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Statistical physics of interacting dislocation loops and their effect
on the elastic moduli of isotropic solids

Sergei Panyukov* and Yitzhak Rabin
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 7 August 1998!

We present a field-theoretical study of interacting dislocation loops and their effect on the elastic moduli of
isotropic three-dimensional solids. We find that the shear modulus decreases to a finite limit with increasing
density and size of dislocation loops and vanishes only with the appearance of open dislocation lines that
terminate on the boundaries of the sample. Using the random phase approximation, we analyze the correlations
of dislocation ‘‘charges’’ and ‘‘currents’’ and show that interaction between dislocations leads to screening of
long-range correlations. Variational and perturbative methods are used to show that fluctuation-induced attrac-
tion between segments of dislocation loops leads to the shrinking of the radii of gyration of loops compared to
their Gaussian dimensions. The applicability of our model assumptions to real solids is discussed.
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I. INTRODUCTION

Following the pioneering work of Kosterlitz an
Thouless1 on vortex unbinding in thexy model, the statisti-
cal physics of topological defects in solids attracted cons
erable attention in the theoretical physics community.
though the original work as well as its extension
dislocation-induced melting of solids by Nelson a
Halperin2 was restricted to 2d, there was hope that simila
ideas can be applied to the melting of 3d crystals.3 Using a
simplified form for the interaction between dislocations
construct a free energy as a function of the dislocation d
sity, Edwards and Warner4 showed that the screening of th
interaction leads to a first-order solid-to-liquid transitio
Nelson and Toner5 assumed that such melting does ta
place and showed that it leads to a liquid state that has s
degree of orientational order. A first-order melting transiti
was also predicted using field-theoretical methods that
lized the analogy with electrodynamics~the interaction be-
tween dislocations is mediated by the stress field, just
the interaction between currents is mediated by the magn
field! by Kleinert6 and by Obukhov.7 All of the above-
mentioned works were primarily concerned with the analy
of the dislocation-induced melting transition and of its co
sequences and a thermal distribution of dislocations was
ways assumed. Note, however, that since in most solids
core energies of dislocations far exceed the available the
energy, such defects can not be produced by ther
fluctuations.8

Here, we take a different path. Throughout most of t
paper it is assumed that some given distribution of dislo
tions ~in terms of their lengths and Burgers vectors! is fixed
by some nonequilibrium method of preparation, and t
thermal equilibrium is attained only with respect to the co
formations of the dislocations and their positions in the so
We then proceed to analyze the effect of this distribution
dislocations on the elastic moduli of the solid and, in t
process, obtain interesting insights into the physics of in
acting dislocation loops.
PRB 590163-1829/99/59~21!/13657~15!/$15.00
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In Sec. II, we present a brief review of the continuu
theory of dislocations in isotropic solids. In Sec. III, we sho
that the renormalization of the tensor of elastic constants
to the presence of dislocations can be reduced to the ca
lation of the correlation function of dislocation ‘‘charges.
The charge-charge correlation function of noninteracting d
locations is calculated in Appendix A. In Sec. IV, we intro
duce a field-theoretical formulation of the problem of inte
acting dislocation loops and use it to study the effect
long-range interactions on the correlations of dislocat
‘‘currents’’ and ‘‘charges’’ and to calculate the renormalize
elastic moduli within the random phase approximation~de-
tails of the calculation are given in Appendix B!. In Sec. V
we derive the free energy and calculate the equilibrium d
tribution of dislocations. In Sec. VI, we use a variation
approach to study the fluctuation-induced attraction betw
segments of dislocation loops and estimate the resul
compression of the loops and its effect on the thermodyn
ics and the elastic moduli. In Appendix C, we present a p
turbative calculation of the interaction-induced corrections
the radii of gyration of large dislocation loops and show th
the results are in good agreement with the variational e
mate of Sec. VI. Finally, in Sec. VII we discuss the ma
results of this paper and comment on its experimental ra
fications.

II. CONTINUUM THEORY OF DISLOCATIONS

We begin with a review of the main results of the co
tinuum theory of dislocations in homogeneous and isotro
solids.9 Within the framework of the linear theory of elastic
ity, the free energy is given by

Fel@u#5
m

2E d3xS uik
2 1

n

122n
ull

2 D , ~1!

wherem is the shear modulus,n is the Poisson ratio, and th
strain tensoruik is defined in terms of the displacement fie
u(x)
13 657 ©1999 The American Physical Society
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uik5
1

2 S ]ui

]xk
1

]uk

]xi
D . ~2!

Here and later the usual summation convention regard
repeated indices is used.

We now consider the equilibrium state of the solid, w
no externally applied stress on its surface. In the absenc
dislocations the stress and the displacement fields vanish
erywhere inside the solid. The introduction of dislocatio
results in singularities in the stress field and the displacem
field udis(x) becomes a multivalued function ofx. The con-
tour integral ofudis(x) taken around the dislocation line
the Burgers vectorb of the dislocation9

R dudis52b ~3!

udis(x) is found from the equations of equilibrium of th
solid

]s ik
dis/]xk50, ~4!

where

s ik
dis52mS uik

dis1
n

122n
d ikull

disD ~5!

is the stress tensor. Instead of consideringudis(x) as a mul-
tivalued function, it is more convenient to regard it as
single-valued function of the position, which has discontin
ties on surfaces associated with dislocation loops in the b
of the solid. Due to the linearity of these equations the d
placement fieldudis(x) can be represented as the sum
contributions of different dislocation loopsC

udis~x!5(
C

uC~x!. ~6!

The solution for the displacement vector in the prese
of a dislocation loopC with Burgers vectorbC can be con-
veniently written down using the Fourier transform

u~x!5E d3q

~2p!3
ũ~q!eiq–x. ~7!

We get~the derivation of the corresponding coordinate sp
expressions is given in Ref. 9!

ũC~q!52bCṽC~q!1
1

q2 S 12
1

12n

qq

q2 D • f̃C~q!, ~8!

where

f̃C~q![bC3 j̃ C~q!, j̃ C~q!5 R
C
dxe2 iq–x ~9!

and the integration goes over the contour of the disloca
line. The Fourier transform off̃C(q) can be interpreted as a
effective force exerted on the elastic medium by the dislo
tion C.
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The nonuniqueness of the functionũC is contained en-
tirely in the termṽC. The Fourier transform of the gradien
of vC is determined by the configuration of the dislocati
line

E d3xe2 iq–x¹vC5
i

q2
q3 j̃ C~q!. ~10!

Note that for finite-size loops the functionvC is 1/4p of the
solid angleVC(x) through which the loop is seen from th
point x,

VC~x![2E
SC

~x2x8!

ux2x8u3
–df8. ~11!

Here the integration goes over some arbitrarily chosen
continuity surfaceSC spanning the dislocation loopC. The
discontinuity ofuC(x) across this surface is just the Burge
vectorbC of the dislocationC.

The functionj̃ C(q) defined in Eq.~9! is the Fourier com-
ponent of the conserved dislocation current of loopC

jC~x![ R
C
ds

dx~s!

ds
d@x2x~s!#, ¹• jC~x!50, ~12!

where a parametrizationx(s) along the dislocation line is
chosen. The constraint of current conservation~in its
Fourier-transformed form!, q• j̃ C50, follows directly from
the definition Eq.~9! and expresses the fact that a dislocati
must be either a closed loop or an infinite line that termina
at the boundaries of the solid. Since dislocation currents
going to play a major role in our considerations, it is impo
tant to get some intuition about their physical meaning. Fr
its definition, Eq. ~12!, the dislocation current associate
with a given dislocation loopC at a pointx does not vanish
only on the contour of the loop. Whenx coincides with a
point s of the contour, the current at this point is the un
tangent vector to the dislocationt(s)5dx(s)/ds. Since any
smooth curve is completely defined by the collection of ta
gent vectors at each point of its contour, specification of
current gives complete information about the conformat
of the dislocation loop.

III. RENORMALIZATION OF ELASTIC MODULI

In the following we consider a solid with a given distr
bution $n(b,N)% of dislocations, wheren(b,N) is the num-
ber of dislocations with Burgers vectorb and contour length
N. In order to calculate the elastic constants of the solid
the presence of dislocations we follow the approach of R
2, which is based on the linear-response relation between
reaction of a solid to stresses applied to its boundaries an
thermal fluctuations. The first type of fluctuations corr
sponds to displacement and change of shape of the con
of the dislocations and satisfies the equilibrium condition E
~4!. This contribution,udis(x), is defined by Eqs.~6! and~8!
and has discontinuities on the surfaces associated with
dislocation loops. We also consider the thermal fluctuatio
of the solid~phonons! for a given configuration of the dislo
cations, that can be described by a smoothly varying d
placement fieldf(x). The total displacement field due t
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fluctuations is the sum of the above contributions,

u~x!5udis~x!1f~x!. ~13!

Substituting Eqs.~13! and~4! into Eq.~1!, we find that the
two types of fluctuations are orthogonal to each other in
sense that the free energy can be decomposed into two
pendent parts

F5Fel@f#1Fel@udis#. ~14!

The free energy associated with the smoothly varying d
placement field can written in the form

Fel@f#5
1

2E d3xf i j l i j kl fkl , ~15!

wheref i j is defined by Eqs.~13! and ~2! and the tensor of
‘‘bare’’ elastic constants~i.e., those of a dislocation-fre
solid! is

l i j kl 5mS d ikd j l 1d i l d jk1
2n

122n
d i j dklD , ~16!

with d i j the Kronecker tensor.
We proceed to examine the renormalization of the ela

constantsm and n by the presence of dislocations. The i
verse tensor of the renormalized elastic constants can be
pressed in terms of the correlation function,2

~lR
21! i j kl 5

1

VT
^Ui j Ukl&. ~17!

Here,V is the volume of the solid,T is the temperature, an

Ui j 5
1

2 S E d fiuj1E d f jui D , ~18!

where the integration goes over the surface of the sam
Note thatUi j has the dimensions of volume and its trace
the volume change of the body due to thermodynamic fl
tuations. Equation~17! is derived by considering the re
sponse of̂ Ui j & to infinitesimal external stress, treating ea
component ofUi j as an independent fluctuating variable.

Inserting the decomposition Eq.~13! into Eq. ~18! and
using the orthogonality of the smoothly varying and singu
parts Eq.~14! we get

~lR
21! i j kl 5~l21! i j kl 1

1

VT
^Ui j

disUkl
dis&, ~19!

where Ui j
dis is the dislocation contribution toUi j and the

tensor

~l21! i j kl 5
1

VT K E d3xf i j ~x!E d3x8fkl~x8!L
5

1

4m S d ikd j l 1d i l d jk2
2n

11n
d i j dklD ~20!

is the inverse of the tensor of the bare elastic constants~16!,
i.e., (l21) i j kl lkl mn5

1
2 (d imd jn1d ind jm).

The application of Gauss’ theorem to Eq.~18! yields
e
de-

-

ic

x-

le.

-

r

Ui j
dis5E d3xui j

dis~x!, ui j
dis~x!5 1

2 ~wi j 1wji !,

wi j [
]uj

dis

]xi
. ~21!

Strictly speaking, this is valid only if there are no surfa
singularities, i.e., no dislocations that terminate on the s
face of the sample. However, the contribution from fin
loops that lie near the boundary is much smaller than tha
those inside the volume and becomes negligible in the th
modynamic limit. The argument breaks down in the prese
of a nonvanishing concentration of infinite dislocation lin
that terminate on the surface of the solid. As will be sho
in the following, in this case the solid is no longer able
sustain shear and liquidlike behavior results.

In principle, one can proceed as in Ref. 2 and decomp
Ui j

dis into a contribution of the smoothly varying part o

ui j
dis(x) @terms proportional tof̃C in Eq. ~8!#, and a contribu-

tion di j 1dji of the discontinuities@the term proportional to
ṽC in Eq. ~8!# across the surfaces$SC%

di j [(
C

biSj~C!, Sj~C![E
SC

d f j5
1

2
« jkl R

C
xkdxl ,

~22!

where « i jk is the antisymmetric unit tensor anddi j is the
dislocation moment tensor. The axial vectorS(C) has com-
ponents equal to the areas bounded by the projections o
loop C on planes perpendicular to the corresponding coo
nate axes.

Instead of using this decomposition, we relatewi j to the
configurations of the dislocation loops@i.e., to the dislocation
currentsj C defined in Eq.~12!#. We Fourier transform Eq
~8! to real space, apply the gradient to both sides of
equation and Fourier transform back toq space. Using the
relations Eqs.~6! and ~10! yields

w̃i j ~q!5Si j i 8 j 8~q!ã i 8 j 8~q!,

Si j i 8 j 8~q!5
i

q S d i j 8Cji 82
qi

q
« j i 8 j 81

1

12n

qiqj

q2
Ci 8 j 8D ,

~23!

where

Cjk[« jkmqm /q ~24!

and ã i 8 j 8(q) is the Fourier transform of the dislocatio
‘‘charge’’ tensor~we adopt the terminology of Ref. 5 sinc
the Burgers vector can be considered as a topolog
charge!, defined as the sum over the contributions of diffe
ent loops, each of which is the product of the dislocati
current by the corresponding Burgers vector

a i j ~x!5(
C

j i
C~x!bj

C . ~25!

Thus, the dislocation charge tensor contains complete in
mation about the configurations of the loops, weighted by
appropriate Burgers vectors. Taking the trace of the ten
w̃i j , Eq. ~23!, we obtain
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w̃ii ~q!52
i

q

122n

12n
Ci 8 j 8ã i 8 j 8~q!. ~26!

Note thatwii describes the volume change due to the pr
ence of dislocations, which vanishes whenn5 1

2 ~incom-
pressible solid!.

Substituting Eq.~23! into Eq. ~21!, we finally get

1

V
^Ui j

disUkl
dis&5 lim

q→0
J ( i j ) (kl)~q!,

J i j kl ~q![Si j i 8 j 8~q!Skl k8 l 8~2q!D̃ i 8 j 8k8 l 8~q!, ~27!

where brackets (i j ) and (kl) denote symmetrization ove
indicesi j andkl respectively andD̃ i 8 j 8k8 l 8(q) is the Fourier
transform of the charge-charge correlation function

Di j kl ~x2x8![^a i j ~x!akl~x8!& ~28!

In the next section we calculate this correlation function
ing the field-theoretical formulation of the problem of inte
acting dislocation loops.

IV. GAUGE FIELD THEORY OF DISLOCATIONS

We proceed to evaluate the partition function of a so
that contains a given distribution of dislocation loops. T
presence of dislocation loops results in the distortion of
solid in which they are embedded. It is convenient to repl
the above ‘‘geometrical’’ picture of a deformed medium
that of interacting dislocation charges and to introduce a
cal field that mediates the~intra and interloop! interactions
between the segments of the dislocation loops, in close a
ogy to the role played by the electromagnetic field, wh
mediates the interaction between charges
electrodynamics.6,7 This is achieved by the following
Hubbard-Stratonovitch transformation10

exp~2Fel@udis#/T!5E Ds exp~ F̂@s#/T!

3expF 1

T (
C

E dxs ik~x!uik
C ~x!G .

~29!

HereFel@udis# is the elastic free energy,T is the temperature
and the integration goes over the stress-tensor-like fields ik
which is taken to be symmetric and divergenceless~this re-
duces the number of independent components ofs to three,
the number of components of the displacement vectorudis).
F̂@s# is the deformation energy for a givens ik :

F̂@s#5E d3x
1

4m S s ik
2 2

n

11n
s l l

2 D . ~30!

Note that in order for the integral, Eq.~29!, to be well
defined we have to integrate over a purely imaginary ten
field s ik . The steepest descent evaluation of this functio
integral ~which is exact for Gaussian integrals! is done by
deforming the integration contour from the imaginarys ik

axis, around the segment@0,s ik
dis(udis)# of the reals ik axis.
-

-

e
e

-

al-

n

or
l

The steepest descent value,s ik
dis(udis), can be identified with

the physical stress tensor, Eq.~5!.
A convenient parametrization of this field was propos

in Ref. 6

s ik5 i« i j l «kmn¹ j¹mhln5 iT« i j l ¹ jAlk

Alk[
1

T
«kmn¹mhln , ~31!

wherehln(x) is a real symmetric tensor field. By constru
tion, s ik , Alk, and F̂ are invariant under the local gaug
transformations

hik→hik2¹ iLk2¹kL i ,

Alk→Alk2¹ lwk , wk5
1

T
«kmn¹mLn , ~32!

whereL(x) is an arbitrary vector field. To integrate over th
fieldshik we must fix a gauge condition, which we choose
the form¹ ihik50. According to Eq.~31!, this condition cor-
responds to the ‘‘Coulomb’’ gauge¹ iAik50 and the free
energy~30! takes an especially simple form

F0@h#[2F̂@s#5E d3x
1

4m H ~Dhik!22
n

11n
~Dhll !

2J .

~33!

The term linear inuik
C in Eq. ~29! can rewritten in the form

E d3xs ikuik
C 5E d3xs ik¹ iuk

C

5E d3x¹ i~uk
Cs ik!5 iTbk

C R
C
dxlAlk ,

~34!

where we have used the condition¹ is ik50 to derive the
second equality in Eq.~34!. The last equality in this equation
was derived using Gauss’ theorem and noticing that since
normal component ofs ik vanishes on the boundary of th
solid, the only contribution to the integral comes from t
discontinuitybk

Cs ik of the functionuk
Cs ik at the surfaceSC .

The resulting surface integral of a curl@Eq. ~31!# can be
recast, using Stokes’ theorem, into a contour integral and
last equality in Eq.~34! follows. Using the definition~12! of
the dislocation current, Eq.~34! can be recast into a form tha
emphasizes the analogy with electromagnetism

1

TE d3xs ik~x!uik
C ~x!5 i E d3xAlk~x! j l

C~x!bk
C . ~35!

Changing the functional integration in Eq.~29! from s to
h and substituting Eqs.~33! and ~35!, we obtain

e2Fel[u
dis]/T5E Dhe2F0[h]/T1 i *d3xAlk(x)(Cj l

C(x)bk
C
. ~36!

Notice that all the dependence on the coordinates of the
location loops is contained in the second term in exponen
the rhs of Eq.~36!, which describes the deformation of th
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solid due to the presence of dislocations and accounts fo
the interactions~both intra and interloop! between the seg
ments of the dislocation loops.F0@h# is the free energy as
sociated with the usual thermal fluctuations of the so
~phonons! that are present even in the absence of dislo
tions. In the following we will use Eq.~36! to calculate the
correlation function of dislocation charges.

The charge-charge correlation functionDi j kl (x2x8), Eq.
~28!, can be expressed as a response function to an ext
field Aext,

Di j kl ~x2x8!52
d2 ln Z@Aext#

dAi j
ext~x!dAkl

ext~x8!
U

Aext50

, ~37!

whereZ@Aext# is obtained by replacingA→A1Aext in the
Boltzmann weight, Eq.~36!, and performing the trace ove
all the conformations of the loops

Z@Aext#[)
Nb

1

n~N,b!! E Dx

3E Dhe2F0[h]/T1 i *d3x(Alk1Alk
ext)(Cj l

Cbk
C
. ~38!

Here,n(N,b) is the number of dislocation loops with Bu
gers vectorb and contour lengthaN, with a the size of a
loop segment~the length of a bond in a lattice model of th
solid! andN the number of segments. The functional integ
tion *Dx is over the coordinates of the segments of the d
location loops$C%.

We proceed to calculate the partition function in the pr
ence of an infinitesimally small external fieldAext. Changing
the order of integration overh and over the loop coordinate
we arrive at the following expression

Z@Aext#5E Dhe2F0[h]/T)
Nb

~GNb@A1Aext# !n(N,b)

n~N,b!!
~39!

where

GNb@A1Aext#[E d3xGNb~x,xuA1Aext!. ~40!

The partition functionGNb(x,x8uA) of a dislocation line of
lengthN and Burgers vectorb ~with end pointsx andx8), on
a lattice with lattice constanta is calculated in Appendix A.

In the random phase approximation~RPA!, the partition
function of a dislocation is a Gaussian functional ofA
1Aext and the total partition function can be written in th
form

Z@Aext#5)
Nb

@VGN
0 ~0!#n(N,b)

n~N,b!! E Dhe2F[h]/T,

F@h#5F0@h#1
T

2E d3xE d3x8Dkl k8 l 8
0

~x2x8!

3@Akl~x!1Akl
ext~x!#@Ak8 l 8~x8!1Ak8 l 8

ext
~x8!#,

~41!
all

-

nal

-
-

-

where the partition function of a noninteracting loop,GN
0 (0),

is defined in Eq.~A4! of Appendix A.Dklk8 l 8
0 is the charge-

charge correlation function of noninteracting dislocatio
(A50),

Dkl k8 l 8
0

~x2x8!5(
Nb

n~N,b!blbl 8Dk k8
N

~x2x8!, ~42!

where Dk k8
N can be interpreted as the current–current c

relator of a noninteracting dislocation loop ofN segments.
The Fourier transform of this expression is calculated us
Eqs.~37!, ~41!, and~A9!. We obtain

D̃k k8
N

~q!5
1

V
Qkk8a

2Nd~a2q2N/8!, ~43!

where

Qkk8[dkk82qkqk8 /q2 ~44!

is the transverse projection operator that satisfiesQkk8qk
5Qkk8qk850, Qkk8Qk8 l5Qkl, and where

d~y![11 iAp

4y
e2y erf~ iAy!, ~45!

with erf denoting the error function.
Substituting Eq.~43! into Eq. ~42!, we get

D̃klk8 l 8
0

~q!5
a2

V
Qkk8(

Nb
n~N,b!Nblbl 8d~a2q2N/8!.

~46!

For an isotropic distribution of Burgers vectors,n(N,b)
5n(N,b), this reduces to

D̃kl k8 l 8
0

~q!5D~q!Qkk8d l l 8 ,

D~q!5
a2

3V (
Nb

n~N,b!Nb2d~a2q2N/8!. ~47!

In the long-wavelength limitq→0, we get from Eq.~43!

D~q!5Dq2, D5
a4

36V (
Nb

n~N,b!N2b2. ~48!

The vanishing ofD(q) in the limit q→0, is a consequence
of the relation* jC(x)d3x5rds(]x /ds)50 @see Eq.~12!#.

It is interesting to reflect on the physical meaning of t
above results. Note that sincej (x)5rds(]x /ds)d@x(s)
2x# is the tangent to a dislocation loop atx, Dkk8

N (x2x8)
5^ j k(x) j k8(x8)& is the correlator of the tangent vectors
two points on the dislocation loop~of N segments!, separated
by spatial distanceux2x8u. A large noninteracting disloca
tion loop obeys the same Gaussian statistics as a poly
chain in theta solvent, where one expects such correlation
decay on length scales comparable with the persiste
lengtha.11 Fourier transforming the expression forD̃kk8

N (q),

Eq. ~43!, we find that in the rangea!ux2x8u!aN1/2, the
correlation is given by~this result was first derived in Ref
12, in a study of interacting vortices in turbulent fluids!
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^ j k(r ) j k8~0…&;S 3r kr k8

r 5
2

dkk8

r 3 D . ~49!

Note that while the scalar product^ j (r )• j (0)& vanishes on
length scales larger than the persistence lengtha, the corre-
lation between different components of the tangent vec
decays as a power law and is therefore quite long rang
Since the only difference between our correlator and the
that appears in the usual calculation of the persistence le
of Gaussian chains is the condition that the loop must p
through both pointsx andx8, this imposes an unexpected
strong constraint on the set of possible chain conformatio
The conformations that make the dominant contribution
the correlator and lead to the appearance of long-range
entational correlations, are thus very different from the o
that dominate the ensemble of unconstrained Gaus
chains. Finally, as expected, the correlation decays expo
tially on length scales larger than the Gaussian chain s
reflecting the fact that the probability to find two segme
belonging to the same chain separated by distance larger
the average chain size, decreases exponentially
r 2/a2N.11

We return to the calculation of the charge-charge c
relator of interacting dislocation loops. The Gaussian p
integral ~41! can be calculated by introducing a shift of th
integration variableh̃ik(q)→h̃ik(q)1h̄ik(q), where h̄ik is
found from the condition of equilibrium of the solid in
given external fieldAext,

dF@h#

dh̃ik~2q!
50, F@h#[VTE d3q

~2p!3
f̃ ~q!. ~50!

Here, f̃ (q) is the Fourier transform of the free-energy dens

f̃ ~q!5
q4

4m F h̃ik~q!h̃ik~2q!2
n

11n
h̃l l ~q!h̃ j j ~2q!G

1
T

2
D~q!Qkk8@Ãkl~q!1Ãkl

ext~q!#@Ãk8 l~2q!

1Ãk8 l
ext

~2q!#1l iqk@ h̃ik~2q!1h̃ki~2q!# ~51!

andl i are Lagrange multipliers that enforce the ‘‘Coulom
gauge’’ constraintqkh̃ik5qkh̃ki50.

Upon some algebra we obtain

q2

m S h̄ik2
n

11n
Qikh̄ll D12

D~q!

T
h̄ik

52 i
D~q!

Tq
~Qil Ãl j

extCjk1QklÃl j
extCji !, ~52!

whereÃext is the Fourier transform of the functionAext and
Ci j is an antisymmetric tensor defined in Eq.~24!. The solu-
tion of these equations can be simplified by noticing that
matricesQ andC have the following group properties und
matrix multiplication

Q25Q, Q–C5C–Q5C, C252Q. ~53!
r
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Taking the trace of Eq.~52! and usingQii 52 and Qil Cji

5Cjl we calculate the trace ofh̄

h̄l l 52
i

q

2mD~q!/Tq2

12n12m~11n!D~q!/Tq2
. ~54!

Substituting this expression into Eq.~52!, we get

h̄ik52 i
R~q!

q
@Qil Ãl j

extCjk1QklÃl j
extCji 1S~q!QikÃl j

extCjl #,

R~q![
mD~q!/T

q212mD~q!/T
, ~55!

S~q![
2n

12n12m~11n!D~q!/Tq2
.

Performing the Gaussian integral in Eq.~41! and using
Eq. ~37! we obtain the following expression for the charg
charge correlation function of interacting dislocation loop

D̃ i j kl ~q!5D~q!$Qikd j l 2R~q!

3@QikQjl 1Ck jCil 1S~q!Ci j Ckl#%. ~56!

The first term in the curly brackets gives the contribution
noninteracting loops and the remaining terms@proportional
to R(q)] describe the ‘‘polarization’’ of the elastic medium
due to the interaction between the segments of disloca
loops. An alternative interpretation is to view the interacti
between the dislocation loops as mediated by phonons
this language,R represents the contribution of transver
phonons andS that of longitudinal phonons. SinceqiD̃ i j kl

5qkD̃i j kl 50, only transverse phonons couple directly to t
charge-charge correlator, and longitudinal phonons cont
ute only indirectly, through their coupling with the transver
ones@the RS term in Eq.~56!#. The appearance ofD in the
denominators ofR and S can be interpreted as a renorma
ization effect, which reduces the effective interaction b
tween the dislocations. Note that the polarization correct
vanishes in the limitq→` and therefore does not affect th
small-scale behavior of the charge-charge correlation fu
tion which is given by its bare valueD̃ i j kl

0 (q).
Dislocation-induced corrections to the elastic moduli

an isotropic solid have the following tensorial structure

1

V
^Ui j

disUkl
dis&5A1~d ikd j l 1d i l d jk!2A2d i j dkl . ~57!

The scalar functions

Ai5
D

112mD/T Fa i~n!2
2nb i~n!mD/T

12n12~11n!mD/TG , ~58!

were calculated in Appendix B@explicit expressions for the
coefficientsa i(n) and b i(n) are given in Eq.~B9!#. The
renormalized elastic moduli are obtained by inserting the
pressions in Eqs.~57!, ~58!, and~20! into Eq. ~19!

1

4mR
5

1

4m
1

A1

T
~59!
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1

4mR

2nR

11nR
5

1

4m

2n

11n
1

A2

T
. ~60!

In Fig. 1, we present a 3d plot of the scaled renormalize
shear modulus,mR /m, as a function ofmD/T andn. We find
that the modulus is a monotonically decreasing function
the concentration and size of dislocation loops and tha
approaches a finite limit when the average loop size diver
(D→`). This statement is valid as long as the size of
loops is smaller than the size of the sample. It is interes
to note that a qualitatively similar behavior of the she
modulus was predicted in the low-temperature phase ofd
solids.2

In Fig. 2 we plot the renormalized vs the bare Poiss
ratio of the solid, in the limitD→` ~the effect of disloca-
tions is maximized in this limit!. As expected, there is n
renormalization of the bare Poisson ratio of an incompre
ible (n5 1

2 ) or an unstable (n521) solid and the renormal
ization is rather small for intermediate values ofn. The pres-
ence of dislocations increases the Poisson ratio when
bare ratio is in the range;0.220.5 and decreases it fo
smaller values ofn.

The observation that the shear modulus remains finite
the presence of a finite concentration of dislocation loops
arbitrary finite size, deserves some explanation. The re
malization of the elastic moduli is determined by the lon
wavelength (q→0) limit of the charge-charge correlatio

FIG. 1. A three-dimensional plot of the renormalized she
modulusmR /m as a function of the bare Poisson ration and the
dimensionless parametermD/T.

FIG. 2. Plot of the renormalized Poisson rationR as a function
of the bare Poisson ration, for mD/T→`. The dottednR5n line is
drawn for comparison.
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functionD̃ i j kl (q), with D(q)5Dq2 @Eq. ~48!# andR(q) and
S(q) approaching constant values@Eq. ~55!#. Since D di-
verges with increasing loop size@see Eq.~48!#, strong renor-
malization of the elastic moduli is expected. This is pr
vented by the appearance ofD in the denominators ofR(q)
andS(q), which suppresses the phonon-mediated long-ra
interactions between the loops.

Does this mean that there is no dislocation-induced m
ing transition in 3d? A careful examination of the abov
argument shows that it breaks down if ‘‘open’’ dislocatio
lines that terminate on the boundaries of the solid, appea
the system. For example, let us consider the force on a
location with contourG, due to constant stresss inside the
solid

f5E
G
dx3~s•b!. ~61!

This expression vanishes for closed loops but remains fi
for open lines and since the force on a dislocation must v
ish in equilibrium, we conclude that the stress must van
inside the sample. This also means that in the presenc
open infinite dislocation lines, shear stress applied to the
face does not penetrate into the bulk of the sample and th
fore the system behaves as a~nonviscous! fluid. This screen-
ing of the stress is analogous to the expulsion of
magnetic field by a superconductor~Meissner effect13!.

Although this simple mechanical argument does not
count for the statistical nature of the problem, the conclus
that the system behaves as a liquid in the presence of infi
dislocation lines, remains valid even when fluctuations
taken into consideration. The presence of suchN→` lines
leads to the screening of interactions between dislocation
length scales larger than a screening length and is chara
istic of the ‘‘confining’’ phase14 in which there are no free
transverse phonons. The magnitude of this screening le
can be estimated as follows. Differentiating twice the dis
cation line energy, Eq.~A14! @Appendix~A!#, with respect to
Ã we obtain the following RPA expression for the curren
current correlator, valid for allqa!1,

D̃ ik
N ~q!5

a2N

V
Qik . ~62!

Fourier transformingQik back to coordinate space gives th
current-current correlator of a noninteracting loop, Eq.~49!.
The identity of the correlators follows from the observati
that, on length scales smaller than loop size, the segmen
not ‘‘know’’ whether they belong to a finite loop or to a
infinite line. Equation ~62! gives a q-independentD(q)
.af/3 where f is the volume fraction occupied by th
dislocation lines~we assumed that the distribution of Burge
vectors is isotropic and replaced the Burgers vector by
minimal value;a). The screening lengthl is obtained by
substituting this constant into the expression forR(q), Eq.
~55!, and demanding that the two terms in the denomina
of R(q) be equal forq51/l. This yields

l5
1

A2mD~q!/T
.aA T

ma3f
, ~63!

r
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In the presence of such strong screening, different dislo
tion lines contribute independently to the correla
^Ui j

disUkl
dis&. Since the characteristic displacement associa

with a dislocation line is of orderb, integrating over the
surface of the solid, Eq.~18!, yields Udis;L2b, whereL is
the size of the system~we omit tensor indices in this simpl
scaling estimate!. The dislocation correction to the invers
elastic modulus, Eq.~19!, scales as

1

V
^UdisUdis&;

1

L3
n~L2b!2;fL2, ~64!

wheren;fL3/N is the number of dislocation lines and w
have used the free Gaussian chain relation,N;L2. The di-
vergence of this correction with system size shows that
modulus is renormalized to zero when a nonvanishing c
centration of infinite dislocation lines appears in the syste
This conforms with the intuitive expectation that the syst
can not sustain shear in the presence of such dislocation
and should be considered as a liquid. Note, however, tha
real solids the motion of dislocations may be hampered
the presence of kinetic barriers and solidlike response
stress on experimentally relevant time scales may result e
in the presence of infinite dislocation lines.8

V. EQUILIBRIUM DISTRIBUTION OF DISLOCATIONS

Up to this point we have assumed that the distribution
dislocation loops is fixed, i.e., that dislocations are created
some irreversible method and that they can no longer
created or annihilated later on. The rationale behind this
proach is that since the core energy per bond in a typ
solid is of the order of few electron volts~far in excess of the
thermal energykBT), the probability of creating a dislocatio
loop by a thermal fluctuation is exponentially small8 and
dislocations are nonequilibrium entities. With this assum
tion there is a close analogy between the statistical physic
dislocation loops and that of polymer molecules, the che
cal structure of which is assumed to be fixed and only
conformational degrees of freedom are taken into consi
ation. The main simplification compared to the polymer ca
is the fact that dislocations can pass freely through each o
and therefore topological entanglements play no role in
conformational statistics of dislocation loops.

Despite the fact that dislocations in most solids are no
thermal origin, in this section we will follow the path of ou
predecessors4–7 and consider the free energy and the equil
rium distribution of dislocations. While this can be viewed
an formal exercise in equilibrium statistical mechanics, th
is a possibility that such a scenario can be realized in in
mediate phases of some ‘‘soft’’ solids. Potential candida
are the so-called ‘‘rotator’’ phases of normal alkanes,15 in
which shear moduli are at least two orders of magnitu
smaller than in the low-temperature crystalline phase.16

Assuming that dislocations reach thermal equilibriu
with respect to their loop sizes and Burgers vectors~this is
possible only if the core energy per segment is not m
larger thenkBT), the equilibrium value ofn(N,b) is ob-
tained by minimizing the free energy,F52T ln Z, where the
partition function of the system of interacting dislocations
defined in Eq.~41!. To eliminate the divergence of th
a-
r
d

e
-
.

es
in
y
to
en

f
y
e

p-
al

-
of
i-
e
r-
e
er
e

f

-

e
r-
s

e

h

Gaussian integrals in Eq.~41!, we introduce a cutoff at wave
vectorq0*1/a and add core energyEb(q0) per segment of a
dislocation loop with Burgers vectorb, to the free energy.
This core energy accounts for interactions between loop s
ments separated by spatial distances smaller than 1/q0. We
arrive at the following expression for the excess free ene
in the presence of dislocations with a given distributi
n(N,b)

F5(
Nb

n~N,b!FT ln
n~N,b!

eVGN
0 ~0!

1Eb~q0!NG
1VTE

uqu,q0

d3q

~2p!3 H lnF11
2mD~q!

Tq2 G
1

1

2
lnF11

2mD~q!

Tq2

11n

12nG J , ~65!

where the functionD(q) is defined in Eq.~47!. The first
logarithmic term describes the translational and conform
tional entropy of the loops. The two logarithmic terms und
the integral account for both the intra and the interloop
teractions between the dislocations.

Minimizing the above free energy subject to the relati
betweenD(q) and n(N,b), Eq. ~47!, and substituting the
expression forGN

0 (0), Eq. ~A4!, we find the equilibrium
value ofn(N,b)

neq~N,b;T!5
VzN

~2pa2N!3/2
e2Eb

RN/T, ~66!

wherez is the coordination numberr of the lattice and

Eb
R5Eb~q0!1

ma2b2q0

9p2 H 32n

12n
2CnF2mD~q0!

Tq0
2 G 1/2J ,

Cn[21S 11n

12n D 3/2

~67!

can be regarded as a renormalized core energy. In deri
Eqs. ~66! and ~67!, we used the approximation
mD(q0)/Tq0

2!1, which is equivalent to the condition of va
lidity of the RPA.

Following the renormalization group approach,10 we de-
fine the ‘‘bare’’ core energyEb

bare into which we adsorb all
the details of the small-scale behavior

Eb~q0!5Eb
bare2

ma2b2q0

9p2

32n

12n
. ~68!

Substituting Eq.~68! into Eq. ~67!, we get

Eb
R5Eb

bare2Cn

ma2b2

9p2 F2
m

T
D~q0!G1/2

. ~69!

The energyEb
bare.mab2 accounts for deviations from th

linear theory of elasticity in the strongly deformed regio
associated with the core of a dislocation, and does not
pend on the distribution$n(N,b)%. The second term on the
rhs of Eq.~69! gives the contribution of effective interaction
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between non-neighboring segments of a loop, that can
described in the framework of the linear theory of elastici
Although the interaction between the segments can be re
sive or attractive depending on their relative orientation a
the direction of the Burgers vector, configurations in whi
the interaction is attractive will have a larger Boltzma
weight and the resulting effective interaction will be attra
tive, thus reducing the core energy, Eq.~69!. Note that
within the domain of validity of the RPA, corrections to th
bare core energy due to fluctuation-induced attractions
tween segments of loops are small and thereforeEb

R is of
orderEb

bare .
Using the same renormalization procedure for the f

energy, Eq.~65!, we find

F5(
Nb

n~N,b!FT ln
n~N,b!

eVGN
0 ~0!

1Eb
bareNG

2Cn

VT

6p2 F2
m

T
D~q0!G3/2

, ~70!

where the last term is due to fluctuation corrections wh
reduce the free energy.

Substituting Eq.~66! into Eq. ~48! we obtain a closed-
form equation for the parameterD(q0) ~which does not de-
pend on the cutoffq0)

D~q0!5
a2

3V (
Nb

neq~N,b;T!Nb2. ~71!

Inserting this expression into Eq.~70! we find that the fluc-
tuation correction to the free energy scales with the3

2 power
of the concentration of dislocation segments, in agreem
with the result of Edwards and Warner.4 In principle, one can
use the thermodynamic free energy, Eq.~70!, to study the
dislocation-induced melting transition. This was done in R
4 and will not be repeated here. Instead, we will go beyo
the random phase approximation and study the hitherto
glected effect of fluctuation-induced attractions on the c
formation of dislocation loops.

VI. FLUCTUATION EFFECTS ON LOOP
CONFORMATION

In the preceding sections we used the random phase
proximation ~assuming Gaussian statistics of dislocati
loops! and found that this approximation is selfconsistent
the parameter range

ma2

T
D~q0!5

ma4

3TV (
Nb

neq~N,b;T!Nb2!1, ~72!

which can be interpreted as the Ginsburg criterion10 for our
system. Defining the average volume fraction of loop s
ments asf and assuming that only the smallest Burge
vectors (b.a) contribute to the sum, this criterion can b
rewritten as

ma3

T
f!1, f[

a3

V (
N

neq~N;T!N, ~73!
be
.
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which states that the average interaction energy between
location segments is much smaller than the thermal ene
Since for most solidsma3@T throughout the physical rang
of parameters, RPA applies only at very small dislocat
densities.

Inspection of Eq.~73! shows that, for a given concentra
tion of dislocations, the RPA breaks down at sufficiently lo
temperatures. The situation is reversed in equilibrium~with
respect to formation and annihilation of dislocations!, since
the equilibrium concentration of dislocations increases ex
nentially with temperature@see Eq.~66!#. The breakdown of
RPA occurs when fluctuation-induced attractions betwe
segments overcome the conformational entropy of the loo
and the random walk configurations of large loops are
placed by more compact ones. The physical origin of t
effective attraction was discussed in the preceding sect
while the interaction between loop segments may be ei
attractive or repulsive, depending on the relative orientat
of their directors~tangents to the loops!, Burgers vectors and
relative separation, conformations in which intersegment
tractions dominate have a higher Boltzmann weight and
cur more frequently in the process of thermodynamic flu
tuations. In this section, we use a variational approach
study the change of conformational statistics of the loo
produced by this effective attraction. In Appendix C w
present a perturbative analysis of the effect of intersegm
attractions on the radii of gyration of dislocation loops a
show that the results are in good agreement with those of
variational calculation.

We begin with the exact expression for the partition fun
tion of a loop in the presence of a ‘‘potential’’~tensor! field
A(x) @see Appendix~A!#,

GNb@A#5 R Dx expH 2
1

2a2E0

NS ]x

]s D 2

ds

2 i R dx~s!•A@x~s!#•bJ
[ R Dx exp~2H@xuA# !, ~74!

where the second equality defines the effective Hamilton
H. We approximate this partition function by the followin
trial function

GNb
tr @A#5 R Dx expF2(

i

1

2ai
2E0

NS ]xi

]s D 2

dsG
3 H12 i R dx~s!•A@x~s!#•bJ

[ R Dx exp~2Htr@xuA# !. ~75!

The trial HamiltonianHtr is defined by the second equality
The renormalized statistical segment lengthsai depend on
the potential field and will be determined selfconsisten
later on. Because of the mean-field character of our va
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tional procedure the loop dimensions are those of an an
tropic Gaussian random walk, i.e.,^Ri

2& tr5ai
2N along thei

axis ($ i %5x,y,z).
To calculate the partition function~74! we use the follow-

ing variational principle10

ln GNb@A#> ln GNb
tr @A#2^H@xuA#2Htr@xuA#& tr , ~76!

where the averaging is taken with the trial Hamiltonian E
~75!. We will use the right-hand side of Eq.~76! as an ap-
proximation to the exact lnGNb , with parametersai , which
minimize the free energy. Expanding it to the second orde
A we get~see Appendix A!

ln GNb@A#. ln VGN~0!2(
i

F ln
ai

a
1

1

2
2

1

2 S ai

a D 2G
2

~aR!2N

2V E d3q

~2p!3
dF ~aR!2q2N

8 G
3QnmblbkÃnl~q!Ãmk~2q!, ~77!

with (aR)25 1
3 ( iai

2 .
We shall not repeat the derivation of the free energy a

show only the final expression

F5(
Nb

n~N,b!H T ln
n~N,b!

eVGN
0 ~0!

1Eb
bareN

1T(
i

F ln l i
Nb1

1

2
2

1

2
~l i

Nb!2G J
2Cn

VT

6p2 F2
m

T
Dvar~q0!G3/2

, ~78!

where l i
Nb[ai

Nb/a5^(Ri
Nb)2&1/2/(aN1/2) are the compres

sion coefficients of a loop ofN segments and Burgers vect
b and

Dvar~q0!5
a2

3V (
Nb

1

3 (
i

~l i
Nb!2n~N,b!Nb2. ~79!

Note that the RPA corresponds to the choicel i
Nb51. Here,

we determine these coefficients from the condition that t
minimize the free energy Eq.~78!

1

~lNb!2
511Cn

ma2b2N

9p2T
F2

m

T
Dvar~q0!G1/2

, ~80!

whereCn is defined in Eq.~67! andl i
Nb5lNb. This expres-

sion agrees~within few percent! with the perturbative resul
in Appendix C.

Since lNb,1, we conclude that fluctuation-induced a
traction between segments leads to isotropic compressio
the radii of gyration of the loops compared to their unp
turbed Gaussian dimensions. Within our approximation,
compression increases with loop size and with average
centration of dislocations. One can easily show, using
~80!, that the condition of validity of the variational theor
becomes
o-

.

in

d

y

of
-
e
n-
q.

2
ma2

T
Dvar~q0!5H 6p2a3

CnV (
Nb

n~N,b!@12~lNb!2#J 2/3

!1.

~81!

Note that unlike the criterion for the validity of the RPA
which involves the density of segments, the above criter
for the validity of the variational approach involves the f
smaller density of loops and therefore has a much broa
domain of applicability.

The renormalized elastic moduli are defined by Eqs.~59!
and ~60!, where the coefficientsAi are given by Eqs.~58!
with the substitution

D→Dvar5
a4

36V (
Nb

~lNb!4n~N,b!N2b2. ~82!

Since the renormalized shear modulusmR is a monotonically
decreasing function ofD, we conclude that the RPA overes
timates the dislocation-induced suppression of the sh
modulus. Although our variational estimate is by no mea
exact, it suggests that fluctuations tend to reduce the effe
the dislocations on the elastic constants of the solid. N
that Fig. 1 remains unchanged provided we replace the v
ablemD/T by mDvar /T.

VII. DISCUSSION

In this paper, we studied the physics of interacting dis
cation loops and their effect on the elastic moduli of isot
pic solids. We found that while the Poisson ratio can eith
increase or decrease in the presence of dislocations dep
ing on its ‘‘bare’’ value, the shear modulus decreases mo
tonically to a finite limiting value with increasing concentr
tion and size of the loops. The conclusion that an arbitr
concentration of finite dislocation loops in a solid has a re
tively minor effect on the elastic moduli is quite unexpecte
Inspection of the derivation shows that this is a conseque
of the fact that the renormalization of the moduli depends
the interplay of two opposing effects: while the introductio
of additional dislocations increases the correlations betw
the ‘‘charges,’’ it also enhances the screening of their int
actions. These two effects largely cancel each other a
therefore, within the limits of validity of our model, the she
modulus does not vanish when the concentation of fin
loops increases.

Even though the physics of topological defects appear
be very different in 2 and in 3d, our prediction that the shea
modulus vanishes and the solid undergoes dislocat
induced melting only when infinite dislocation lines appe
in the sample, agrees with that of Ref. 2 for 2d solids. In the
final analysis, the physics of fluctuating loops may be n
very different from that of that of vortices; due to the lon
range vectorial correlations between segments of a dislo
tion loop, its partition function is dominated by configur
tions in which the forces between the segments
predominantly attractive and, in this sense, a single dislo
tion loop resembles a vortex-antivortex pair. Furthermo
while there is no vortex unbinding transition in 3d, both the
Kosterlitz-Thouless transition in 2d and the appearance o
infinite dislocation lines in 3d, are closely related to the
screening of interactions between topological defects.

Are our results relevant to real solids? In principle, o
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could prepare solids with different concentrations of dislo
tions and study their response to small applied deformat
As long as the dimensionless parametermD/T
.(ma3/T)fN̄ is much smaller then unity (f is the volume
fraction of sites occupied by dislocation loops andN̄ is the
average loop size!, we predict that the shear modulus is n
affected by the presence of dislocations. Indeed, while di
cations are known to control the response of solids to la
applied stresses and account for plastic flow and limit
strength of materials,17 they have little effect on the shea
modulus, which determines the response to infinitesim
stresses.18 We expect the renormalization of the shear mod
lus to become significant only when the above dimension
parameter becomes of order unity. The prospects for exp
mental observation of this phenomenon are unclear bec
of the difficulty of controlling the distribution of disloca
tions.

Another issue that should be kept in mind when cons
ering the application of our results to real solids is that
time scales. Experimental studies of the response of the s
to external perturbations on time scales smaller than tha
which rearrangement and deformation of dislocation loo
takes place~e.g., instantaneous measurement of stress
lowing step strain!, measure the ‘‘adiabatic’’~bare! modulus
m. In order to measure the ‘‘isothermal’’~renormalized!
shear modulusmR one has to monitor the elastic response
time scales longer than the relaxation times associated
the kinetics of dislocations. Whether such time scales
experimentally accessible or not, depends on the tempera
and on the height of the corresponding kinetic barrier17

Consideration of such issues is outside the scope of
present work.

We would like to discuss our model assumptions rega
ing the distribution of dislocations in a solid. Application o
the methods of equilibrium statistical physics to the probl
of topological defects in 3d crystalline solids is somewha
artificial in view of the fact that the core energies of the
defects are normally much higher than thermal energies
therefore there should be almost no dislocations in a soli
true thermal equilibrium. In this paper we assumed tha
given distribution of dislocations was produced by so
nonequilibrium process such as nonequilibrium crys
growth or application of large stresses to the sample.
though we allowed the dislocation loops to move and cha
their conformation in the process of thermal fluctuations,
did not consider the higher energy~and therefore less prob
able! events of creation and annihilation of dislocation loo
and changes of their contour length. While plausible, th
model assumptions were motivated mainly by considerati
of simplicity and the wish to maintain as close an analogy
possible with polymer physics, in order to benefit from t
well-developed theoretical tools in this field.

In order to decide what kind of systems are the best c
didates for observing some of the phenomena predicted
our theory, one has to ask the following question: in wh
type of solids is the energy of topological defects sufficien
low for thermal effects to play an important role? Since d
locations can be easily created on the surface of a cry
they are expected to affect the physical properties of sm
particles and it is possible that they play a role in the o
served surface melting of nanocrystals.19 Equilibrium defects
-
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can arise in soft solids such as, for example, rotator phase
alkanes16 and colloidal crystals. More exotic candidates a
amorphous solids and glasses in which disclinations of
unusual type~Rivier lines20! are possible. Since the underly
ing symmetry is that of rotations in 3d, a field-theoretical
description of these topological defects involves a Yan
Mills-type theory of non-Abelian gauge fields20 and its
physical consequences remain to be elucidated.
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APPENDIX A: PARTITION FUNCTION
OF DISLOCATIONS

1. Finite loops

We calculate the partition function of a dislocation loo
of N segments~of length a each! and Burgers vectorb,
placed on a lattice with lattice constanta. We find the fol-
lowing recurrence relation

GN11b@x,x8uA#5(
a

e2 ia–A(x)•bGNb@x1a,x8uA#

5(
a

ea–[“2 iA(x)•b]GNb@x,x8uA#, ~A1!

whereA•b is a vector with componentsAi j bj and the sum-
mation is overz nearest neighbors on the lattice. In th
continuum limit, Eq.~A1! reduces to the following differen
tial equation for the partition function

F ]

]N
2 ln z2

a2

2
~¹2 iA•b!2GGNb@x,x8uA#50, ~A2!

with the initial condition

lim
N→0

GNb@x,x8uA#5d~x2x8!. ~A3!

The solution forA50 is well known in polymer physics,11

GN
0 ~x2x8!5

zN

~2pa2N!3/2
expF2

~x2x8!2

2a2N
G . ~A4!

In order to obtain the solution forAÞ0 we notice that Eq.
~A2! can be recast into the following integrodifferenti
equation

GNb@x,x8uA#5GN
0 @x2x8#2

a2

2 E
0

N

dN8E d3yGN2N8
0

~x2y!

3$2iAi j ~y!bj¹ i1 i @¹ iAi j ~y!#bj

1Ai j ~y!Aik~y!bjbk%GN8b@y,x8uA#. ~A5!
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This equation can be solved perturbatively by expanding
right-hand side to second order inA. We then Fourier trans
form Ai j ~the corresponding Fourier components are deno
by Ãi j ), setx5x8 and integrate overx using the Feynman
Kac relation

E d3xGN2N8
0

~x12x!GN8
0

~x2x2!5GN
0 ~x12x2! ~A6!

and the integral relation~valid for an arbitrary functionf )

E
0

N

dN8E
0

N8
dN9 f ~N9!5E

0

N

ds~N2s! f ~s!. ~A7!

Since we want to calculate the contribution of the loop p
tition function to the free energy, we take the logarithm
both sides of Eq.~A5! and, expanding the logarithm to orde
A2 we obtain

ln
1

VGN
0 ~0!

E d3xGNb@x,xuA#

52
a2

2VE d3q

~2p!3
Ãnl~q!Ãmk~2q!blbk

3H dnmN2
a2

2GN
0 ~0!

E
0

N

ds~N2s!E d3xeiq–x

3S iqn2
2xn

a2s
D F iqm2

2xm

a2~N2s!
GGs

0~x!GN2s
0 ~x!J .

~A8!

Calculating the integrals overx ands, we get

ln
GNb@A#

VGN
0 ~0!

52
a2N

2V E d3q

~2p!3
dS a2q2N

8 D
3QnmblbkÃnl~q!Ãmk~2q!, ~A9!

where d(y)[11 iAp/4ye2y erf(iAy) and erf is the error
function.Qnm is the transverse projection operator defined
Eq. ~44!.

2. Infinite lines

The general solution of Eq.~A2! for the partition function
of a dislocation line with ends at pointsx and x8 can be
represented in the form

GNb@x,x8uA#5zN(
r

c r* ~x!c r~x8!e2erN, ~A10!

wherec r(x) are the normalized solutions of the eigenval
equation

2
a2

2
~¹2 iA–b!2c r~x!5earc r~x!,

E c r* ~x!cs~x!d3x5d rs . ~A11!
e

d

-
f

For lines of infinite length,N→`, only the ground stater
50 contributes to the sum in Eq.~A10!.

The partition function of an infinite dislocation line wit
end points on the surface of the solidGb@A#, can be obtained
by integrating over the surface coordinates of both ends.
to 1/N corrections this gives

ln Gb@A#[N ln z2Ne0@A#. ~A12!

Note that the eigenvaluee0@A# can be found from the varia
tional principle

e0@A#5min
c0

E d3x
a2

2
u~¹2 iA–b!c0u2, E d3xuc0u251.

~A13!

Expanding this function in powers ofA we find the energy of
an infinite line with finite densityN/V of occupied bonds

e0@A#5
a2N

2V E d3q

~2p!3
QnmblbkÃnl~q!Ãmk~2q!.

~A14!

APPENDIX B: CALCULATION OF RENORMALIZED
MODULI

In an isotropic homogeneous medium the correla
^Ui j

disUkl
dis& defining the renormalization of elastic modu

tensor~19! has the following tensor structure

1

V
^Ui j

disUkl
dis&5A1~d ikd j l 1d i l d jk!2A2d i j dkl . ~B1!

To find the constantsAi we consider different contractions o
the tensor~B1!

I[
1

V
^Uii

disUkk
dis&56A129A2

J[
1

V
^Ui j

disUi j
dis&512A123A2

in terms of whichAi can be expressed as

A15~3J2I !/30, A25~J22I !/15. ~B2!

We now proceed to calculateI andJ.
We begin with the calculation ofJ by substituting Eqs.

~23! and ~56! into ~27!

J i j i j ~q!5S d i j 8Cji 82
qi

q
« j i 8 j 81

1

12n

qiqj

q2
Ci 8 j 8D

3S d i l 8Cjk82
qi

q
« jk8 l 81

1

12n

qiqj

q2
Ck8 l 8D

3D$Qi 8k8d j 8 l 82R~q!@Qi 8k8Qj 8 l 8

1Ck8 j 8Ci 8 l 81S~q!Ci 8 j 8Ck8 l 8#%, ~B3!

where the constantD is defined in Eq.~48!. Multiplying the
expressions in the first two brackets and evaluating the tr
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over the indicesi andj @here and in the following we use th
group multiplication properties of the matricesC andQ, Eq.
~53!# yields

d j 8 l 8Qi 8k82
ql 8
q

« j i 8 j 8Cjk82
qj 8
q

« jk8 l 8Cji 8

1d i 8k8d j 8 l 82d i 8 l 8d j 8k82
122n

~12n!2
Ci 8 j 8Ck8 l 8 .

~B4!

Multiplying this expression by the expression in the squ
brackets in Eq.~B3! and tracing over the remaining indice
we obtain

J i j i j ~q!

D
5622

122n

~12n!2
2R~q!H 1024

122n

~12n!2

1S~q!F624
122n

~12n!2G J . ~B5!

Repeating the same steps, we calculateJ i j j i (q)

J i j j i ~q!

D
5422

122n

~12n!2
2R~q!H 1024

122n

~12n!2

1S~q!F624
122n

~12n!2G J . ~B6!

Note that since the above expressions do not depend on
direction of the wave vectorq, the limit q→0 can be taken
by substituting the corresponding limiting values ofR andS
instead of functionsR(q) andS(q)

J5
1

2
lim
q˜0

@J i j i j ~q!1J i j j i ~q!#

5DF522
122n

~12n!2G ~122R!22DRSF322
122n

~12n!2G .

~B7!

The calculation ofI proceeds in a similar fashion. After som
algebra we obtain

I 5 lim
q˜0

J i i j j ~q!5D
~122n!2

~12n!2
@2~122R!24RS#.

~B8!

Substituting the expressions forI andJ into Eq. ~B2! yields

Ai5
D

112mD/T Fa i~n!2
2nb i~n!mD/T

12n12~11n!mD/TG ,
~B9!

where

a1~n!5
1

2
2

2

15

~122n!~22n!

~12n!2
,

e

the

a2~n!5
1

3
2

2

15

~122n!~324n!

~12n!2
, ~B10!

b1~n!5
3

5
2

4

15

~122n!~22n!

~12n!2
,

b2~n!5
2

5
2

4

15

~122n!~324n!

~12n!2
.

APPENDIX C: RADII OF GYRATION OF INTERACTING
DISLOCATION LOOPS

The i th (i 5x,y,z) component of the radius of gyration o
a dislocation loop is defined by

Rgi
2 5K Fxi~0!2

1

NE0

N

xi~s!dsG2L . ~C1!

To calculate it we use the following chain of equalities

xi~0!2
1

NE0

N

xi~s!ds5
1

NE0

N

@xi~0!2xi~s!#ds

52
1

NE0

N

dsE
0

s

ds8
]xi~s!

]s8

52E
0

N

dsS 12
s

ND ]xi~s!

]s8
, ~C2!

where the last equality follows from Eq.~A7!. Substituting
Eq. ~C2! into Eq. ~C1! we find

Rgi
2 52

]2 ln GN0
B @A#

]Bi
2 U

B50

, GN0
B @A#[E d3xGN0

B @x,xuA#,

~C3!

where the vectorB(s) has componentsBi(s)5Bi(12s/N)
and the partition function

Gss8
B

@x,x8uA#5E
x(s8)5x8

x(s)5x
Dx expH 2E

s8

s

dsF]x~s!

]s G2

1 i E
s8

s

ds
]x~s!

]s
•@B~s!1A„x~s!…•b#J

~C4!

obeys the differential equation

H ]

]s
2 ln z2

a2

2
@¹2 iB~s!2 iA•b#2J Gss8

B
@x,x8uA#50

~C5!

for s.s8 with the initial condition

lim
s→s8

Gss8
B

@x,x8uB#5d~x2x8!. ~C6!

Note that since the vectorB(s) depends explicitly ons, Gss8
B

is a function of boths ands8 ~and not only of the difference
s2s8).
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Equation~C5! can be rewritten in a gauge-invariant for
by introducing the functionĜss8

B :

Gss8
B

@x,x8uA#5Ĝss8
B

@x,x8uÂ#exp@ if~x!•b2 if~x8!•b#
~C7!

with ¹2f(x)5¹•A(x). The function Ĝss8
B

@x,x8uÂ# obeys

Eq. ~C5! with the substitutionA˜Â5A2¹•f.
We are looking for the solution of this equation forA

50 in the form

Gss8
B

~x!5Gs2s8
0

~x!exp@ iB–xa~s,s8!2B2a2b~s,s8!/2#,
~C8!

where the partition functionGN
0 (x) is defined in Eq.~A4!.

Substituting Eq.~C8! into Eq. ~C5! we get the following
differential equations for functionsa(s,s8) andb(s,s8)

s]a~s,s8!/]s1a~s,s8!211s/N50,

]b~s,s8!/]s5@a~s,s8!211s/N#2 ~C9!

with boundary conditions

lim
s→s8

a~s,s8!512s8/N, lim
s→s8

b~s,s8!50. ~C10!

The solution is

a~s,s8!512
s

2N
2

~s8!2

2sN
,

~C11!

b~s,s8!5
1

12

~s13s8!~s2s8!3

N2s
.

Substituting Eqs.~C8! and ~C11! into ~C3! we reproduce
the well-known expression for the gyration radius of t
Gaussian chain

Rgi
2 5

1

12
a2N. ~C12!

In the case of interacting loops, Eq.~C3! for the radius of
gyration is generalized by

Rgi
2 5

1

T

]2F

]Bi
2U

B50

, ~C13!

where the fieldB(s) acts on a ‘‘test’’ loop of lengthN and
Burgers vectorb. We now have to find the partition functio
of the test loop in the given fieldsB(s) andA. Recasting Eq.
~A2! into the integrodifferential form we get
ĜN0b
B @x,x8uÂ#5GN0

B ~x2x8!2
a2

2 E
0

N

dN8E d3yGNN8
B

~x2y!

3$2iÂ i j ~y!bj¹ i1 i @¹ i Âi j ~y!#bj

1Âi j ~y!Âik~y!bjbk

12Bi~N8!Âik~y!bk%ĜN80b
B

@y,x8uÂ#. ~C14!

Assuming that the fieldÂ varies on scales small with respe
to the radius of gyrationRg of the loop, we can substitute th
unperturbed functionGN80

B in the rhs of Eq.~C14! and get

ĜN0b
B @Â#5GN0

B ~0!V2
a2I N~B!

2 E d3q

~2p!3

3Ãi j ~q!Ãkl~2q!Qikbjbl ,

I N~B!5E
0

N

dN8E d3xGNN8
B

~x!GN80
B

~2x!. ~C15!

Calculating the integralsI N(B) we find

I N~B!5
1

~2pa2N!3/2E0

N

dN8

3expH 2
B2a2

2
@N8~N2N8!/N„a~N,N8!

2a~N8,0!…21b~N,N8!1b~N8,0!#J . ~C16!

We assume that the external fieldB can not affect the bare
core energyEb

bare per lattice bond and conclude that the fr
energyF is defined by expression~70! with the renormalized
parameter

DR~q0!5
a2

3V F (
N8b8

n~N8,b8!N8~b8!21I N~B!b2G .

~C17!

Taking the derivatives in Eq.~C13! we find

Rgi
2 5

1

12
a2NH 12

17

35
Cn

ma2b2N

3pT F2
m

T
DR~q0!G1/2J .

~C18!

The numerical coefficient in front of the above correction
the Gaussian chain result nearly coincides~within few per-
cent! with that given by the variational procedure~expanded
to lowest order in the perturbation!. This suggests that the
variational procedure gives a reasonable estimate of the
of large loops even when the perturbation result~C18! is no
longer valid.
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