typical excursions of the two electrons from their equilib-
rium angular positions are small compared with the inter-
electronic spacing (2R, which corresponds tog5p). The
Schrödinger equation of the relative angular motion of a
single quantum well with minimum atgQ becomes the wave
equation of a shifted harmonic oscillator with eigenfunctions
and eigenenergies

f j~g2gQ!5Cj expF2
1

2 S g2gQ

j D 2GHj S g2gQ

j D ,
~40!

E j
osc5\VS j1 1

2D , j50,1,2,. . . , ~41!

respectively.
In Eq. ~40!, j[A2\/(meV)/R is the typical width of the

wave function andHj (x) is Hermite’s polynomial. Within
the accuracy of the tight-binding and the harmonic approxi-

mations, the wave function can be normalized on the interval
2`,g,` with the resultCj51/A2 j j !p1/2j. The tunneling
through the barrier of the Coulomb potential from well to
well would lead to an explicit dependence of the energy lev-
elsE j

ra,p on the characteristic indexp and thus, would result
in energy minibands. As shown in Ref. 22, the widthDE j

ra of
the minibandE j

ra,p is very small in comparison to the energy
spacingE j

ra2E j21
ra Hence, the tunneling and the resulting

hybridization of the energy levels can be neglected and thus
the eigenenergies are independent of the characteristic index
p.

The solution of the Schro¨dinger equation for the free ro-
tation of the two-electron system as a whole,

S d2

dQ2 1nY
2 DQnY

~Q!50, ~42!

characterized by a rotational momentum

nY5nY~E!

5H 4meR
2

\2 FE2EK12EK22
e2

8p«0«sR
2E j

oscG J 1/2,
~43!

is

QnY
~Q!5

1

A2p
exp~ inYQ!. ~44!

The curvesnY(E) define thechannels,40–43,48,49for the an-
gular motion of the two-electron system as a whole. Note
that the wave functions are orthonormalized according to

E
R2W/2

R1W/2

dr1 r 1xK1
* ~r 1!xK

18
~r 1!E

R2W/2

R1W/2

dr2 r 2 xK2
* ~r 2!xK2

~r 2!E
0

2p

dQE
D
dg CP,K1 ,K2

* ~g,Q!CP8,K18 ,K28
~g,Q!

5dK1 ,K18dK2 ,K28dP,P8, ~45!

where

D5H 22Q<g<2Q if 0<Q,p

22p<g<2p if Q5p

2Q24p<g<4p22Q if p,Q<2p.

~46!

The symmetry of the two-electron wave function results
in a strong correlation between the vibrational quantum num-

ber and that of the rotation. It is shown in Ref. 22 that
(nY22F/F0)5J with J50,61,62, . . . is valid and that
for J52m one obtainsh5(21)P1 j and for J52m11 it
follows that h52(21)P1 j , where m50,61,62, . . . .
Thus, the parity of the orbital part of the two-electron wave
function ish5(21)P1 j1J. From these relations one obtains
the only possible combinations ofj andJ.

~i! For P50 andP52:

S50 ~para state), J52m, and j52k, or J52m11 and j52k11;

S51 ~ortho state), J52m11, and j52k, or J52m and j52k11; ~47!

~ii ! for P51:
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S50 ~para state), J52m11, and j52k, or J52m and j52k11;

S51 ~ortho state), J52m, and j52k, or J52m11 and j52k11, ~48!

wherek50,1,2,. . . . In other words, for even values ofP
~symmetric radial wave functions!, the para state is described
by such an angular wave function whereJ and j have the
same parity, while the ortho state has a wave function with
J and j of opposite parity. The opposite is valid for oddP
~antisymmetric radial wave functions!. Further, for even
J, p must be 0 and for oddJ, p must be1

2 .
We finally obtain the eigenenergies EY,nY

[EK1 ,K2 , j ,J
(F,2) of the two-electron QR:

EK1 ,K2 , j ,J
~F,2!5EK11EK21

e2

8p«0«sR
1E j

osc1E J
rot~F!,

~49!

where

E J
rot~F!5

\2

4meR
2 S J12

F

F0
D 2 ~50!

is the rotational energy. These energy bands carry in the
presence of a nonvanishing magnetic flux an equilibrium

current, the persistent current,21,40–43 which follows at
T50 K by I A

(K1 ,K2 , j ,J)(F,2)52dEK1 ,K2 , j ,J(F,2)/dF, and
for a canonical ensemble atTÞ0 K by I A(F,2)
52dF(F,2)/dF, where F(F,2)52kBT lnZ(T,F) is the
Helmholtz free energy,kB is the Boltzmann constant, and
Z(T,F) is the partition function. Here, a canonical ensemble
means a great number of absolutely identical rings~geom-
etry, material! with two electrons in each ring, which can be
in various two-electron states.

The energy bands of two interacting electrons in a
narrow-width QR,Ej ,J(F,2)[E1,1,j ,J(F,2), denoted by the
label (J, j ) are plotted in Fig. 1. It is seen that the energy
bands of a certain symmetry become degenerate at
F/F050 and 0.5. In the case of a mesoscopic ring with
impurities this degeneracy becomes lifted, and gaps between
the energy bands open.40–43 Further, the bands of the para
and ortho states are mutually degenerate atF/F050.25,
which is valid also in the presence of~nonmagnetic! impuri-

ties. It is seen that theminimal energyin 2 1
2,F/F0<

1
2

belongs to different states:

min$Ej ,J~F!%5
\2p2

meW
2 1

e2

8p«0«sR
1

\V

2
1

\2

meR
2 5

S F

F0
1
1

2D
2

for 2
1

2
,

F

F0
<2

1

4

S F

F0
D 2 for 2

1

4
<

F

F0
<
1

4

S F

F0
2
1

2D
2

for
1

4
<

F

F0
<
1

2
.

~51!

The persistent currents carried by the energy bands of Eqs.
~49! and~51! are discussed in detail in Ref.@21#. It is shown
that the persistent current shows bistability and hysteresis in
dependence on the magnetic flux.

The above considered strongly correlated state of a two-
electron Wigner molecule, i.e., a relatively rigid rotator, is
based on the validity of the harmonic and the both adiabatic
approximations. For typical semiconductor rings used in ex-
periments, when charged with two electrons, the Wigner
molecule in which the three types of motions~radial mo-
tions, relative angular motions, rotation! are adiabatically de-
coupled is the expected strongly correlated state. It becomes
obvious that the first adiabatic approximation used above
becomes valid if\V!\2p2/(meW

2), and the second adia-
batic approximation becomes valid if\2/(4meR

2)!\V is
fulfilled. A nearly rigid rotator is formed if the mean Cou-
lomb energy is much larger than the vibrational energy and
no tunneling between the wells occurs, i.e., the harmonic
approximation becomes valid. The harmonic approximation
is applicable if\V!e2/(8p«0«sR), which can be expressed

as a0*!2R, wherea0*54p«0«s\
2/(mee

2) is the effective
Bohr radius. These approximations are well fulfilled for typi-
cal semiconductor QR’s used in experiments.

III. OPTICAL ABSORPTION

A. General

In an optical absorption experiment the attenuation of a
light beam, which passes through a sample of thicknessd, is
measured. We assume the incident wave to be a monochro-
matic plane wave in an isotropic homogeneous medium with,
in general, a complex dielectric function«(v)5 Re«(v)
1 i Im«(v), related by A«(v)5n(v)1 ik(v), Re«(v)
5n2(v)2k2(v), and Im«(v)52n(v)k(v) to the refrac-
tive index n(v) and the extinction coefficientk(v). The
vector potential of this wave is given by

A1~xm ,t !5A1
~0!e ei ~k•xm2vt !1 c.c., ~52!
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wherek5(kx ,ky ,kz) is the wave vector,e is the~in general!
complex polarization vector,A1

(0) is the real amplitude of the
plane wave, and c.c. means complex conjugate of the first
summand.

This plane wave propagates in a three-dimensional~3D!
bulk medium with the dispersion relationk5uku
5«(v)v/c, assuming thatk is a complex vector and the
~angular! frequencyv is real if«(v) is complex; andc is the
vacuum speed of light. From Eq.~52! it follows that

E1~xm ,t !52
]

]t
A1~xm ,t !5 iv@A1

~0!e ei ~k•xm2vt !2 c.c.#

~53!

for the electric field, whereA1
(0)52( i /v)E1

(0), and

B1~xm ,t !5“xm
3A1~xm ,t !

5 iA«~v!
v

c
@A1

~0!eBe
i ~k•xm2vt !2 c.c.# ~54!

for the magnetic induction, where A1
(0)

52@ ic/„«(v)v…#B1
(0) and eB5e3ek , with ek5k/uku. The

intensityI of the incident light is given by the time-averaged
Poynting vector S5 ReE3 ReH according to S1(xm ,t)

5 1
2 @ ReE1(xm ,t) 3 ReH1(xm ,t)] [I 1(xm ,v)ek , with

I 1(xi ,v) 5@n(v)v2/(2m0c)#(A1
(0))2e22(v/c)k(v)ek•xm,

wherem0 is the permeability in vacuum andH is the mag-
netic field, assuming a nonmagnetic medium, so thatB5m0
H is valid. For a homogeneous 3D medium theabsorption
coefficienta(v), which describes the fractional decrease in
the intensity with distance, is defined as
a(v)52(1/I )dI/dx if the wave propagates along thex

axis. Then, it follows thata(v)52(v/c)k(v). Here, we are
interested in the optical absorption of QR’s, which are syn-
thesized on semiconductor heterostructures, being multilayer
structures in general. In this case there exists no unique first-
principles derivation of an absorption coefficient.50 Hence, it
is more profitable to calculate the energy that is absorbed per
unit time and unit area~power absorption! by the nanostruc-
tures under consideration.

The incident electromagnetic wave will induce transitions
between theinitial states u i & and thefinal statesu f & of the
two-electron system, whereun& denotes an eigenstate of
H0, Eq. ~3!, with energyEn given in Eq.~49!. The transition
probability from the stateu i & to the stateu f & under the per-
turbationH int is

Pi f ~ t !5U 1i\E0tdt8eiv f i t8Hf i
int~ t8!

1S 1i\ D 2 (
n~Þ i !

E
0

t

dt8eiv f nt8Hfn
int~ t8!

3E
0

t8
dt9eivnit9Hni

int~ t9!1•••U2, ~55!

where Hnn8
int (t)5^nuH int(t)un8& and vnn85(En2En8)/\ is

the Bohr angular frequency. As far as the separation of the
energy bands of QR’s is in the range of meV, FIR light is
used in the optical absorption spectroscopy. To calculate the
power absorption, we identify the interaction Hamiltonian
H int asH1, given by Eq.~6!, and use the first summand of
Eq. ~55! only. Then for thetransition rate~transition prob-
ability per unit time! from the stateu i & to the stateu f & it
follows that

Wif5
2p

\2

e2

me
2U^ f uS (

m51

2

A1
~0!eik•xm e•pmD u i &U2d~v f i2v!,

~56!

where we have used the fact thatv f i.0. Because in the
usual experiments the light is incident from vacuum to the
sample, the amplitudeA1

(0) present inside the ring can be
calculated from the amplitude outside the specimen by stan-
dard techniques, e.g., with the transfer-matrix method. Under
typical experimental conditions, the wavelength of the inci-
dent light is much larger than the characteristic dimensions
of the electron system in semiconductor nanostructures
(lel'10 nm!l light'10 mm!. In this case one can expand
the exponentialeik•xm leaving only the zeroth order, i.e.,
eik•xm'1. This is theelectric dipole approximation. Notice
that the next term} ik•xm results in electric quadrupole
transitions, andH2 of Eq. ~7! in magnetic dipole transitions.
Both of them are beyond the scope of this paper. Using the
electric dipole approximation andpm5(me / i\)@xm ,H0# in
Eq. ~56! and defining the electric dipole operator of the two
electrons byd52e(x11x2), we obtain

Wif5
2p

\2 ~A1
~0!!2v f i

2 z^ f ue•du i & z2d~v f i2v!. ~57!

Then the power absorptionPabs by the electronic transition
from u i & to u f & is Pabs(v)5hQR\vWif , whereh QR is the

FIG. 1. The energy bandsEj ,J(F,2)[E1,1,j ,J(F,2) of the para
state (S50, thin solid lines! and ortho state (S51, heavy solid
lines! labeled by (J, j ) for a two-electron quantum ring synthesized
from a GaAs-Ga12xAl xAs heterostructure. Parameters used in the
calculation for the GaAs ring of radiusR 5 480 nm and widthW
520 nm:«s 5 12.87 andme 5 0.06624m0; m0 denotes bare elec-
tron mass.
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number of QR’s per unit area in thex-y plane. In Eq.~57! it
is assumed that the initial state is always occupied and the
final one is free. For finite temperatures, one has to take into
account the thermal occupation of the energy bands. In this
case the incident wave can also induce the transitionu i & to
u f & ~stimulated emission!, for whichv f i,0 is valid, and one
has Pabs(v)5hQR\v( f( i$wel( i )@12wel( f )#Wif2wel( f )
@12wel( i )]Wfi%, wherewel( i ) is the probability that the sys-
tem is in the two-particle stateu i & andWif5Wfi is valid.
Thus, we obtain the following for the power absorption of an
ensemble of~uncoupled! QR’s per unit area:

Pabs~v!5
2pv

\
hQR~A1

0!2(
f

(
i

v f i
2 @wel~ i !2wel~ f !#

3u^ f ue•du i &u2d~v f i2v!. ~58!

It is important to note that Eq.~58! with the two-electron
states of Sec. II B is valid only for such a temperature range
as long as both the adiabatic and the harmonic approximation
are valid. For higher temperatures the different motions be-
come coupled due to the thermal transitions.43 Thus, the
range of adequacy of Eq.~58! is at low temperatures, where
the final states are practically free:vel( f )'0. Theoscillator
strengthof the electronic transitionun8&→un& is defined by
f nn85(2me /\)vnn8u^nue•(x11x2)un8&u2, which can be
written as the matrix element of the total momentum opera-
tor with ^nue•(p11p2)un8& 5mevnn8^nue•(x11x2)un8&.
The oscillator strength satisfies thef -sum rule(n f nn851.

The relative absorption K(v) may be defined by
K(v)5Pabs(v)/I 1, where I 15v2(A1

(0))2/(2m0c) is the in-
tensity of the incident wave, propagating in vacuum as usual
in experiments. Further, from Eq.~58! an absorption coeffi-
cient may be defined bya(v)5Pabs(v)/(I 1d), whered is
the thickness of the sample. But in general this gives no
definite physical quantity for layered systems.

B. Dipole selection rules

Let us examine theelectric dipole selection rulesof a
system of independent rings in thex-y plane; i.e., no tunnel-
ing and Coulomb coupling between the rings is assumed. For
this case, we identify the statesu i & and u f & by those of the
QR, given in Eqs.~24!, ~25!, ~27!, ~28!, ~36!, ~38!, ~40!,
and ~44!: u i &5uP,K1 ,K2& ^ up, j & ^ uJ& ^ uS,MS& and
u f &5uP8,K18 ,K28& ^ up8, j 8& ^ uJ8& ^ uS8,MS8&. Further, we as-
sume a perpendicular incident plane wave~see the inset of
Fig. 1! propagating in vacuum along the negativez axis with
the wave vectork5(0,0,2k). The dipole operator of the two
electrons isd522eRcos(g/2)(cosQ,sinQ,0). In the follow-
ing we consider the dipole matrix element^ f ue•du i & for dif-
ferent polarizations of the incident monochromatic plane
wave.

1. Elliptically polarized light

In this case we havee5axe
iaxex1aye

iay ey , with
ax
21ay

251, from which it follows e•d522eRcos(g/
2)(axe

iaxcosQ1aye
iaysinQ). We obtain

^P8,K18 ,K28 ;p8, j 8;J8;S8,MS8ue•duP,K1 ,K2 ;p, j ;J;S,MS&5CedP8,PdK
18 ,K1

dK
28 ,K2

~dp8,p11/21dp8,p21/2!d j 8, j1~2l 11!

3@axe
iax~dJ8,J111dJ8,J21!

2 iaye
iay~dJ8,J112dJ8,J21!#dS8,SdM

S8 ,MS
, ~59!

where

Ce52 i ~21!J1l eRA 2 j j !

2 j 8 j 8!
S j

2D
2l 11

expF2S j

4D
2GL j

2l 11S j

8D
2

, ~60!

l 50,61,62, . . . under the condition thatj 8.0 andL j
l (j) is the associated Laguerre polynomial. Note the correlation

betweenp andJ discussed above. Thus, the dipole selection rules for elliptically polarized light are

DP50, DK150, DK250, Dp56 1
2 , D j52l 11, DJ561, DS50, DMS50. ~61!

Hence, the optical transitions are between the energy bands of the para state and between that of the ortho state.

2. Circularly polarized light

For circularly polarized light we haveax5ay , ay2ax56p/2, and assumeax50: e[e65(1/A2)(ex6 iey), from where
it follows e•d52A2eRcos(g/2)exp(6iQ). We obtain

^P8,K18 ,K28 ;p8, j 8;J8;S8,MS8ue•duP,K1 ,K2 ;p, j ;J;S,MS&5CcdP8,PdK
18 ,K1

dK
28 ,K2

~dp8,p11/21dp8,p21/2!

3d j 8, j1~2l 11!dJ8,J61dS8,SdM
S8 ,MS

, ~62!

where

Cc52 i ~21!J1l A2eRA 2 j j !

2 j 8 j 8!
S j

2D
2l 11

expF2S j

4D
2GL j

2l 11S j2

8 D . ~63!
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From Eq.~62!, the dipole selection rules for circularly polarized light are the same as for elliptically polarized light given by
Eq. ~61!.

3. Linearly polarized light

For the incident wave linearly polarized in thex direction ~without loss of generality! we have e[ex and
e•d522eRcos(g/2)cosQ. From this we obtain

^P8,K18 ,K28 ;p8, j 8;J8;S8,MS8ue•duP,K1 ,K2 ;p, j ;J;S,MS&5CldP8,PdK
18 ,K1

dK
28 ,K2

~dp8,p11/21dp8,p21/2!

3d j 8, j1~2l 11!~dJ8,J111dJ8,J21!dS8,SdM
S8 ,MS

, ~64!

whereCl5Ce , which results in the dipole selection rules given by Eq.~61!.

C. Power absorption

Now we calculate the power absorption at low temperatures, assuming as an example the incident light to be circularly
polarized. The Bohr angular frequencies for a narrow-width QR are

v f i[v l J
6 5~2l 11!V1

\

4meR
2 S 162J64

F

F0
D . ~65!

In the case of low temperatures, i.e., ifkBT!\V is valid, there are no oscillations excited. Then the initial stateu i & is
characterized byj50 andK15K251, from where it follows that we have for an initial para stateJ52m, andJ52m11 if
the initial state is an ortho state. To calculate the power absorption, we consider a canonical ensemble of QR’s, all charged by
two electrons at low temperatures. In this case the probability distribution functions arewel( i )5exp@2Ei /(kBT)#/Z and
wel( f )'0, where the partition functionZ(T,F) has the form43

Z~T,F!5expS 2
2E11e2/~8p«0«sR!1\V/2

kBT
DZrot~T,F! ~66!

with

Zrot~T,F!5gparaZeven
rot ~T,F!1gortho Zodd

rot ~T,F!, ~67!

where

Zeven
rot ~T,F![ (

m52`

`

expF2
\2~2m12F/F0!

2

4meR
2kBT

G5expF2
\2

meR
2kBT

~F/F0!
2Gq3S i\2

meR
2kBT

F

F0
,e2\2/~meR

2kBT!D
'ApmeR

2

\2 kBT, ~68!

Zodd
rot ~T,F![ (

m52`

`

expF2
\2~2m1112F/F0!

2

4meR
2kBT

G5expF2
\2

meR
2kBT

S F

F0
D 2Gq2S i\2

meR
2kBT

F

F0
,e2\2/~meR

2kBT!D
'ApmeR

2

\2 kBT. ~69!

Thus, we have

Zrot~T,F!'@gpara1gortho#ApmeR
2

\2 kBT54ApmeR
2

\2 kBT. ~70!

Herein, we have used the asymptotic representations of theq functionsq2(z,q) andq3(z,q),
51 E J51

rot !kBT(!\V). The
statistical weights of the para state and of the ortho state aregpara51 andgortho53, respectively. From Eqs.~58!, ~62!, ~66!,
and ~70! it follows for the power absorption
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Pabs~v!5
4pe2RvhQR

\

~A1
~0!!2uCcu2

Zrot~T,F! (
l 50,1,2, . . .

H (
J50,62,64, . . .

gparae
2E J

rot
~F!/~kBT!@~v l J

1 !2d~v2v l J
1 !1~v l J

2 !2d~v2v l J
2 !#

1 (
J561,63,65 . . .

gorthoe
2E J

rot
~F!/~kBT!@~v l J

1 !2d~v2v l J
1 !1~v l J

2 !2d~v2v l J
2 !#. ~71!

In Fig. 2 we have plotted the energy bands of the para state
and in Fig. 3 those of the ortho state, where each band of the
ortho state is threefold degenerate (Ms50,61). The arrows
indicate the lowest optical transitions, which are~electric!
dipole allowed:D j51 andDJ561. The absorption peaks
arise as doublets with spacing depending on the magnetic
flux. If we consider, for example, the two lowest transitions
of Fig. 2, (0,0)→(61,1), it becomes obvious that for
F50 one peak arises, which separates into two peaks for
FÞ0. The spacing between the two peaks increases ifuFu
increases. Whereas the higher-frequency peak arises for
F.0 from the transition (0,0)→(1,1), it arises forF,0
from the transition (0,0)→(21,1). For the ortho state~Fig.
3! the lowest-frequency doublet, arising from the transitions
(21,0)→(0,1) and (22,1), shows a maximum separation
for F/F052 1

2 and occurs as one peak atF/F05
1
2 . The

opposite is valid for the doublet, which is connected with the
transitions (1,0)→(0,1) and (2,1). It becomes obvious that
the measured absorption spectrum allows one in dependence
on the magnetic flux threading the ring, to determine if the
two-electron system is in a para or in an ortho state. Thus,
the study of the absorption spectrum of QR’s gives comple-
mentary results to the observation of the persistent current.
While the persistent current as a function ofF gives a physi-

cal representation of the derivative of the energy bands with
respect toF and thus gives continuous characteristics of the
band structure, the absorption spectra form discrete charac-
teristics of the same band structure according to the dipole-
allowed transitions.

IV. RAMAN SCATTERING

A. General formulation

In this section we consider the inelastic light scattering on
an ensemble of QR’s. The Raman scattering cross section
involves two terms to be treated by perturbation theory, the
A1•p term in the second order and theA1

2 term in first order.
Thedifferential cross sectionfor scattering of a photon~cor-
responding to a plane wave! from the statevL ,kL ,eL to the
statevS ,kS ,eS and the concomitant transition of the two-
electron system from the stateu i & to the stateu f & is given
by46

d2s

dvdV
5S «~vS!

«~vL! D
1/2vS

vL
r 0
2(

f
(
i
wel~ i !z^ f uM~q!u i & z2

3d~v f i2v!, ~72!

FIG. 2. The optical transitions within the energy bands
Ej ,J(F,2) of the para state represented in dependence on the mag-
netic flux F for a two-electron ring. These bands are labeled by
(J, j ). The arrows indicate the lowest optical transitions with
DJ561 andD j51. The same transitions are induced byM1(q)
in the polarized Raman scattering.

FIG. 3. The optical transitions within the energy bands
Ej ,J(F,2) of the ortho state represented in dependence on the mag-
netic fluxF for a two-electron ring. The arrows indicate the lowest
optical transitions withDJ561 andD j51. The same transitions
are induced byM1(q) in the polarized Raman scattering and by
M2

(a)(q) in the depolarized Raman scattering. Denotations and pa-
rameters are the same as in Fig. 1.
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wherev5vL2vS is the scattering frequency,q5kL2kS is
the scattering wave vector, andr 0[e2/(4p«0m0c

2) is the
classical electron radius. Assuming that the many-particle
statesu i & andu f & are within the conduction band of the semi-
conductor, the scattering tensorM(q) is given by Eq.
~12!.46,47The explicit expression of the light scattering cross
section depends on the details of the electron energy band
structure of the host semiconductor as well as on the scatter-

ing mechanism. Considering in this paper resonant Raman
scattering on QR’s synthesized on GaAs-Ga12xAl xAs het-
erostructures, we can use the results of Refs. 46 and 52:

gab5~eL•AI•eS* !jab2 i ~eL3eS* !•BI•zab , ~73!

where

zab5^aueiq•xsub&5jab^mausumb&, ~74!

AI5II F11
2P2

3m0
S Evh

Evh
2 2\2vL

2 1
Ev l

Ev l
2 2\2vL

2 1
Evs

ESO
2 2\2vL

2D G , ~75!

BI5II
P2

3m0
\vLS 1

Evh
2 2\2vL

2 1
1

Ev l
2 2\2vL

2 2
2

ESO
2 2\2vL

2D 1~ep^ep2II!
P2

m0
\vLS 1

Evh
2 2\2vL

2 1
1

Ev l
2 2\2vL

2D . ~76!

Herein,II is the unit dyadic tensor,ep is the unit vector along
the direction of the momentum, andP5^SupxuX&
5^SupyuY&5^SupzuZ& is the interband matrix element of the
momentum operator in the Kane model53 with uS& the
s-like wave function of the conduction band anduX&, uY&,
and uZ& are associated with the valence bands. The aniso-
tropic term in the right-hand side of Eq.~76! is small46 and is
neglected in the following. In Eqs.~75!, and~76!, Evh

, Ev l
,

andESO are the energy differences between the conduction
band and the heavy-hole, light-hole, and split-off valence
bands, respectively. The spin dependence ofM(q) is due to
the spin-orbit coupling in the valence band. In the bulk~3D!
semiconductor GaAs, the heavy- and light-hole valence
bands are degenerate at theG point and thusEvh

5Ev l
5E0 is

valid. Further, the split-off gap isESO5E01D0, whereD0 is
the spin-orbit splitting of the top valence-band states. It is
important to note that for a semiconductor heterostructure
according to the size quantization in the growth direction
~along thez axis!, the energy gaps increase by the energy of
the lowest quantized levels in the quantum well. Without
loss of generality this additional energy is assumed to be
incorporated intoEv l

andESO if necessary. If in the valence
bands a quantum well is formed, this results in a lifting of the
degeneracy of the heavy- and light-hole valence bands at the
G point.

We are interested inresonant inelastic light scattering.
Under the resonance condition between the degenerate va-
lence band (\vL'E0), we find from Eqs.~12!, ~14!, and
~73! – ~76!

M~q!5
P2

3m0

1

E02\vL

3 (
m51

2

eiq•xm @2eL•eS*2 i ~eL3eS* !•sm#, ~77!

and for the resonance between the split-off valence band and
the conduction band it follows that

M~q!5
P2

3m0

1

E01D02\vL

3 (
m51

2

eiq•xm @eL•eS*1 i ~eL3eS* !•sm#. ~78!

We will further consider as an example in more detail the
case of the resonance with the split-off valence band in the
limit q•xm!1. This means that the following inequality for
the wavelength of the net excitation in the QR,
lexcitation!2R, is assumed to be fulfilled. The case of the
resonance with the degenerate valence band~or nondegener-
ate if the valence band forms a quantum well! is qualitatively
quite analogous. Then we write

M~q!5M0~q!1M1~q!1M2~q!, ~79!

where

M0~q!5DSO F2eL•eS*1
i

\
~eL3eS* !•SG , ~80!

M1~q!5 iDSO~eL•eS* !@q•~x11x2!#, ~81!

M2~q!5 iDSO(
m51

2

~q•xm!@~eL3eS* !•sm#, ~82!

with
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DSO5
P2

3m0

1

E01D02\vL
. ~83!

It is obvious that the operatorM0(q) does not change the
orbital part of the wave function, but can change the spin.
The operatorM1(q) is connected with the center-of-mass
motion of the electrons and can change the orbital quantum
numbers only. On the other hand, the operatorM2(q) de-
pends on the coordinates of the electrons and includes the
Pauli spin vector operator, and hence can change the orbital
as well as the spin quantum numbers simultaneously.

B. Polarized spectrum

Let us discuss the polarized spectrum for which
eL•eS*51 and eL3eS*50 is valid. In this case we have
M0(q)52DSO, M2(q)50, and

M1~q!5 i 2RDSOcos
g

2
~qxcosQ1qysinQ!. ~84!

From this we obtain

^P8,K18 ,K28 ;p8, j 8;J8;S8,MS8uM1~q!uP,K1 ,K2 ;p, j ;J;S,MS&5CpoldP8PdK
18K1

dK
28K2

~dp8,p11/21dp8,p21/2!d j 8, j1~2l 11!

3@qx~dJ8,J111dJ8,J21!2 iqy~dJ8,J112dJ8,J21!#dS8SdM
S8MS

~85!

with

Cpol52~21!J1l RDSOA 2 j j !

2 j 8 j 8!
S j

2D
2l 11

expF2S j

4D
2GL j

2l 11S j2

8 D . ~86!

Thus, theselection rulesfor polarized Raman scattering spectra are identical with those for the absorption light and give rise
to transitions between the energy bands of the para state and between the energy bands of the ortho state. The differential cross
section reads

d2s

dvdV
5S «~vS!

«~vL! D 1/2vS

vL
r 0
2 uCpolu2

Zrot~T,F!
~qx

21qy
2! (
l 50,1,2, . . .

H (
J50,62,64, . . .

gparae
2E J

rot
~F!/~kBT!@d~v2v l J

1 !1d~v2v l J
2 !#

1 (
J561,63,65, . . .

gorthoe
2E J

rot
~F!/~kBT!@d~v2v l J

1 !1d~v2v l J
2 !#J . ~87!

As in the power absorption we have assumed that the initial state is characterized byK15K250 and j50.

C. Depolarized spectrum

In this case we haveeL•eS*50 andeL3eS*[bÞ0. Then, it follows thatM1(q)50,M0(q)5( i /r\)DSOb•S, and

M2~q!5
2i

\
RDSOH FqxcosQcos

g

2
1qysinQsin

g

2Gb•S1FqycosQsin
g

2
2qxsinQsin

g

2Gb•DSJ
[M2

~a!~q!1M2
~a!~q!, ~88!

whereDS5(\/2)(s12s2). Let us start to investigate the Raman scattering matrix element due toM0(q). The only nonzero
matrix elements between the spin states are

^1,0uSxu1,1&5^1,1uSxu1,0&5
\

A2
, ^1,0uSxu1,21&5^1,21uSxu1,0&5

\

A2
, ^1,0uSyu1,1&52^1,1uSyu1,0&5

i\

A2
,

^1,0uSyu1,21&52^1,21uSyu1,0&52
i\

A2
, ^1,1uSzu1,1&52^1,21uSzu1,21&5\. ~89!

Thus, if b•S has nonvanishingx andy components, Raman scattering induces electronic transitions with a spin flip of both
electrons, but keeping the total spin of both electrons fixed. The only process with nonvanishing matrix elements is between
the energy bands of the ortho state with the selection rules:

DP50, DK150, DK250, Dp50, D j50, DJ50, DS50, DMS50,61. ~90!

In an AB geometry these state are degenerate and hence no inelastic light scattering process is involved. But for the case
where the magnetic field is present in the ring, i.e., it penetrates the electron path, this degeneracy becomes lifted. For a
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narrow-width ring the eigenenergies of two interacting electrons, Eq.~49!, are shifted by the Zeeman term:
Ej ,J,Ms

(F,2)5Ej ,J(F,2)1g*mBBMs . Assuming, e.g.,b•S5Sx , the differential scattering cross section reads

d2s

dvdV U
M0

5S «~vS!

«~vL! D 1/2vS

vL
r 0
2

DSO
2

2Zodd
rot ~T,F! (

J561,63,65, . . .
H e2E J

rot
~F!/~kBT! (

MS8561
d~v2vMS80

!

1e2@E J
rot

~F!1g* mBB#/~kBT! (
MS850,21

d~v2vMS8MS
!1e2@EJ

rot
~F!2g* mBB#/~kBT! (

MS850,11
d~v2vMS8MS

!J ,
~91!

wherevMS8MS
52g*mBB(MS82MS)/\.

We consider now the inelastic light scattering processes induced byM2(q). It becomes obvious thatM2(q) induces the
same transitions within the spin space asM0(q), but now associated by transitions in the orbital Hilbert space. Assuming, for
example, againb•S5Sx , the Raman scattering matrix element is easily calculated to be

^P8,K18 ,K28 ;p8, j 8;J8;S8,MS8uM2
~a!~q!uP,K1 ,K2 ;p, j ;J;S,MS&5Cdepol

~a! dP8,PdK
18 ,K1

dK
28 ,K2

~dp8,p1 1/21dp8,p2 1/2!d j 8, j1~2l 11!

3@qx~dJ8,J111dJ8,J21!2 iqy~dJ8,J112dJ8,J21!#

3dS8S~dM
S8 ,MS

1dM
S8 ,MS61!, ~92!

with

Cdepol
~a! 52~21!J1l

RDSO

A2 A 2 j j !

2 j 8 j 8!
S j

2D
2l 11

expF2S j

4D
2GL j

2l 11S j

8D
2

. ~93!

This gives the selection rules

DP50, DK150, DK250, Dp56 1
2 , D j52l 11, DJ561, DS50, DMS50,61, ~94!

i.e., results in transitions within the energy bands of the ortho state~ortho-ortho transitions!. This is true because the matrix
elements ofS between para states vanish. The scattering tensorM2

(a)(q) gives rise to the differential scattering cross section

d2s

dvdV U
M

2
~a!

5S «~vS!

«~vL! D
1/2vS

vL
r 0
2

uCdepol
~a! u2

Zodd
rot ~T,F!

~qx
21qy

2! (
l 50,1,2

(
J561,63,65, . . .

$e2E J
rot

~F!/~kBT!@d~v2v lJ
1!1d~v2v lJ

2!#%,

~95!

wherev l J
6 is given by Eq.~65!. Equation~95! is valid for an Aharonov-Bohm geometry. The calculation for the case of a

magnetic field penetrating the electron paths in the ring is straightforward. The electronic transitions induced byM2
(a) are the

same as depicted in Fig. 3.
To calculate the matrix elements ofM2

(b) we find the only nonvanishing matrix elements ofDS to be

^0,0uDSxu1,1&5^1,1uDSxu0,0&52
\

A2
, ^0,0uDSxu1,21&5^1,21uDSxu0,0&5

\

A2
,

^0,0uDSyu1,1&52^1,1uDSyu0,0&52
i\

A2
, ^0,0uDSyu1,21&52^1,21uDSyu0,0&52

i\

A2
, ^0,0uDSzu1,0&5^1,0uDSzu0,0&5\.

~96!

Then, we obtain assuming as an exampleb•DS5DSx :

^P8,K18 ,K28 ;p8, j 8;J8;S8,MS8uM2
~b!~q!uP,K1 ,K2 ;p, j ;J;S,MS&5Cdepol

~a! dP8,PdK
18 ,K1

dK
28 ,K2

~dp8,p11/21dp8,p21/2!d j 8, j1~2l 11!

3@ iqx~dJ8,J112dJ8,J21!1qy~dJ8,J111dJ8,J21!#

3dS8,S61~dM
S8 ,MS

2dM
S8 ,MS61!, ~97!

with

Cdepol
~b! 52~21!J1l

RDSO

A2 A 2 j j !

2 j 8 j 8!
S j

2D
2l 11

expF2S j

4D
2GL j

2l S j

8D
2

. ~98!
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This gives the selection rules

DP50, DK150, DK250, Dp56 1
2 , D j52l , DJ561, DS561, DMS50,61. ~99!

Hence, the last process provides spin-flip transitions between the energy bands of the para and ortho state and vice versa
~para-ortho transitions!. The differential scattering cross section reads

d2s

dvdV U
M

2
~b!

5S «~vS!

«~vL! D 1/2vS

vL
r 0
2

uCdepol
~b! u2

Zodd
rot ~T,F!

~qx
21qy

2! (
l 50,1,2

H (
J50,62,64, . . .

gparae
2E J

rot
~F!/~kBT!@d~v2ṽ l J

1 !1d~v2ṽ l J
2 !#

1 (
J561,63,65, . . .

gortho e
2E J

rot
~F!/~kBT!@d~v2ṽ l J

1 !1d~v2ṽ l J
2 !#J , ~100!

where

ṽ l J
6 52l V1

\

4meR
2 S 162J64

F

F0
D . ~101!

The first term describes the transition from the energy
bands of the para state to those of the ortho state and the
second term describes the opposite transitions. In Fig. 4 we
have plotted the lowest transitions between the energy bands
of para and ortho and ortho and para states. The total scat-
tering cross section for depolarized Raman scattering is just
the sum of Eqs.~95! and ~100!.

If w is the ray angle measured from thez axis of the
incident wave andg that of the scattered wave, the scattering
wave vector is given by

q5~kLsinw2kSsing!ex2~kLcosw2kScosg!ez , ~102!

wherekL5ukLu and kS5ukSu. This gives for atilted back-
scattering geometry (g52w): q5(kL1kS)sinw ex

2(kL1kS)cosw ez and for aconventional backscattering ge-
ometry (g50°): q52(kL1kS)ez . Further, a tilted
right-angle geometry (g1w590°) gives q5(kLsinw
2kScosw) ex2(kLcosw1kSsinw) ez and for theconventional
right-angle geometry(w50°): q52kS ex2kLez is valid.
Then it follows for thepolarized spectra: ~i! if eL5ey we
have eS5ey or ~ii ! if eL5cosw ex1sinw ez we have
eS52cosg ex1sing ez ; and for thedepolarized spectra: ~i!
if eL5ey we have eS52cosg ex1sing ez or ~ii ! if
eL5cosw ex1sinw ez we haveeS5ey .

Let us give the Raman scattering matrix element
^ f uM(q)u i & for the two conventional geometries:~i! back-
scattering geometry: kL5(0,0,2kL), andkS5(0,0,kS), and
~ii ! right-angle geometry: kL5(0,0,2kL) andkS5(kS,0,0).
In both cases, we considerpolarized(eLieS) anddepolarized
(eL'eS) Raman scattering.

D. Backscattering geometry

1. Polarized spectrum

In this case, which has the usual notationz(y,y) z̄, we
haveeL5ey and eS5ey , i.e., eL•eS*51, eL3eS*50, andq
52(kL1kS)ez , from where it follows that M0(q)
52DSO. Hence,M0(q) gives no inelastic scattering pro-
cess. Further, we haveM1(q)5( i /e)DSO(kL1kS)ez•d50
becaused5(dx ,dy ,0), andalsoM2(q)50.

2. Depolarized spectrum

In this case the scattering notation isz(x,y) z̄, and we
haveeL5ey and eS52ex , i.e., eL•eS*50, eL3eS*5ez, and
q52(kL1kS)ez . Thus, it follows that M0(q)
5(2i /\)DSOSz , whereSz5(\/2)(sz11sz2) is thez com-
ponent of the total spin operator. Because of the relation
SzuS,MS&5\MSuS,MS&, the operatorM0(q) does not result
in an inelastic light scattering process. Further, it is obvious
that in this caseM1(q)50 andM2(q)50 is valid.

E. Right-angle geometry

1. Polarized spectrum

For the right-angle geometry, i.e.,x̄(y,y) z̄, we have
eL5ey and eS5ey , i.e., eL•eS*51, eL3eS*50, and q
52kSex2kLez . Then it follows that M0(q)
52DSO, M1(q) of Eq. ~84! with qx52kS andqy50, and

FIG. 4. The lowest Raman scattering transitions of the depolar-
ized spectrum induced byM2

(b)(q) between the energy bands
Ej ,J(F,2) of the para state~heavy solid lines! and that of the ortho
state~thin solid lines! represented in dependence on the magnetic
flux F for a two-electron ring. Denotations and parameters are the
same as in Fig. 1.
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M2(q)50. Note that for the considered case the scattering
matrix element is quite similar to that considered above in
Sec. IV B with the only distinction being that instead ofqy
Þ0 we haveqzÞ0. From this, we obtain the Raman scatter-
ing matrix element of Eq.~85! and the scattering cross sec-
tion of Eq. ~87!.

2. Depolarized spectrum

In this scattering geometry, wherex̄(z,y) z̄, is valid we
haveeL5ey and eS5ez , i.e., eL•eS*50, eL3eS*52ez, and
q52kS ex2kLez , we derive M0(q)52(2i /\)DSOSz ,
which gives no inelastic scattering process,M1(q)50 and
M2(q) of Eq. ~88! with qx52kS and qy50. The Raman
scattering matrix element is given by Eqs.~92! and~97! and
the differential scattering cross section by Eqs.~95! and
~100!.

V. CONCLUSION

We have shown that an ensemble of QR’s in the presence
of an Aharonov-Bohm flux with two interacting electrons in
each ring having the energy spectrum

EK1 ,K2 , j ,J
~F!5EK11EK21

e2

8p«0«sR
1E j

osc

1
\2

4meR
2 S J12

F

F0
D 2

absorbs FIR light with the dipole selection rulesDJ561
and D j561,63,65, . . . . Thus, transitions take place be-
tween the energy bands of the para state and between those
of the ortho state. Further, when applied to a Raman scatter-

ing experiment, the scattering processes are accompanied by
the same selection rules if the polarized spectrum is mea-
sured. In the depolarized inelastic light scattering process
two types of transitions contribute:~i! between the energy
bands of the ortho state~ortho-ortho transitions! with
DJ561, D j561,63,65, . . . , andDMS50,61 and ~ii !
between the energy bands of the para and ortho state~para-
ortho transitions! and vice versa with DJ561,
D j50,62,64, . . . , DS561, andDMS50,61. The peaks
arise as doublets according to the transitions withDJ51 and
–1. The spacing between these two peaks depends on the
magnetic flux.

Absorption and Raman scattering on the one hand, and
persistent currents on the other hand, are manifestations of
the same band structure of QR’s. The persistent current as a
function ofF gives a physical representation of the deriva-
tive of the energy bands with respect toF and is a continu-
ous characteristic of the band structure. As distinct from that,
the absorption and the Raman scattering select only some
points in theF scale, at which the transitions are allowed
according to the selection rules discussed in this paper and
hence form discrete characteristics of the same band struc-
ture. Thus, they are complementary to each other.
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