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Statistical physics of interacting dislocation loops and their effect
on the elastic moduli of isotropic solids
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Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 7 August 1998

We present a field-theoretical study of interacting dislocation loops and their effect on the elastic moduli of
isotropic three-dimensional solids. We find that the shear modulus decreases to a finite limit with increasing
density and size of dislocation loops and vanishes only with the appearance of open dislocation lines that
terminate on the boundaries of the sample. Using the random phase approximation, we analyze the correlations
of dislocation “charges” and “currents” and show that interaction between dislocations leads to screening of
long-range correlations. Variational and perturbative methods are used to show that fluctuation-induced attrac-
tion between segments of dislocation loops leads to the shrinking of the radii of gyration of loops compared to
their Gaussian dimensions. The applicability of our model assumptions to real solids is discussed.
[S0163-18299)03121-5

[. INTRODUCTION In Sec. Il, we present a brief review of the continuum

theory of dislocations in isotropic solids. In Sec. I, we show
Following the pioneering work of Kosterlitz and that the renormalization of the tensor of elastic constants due
Thoules$ on vortex unbinding in they model, the statisti- to the presence of dislocations can be reduced to the calcu-

cal physics of topological defects in solids attracted considlation of the correlation function of dislocation “charges.”
erable attention in the theoretical physics community. Al-The charge-charge correlation function of noninteracting dis-
though the original work as well as its extension tolocations is calculated in Appendix A. In Sec. IV, we intro-
dislocation-induced melting of solids by Nelson and duqe a f!eld—thgoretlcal formula‘uon_of the problem of inter-
acting dislocation loops and use it to study the effect of

ideas can be applied to the melting od 8rystals? Using a !‘ong-rang”e mte:‘ractlons ”on the correlations of dlsloc_atlon
currents” and “charges” and to calculate the renormalized

simplified form for the interaction between dislocations to . Co .
. . . elastic moduli within the random phase approximatide-
construct a free energy as a function of the dislocation den

) . tails of the calculation are given in Appendix.Bn Sec. V
§|ty, Edyvards and Warn‘éshowed that_ the screening Of Fhe we derive the free energy and calculate the equilibrium dis-
interaction leads to a first-order solid-to-liquid transition.

X tribution of dislocations. In Sec. VI, we use a variational
Nelson and Tonérassgmed that such melting does takegnhr6ach to study the fluctuation-induced attraction between
place and showed that it leads to a liquid state that has SOM&gments of dislocation loops and estimate the resulting
degree of orientational order. A first-order melting ”a”SitiO”compression of the loops and its effect on the thermodynam-
was also prediCted USing field-theoretical methods that Utii’cs and the elastic moduli. In Appendix C’ we present a per-
lized the analogy with electrodynamic¢the interaction be- turbative calculation of the interaction-induced corrections to
tween dislocations is mediated by the stress field, just likehe radii of gyration of large dislocation loops and show that
the interaction between currents is mediated by the magnetitie results are in good agreement with the variational esti-
field) by Kleinerf and by ObukhoV. All of the above- mate of Sec. VI. Finally, in Sec. VIl we discuss the main
mentioned works were primarily concerned with the analysigesults of this paper and comment on its experimental rami-
of the dislocation-induced melting transition and of its con-fications.
sequences and a thermal distribution of dislocations was al-
ways assumed. Note, however, that since in most solids the
core energies of dislocations far exceed the available thermal
energy, such defects can not be produced by thermal we begin with a review of the main results of the con-
fluctuations? tinuum theory of dislocations in homogeneous and isotropic
Here, we take a different path. Throughout most of thissolids® Within the framework of the linear theory of elastic-
paper it is assumed that some given distribution of dislocaity, the free energy is given by
tions (in terms of their lengths and Burgers vecjoisfixed
by some nonequilibrium method of preparation, and that
thermal equilibrium is attained only with respect to the con- Folul= ﬁf d3x
formations of the dislocations and their positions in the solid. 2
We then proceed to analyze the effect of this distribution of
dislocations on the elastic moduli of the solid and, in thewhereyu is the shear modulus; is the Poisson ratio, and the
process, obtain interesting insights into the physics of interstrain tensou; is defined in terms of the displacement field
acting dislocation loops. u(x)

Halperirf was restricted to @, there was hope that similar

IIl. CONTINUUM THEORY OF DISLOCATIONS

14
2 2
Uj + 1=, i
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1
Uik=5

du;j  Juy The nonuniqueness of the functiaff is contained en-
O"Xk &Xi )

@ tirely in the termw®. The Fourier transform of the gradient

) ) ~ of w® is determined by the configuration of the dislocation
Here and later the usual summation convention regardinge

repeated indices is used.

We now consider the equilibrium state of the solid, with . i
no externally applied stress on its surface. In the absence of f d3xe"q'XVwC=—2q><jC(q). (10
dislocations the stress and the displacement fields vanish ev- q
erywhere inside the solid. The introduction of dislocationsygie that for finite-size loops the functias® is 1/4 of the
results in singularities in the stress field and the displacemeny,)ig angleQC(x) through which the loop is seen from the
field ud's(x) becomes a multivalued function &f The con- point x
tour integral ofu’S(x) taken around the dislocation line is '

the Burgers vectob of the dislocatiofi (x—=x")
QC(x)=- -df’ (11
‘ sclx—x'®
dud’s=—p (3) . . o .
Here the integration goes over some arbitrarily chosen dis-

disyon - ) _— continuity surfaceSc spanning the dislocation loop. The
u™™(x) is found from the equations of equilibrium of the iscontinuity ofuC(x) across this surface is just the Burgers
solid vectorb® of the dislocationC.

The functionj(q) defined in Eq(9) is the Fourier com-

dis _
9ok 19%=0, @) ponent of the conserved dislocation current of I&@p
where _ dx(s) _
0= 5}5 ds——olx-x(s)], V-j°x)=0, (12
. . 14 . C
RE= 20| URE+ T il ® (5) o T
v where a parametrizatior(s) along the dislocation line is

is the stress tensor. Instead of considenifif(x) as a mul- chosen. The constraint oiccurrent conse_rvau(Jn its
=0, follows directly from

tivalued function, it is more convenient to regard it as aFourier-transformed fori q-j _ _
single-valued function of the position, which has discontinui-the definition Eq(9) and expresses the fact that a dislocation

ties on surfaces associated with dislocation loops in the bulRUst be either a closed loop or an infinite line that terminates
of the solid. Due to the linearity of these equations the dis@t the boundaries of the solid. Since dislocation currents are

placement fieldu¥’S(x) can be represented as the sum ofgoing to play a majo_r_role in our cqnsider_ations, it i_s impor-
contributions of different dislocation loop3 tant to get some intuition about their physical meaning. From
its definition, Eq.(12), the dislocation current associated
with a given dislocation loo at a pointx does not vanish
ud‘S(x)=2 uc(x). (6) only on the contour of the loop. When coincides with a
c point s of the contour, the current at this point is the unit
) ) . tangent vector to the dislocatiar{s) =dx(s)/ds. Since any
The solution for the displacement vectocr in the presencgmqaoth curve is completely defined by the collection of tan-
of a dislocation loopC with Burgers vectoib™ can be con-  gent vectors at each point of its contour, specification of the
veniently written down using the Fourier transform current gives complete information about the conformation
of the dislocation loop.

d3q .
U(x)ZJ 2 u(g)e'd. )
(27-;-)3 I1l. RENORMALIZATION OF ELASTIC MODULI

We get(the derivation of the corresponding coordinate space !N the following we consider a solid with a given distri-
expressions is given in Ref) 9 bution {n(b,N)} of dislocations, where(b,N) is the num-

ber of dislocations with Burgers vectbrand contour length
1 qq N. In order to calculate the elastic constants of the solid in
1- —— _> fC(q), (8  the presence of dislocations we follow the approach of Ref.
1-v q? 2, which is based on the linear-response relation between the
reaction of a solid to stresses applied to its boundaries and its
where thermal fluctuations. The first type of fluctuations corre-
sponds to displacement and change of shape of the contours
FC( ) = hC7C TCl ) — —ig-x of the dislocations and satisfies the equilibrium condition Eq.
Hl@=b=j=a@, @ ﬁ:dxe © (4). This contributionu?’S(x), is defined by Eqs(6) and(8)
and has discontinuities on the surfaces associated with the
and the integration goes over the contour of the dislocationjislocation loops. We also consider the thermal fluctuations
line. The Fourier transform df°(q) can be interpreted as an of the solid(phonong for a given configuration of the dislo-
effective force exerted on the elastic medium by the dislocaeations, that can be described by a smoothly varying dis-
tion C. placement field¢(x). The total displacement field due to

- - 1
uS(q)=—b(q)+ —
q
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fluctuations is the sum of the above contributions, di di i
, Uijlszf d3xuf*(x), U0 =3 (Wi +wj),
u(x) = u%s(x) + ¢(x). (13
dis
Substituting Eqs(13) and(4) into Eq.(1), we find that the W= ; _ 21)
two types of fluctuations are orthogonal to each other in the IX;
sense that the free energy can be decomposed into two ind&yictly speaking, this is valid only if there are no surface
pendent parts singularities, i.e., no dislocations that terminate on the sur-
. face of the sample. However, the contribution from finite
— dis ’
F=Fel¢]+Fe[u™]. (14) loops that lie near the boundary is much smaller than that of
The free energy associated with the smoothly varying disthose inside the volume and becomes negligible in the ther-
placement field can written in the form modynamic limit. The argument breaks down in the presence
of a nonvanishing concentration of infinite dislocation lines

10 4 that terminate on the surface of the solid. As will be shown
Fel®l= EJ d*XijNij ki P » (19  in the following, in this case the solid is no longer able to
sustain shear and liquidlike behavior results.
where ¢;; is defined by Eqs(13) and(2) and the tensor of In principle, one can proceed as in Ref. 2 and decompose
“bare” elastic constants(i.e., those of a dislocation-free UidjIS into a contribution of the smoothly varying part of
solid) is ujj'*(x) [terms proportional td° in Eq. (8)], and a contribu-
tion dj; +d;; of the discontinuitiegthe term proportional to
2v ~c .
Nijki :M( ik Sj1 + 8 O+ E5H Sl (16) o~ in Eq.(8)] across the surfacg$Sc}
. 1
with §;; the Kronecker tensor. dijEE biS;(C), Si(C)EJ dszzsjm # X dX; ,
We proceed to examine the renormalization of the elastic c Sc c
constantsu and v by the presence of dislocations. The in- (22)
verse tensor of the renormalize(_d elastic constants can be &Where e is the antisymmetric unit tensor ardj; is the
pressed in terms of the correlation function, dislocation moment tensor. The axial vec&(C) has com-
1 ponents equal to the areas bounded by the projections of the
- _ loop C on planes perpendicular to the corresponding coordi-
A Dk =c=(U;;Uy). 1
( R )I] ki VT< ij kl> ( 7) nate axes.

. . Instead of using this decomposition, we relatg to the
Here,V is the volume of the solidT is the temperature, and configurations of the dislocation loofise., to the Eﬁlocation
1 currentsj© defined in Eq.(12)]. We Fourier transform Eq.
Uijzg(fdfiuﬁf dfju; |, (18 (8) to real space, apply the gradient to both sides of the
equation and Fourier transform back qospace. Using the

where the integration goes over the surface of the sampid€lations Eqs(6) and(10) yields
Note thatU;; has the dimensions of volume and its trace is

the volume change of the body due to thermodynamic fluc- Wi (A)=Syjij (@) exivjr (),
tuations. Equation(17) is derived by considering the re- ,
sponse of Uj;) to infinitesimal external stress, treating each S i(q)= ! 5.C— &8”,.& 1 %C
component olU;; as an independent fluctuating variable. L R e e A A
Inserting the decomposition E@13) into Eq. (18) and (23
using the orthogonality of the smoothly varying and singularWhere
parts Eq.(14) we get
Cik=¢&jkm0m/q (24)
-1\ oy - disy |di ~
AR Dija =1 UiV, (19 and @;/(q) is the Fourier transform of the dislocation

_ “charge” tensor(we adopt the terminology of Ref. 5 since
where Uﬂ's is the dislocation contribution t&J;; and the the Burgers vector can be considered as a topological
tensor chargg, defined as the sum over the contributions of differ-
ent loops, each of which is the product of the dislocation
current by the corresponding Burgers vector

1
()\_1)” kIZV—T<fd3X¢ij(X)f d3X’¢>k|(X’)>
2v aij (=2 jF(0bf. (25
R [}

1+v (20

1
:4—( ik 01 + 6t Oy —
K Thus, the dislocation charge tensor contains complete infor-

is the inverse of the tensor of the bare elastic constdfls ~ mation about the configurations of the loops, weighted by the
ie., ();1)” n mn:%(5im5jn+ SinSim).- appropriate Burgers vectors. Taking the trace of the tensor

The application of Gauss’ theorem to EG8) yields wij, Eq.(23), we obtain

6ij Okl
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- il-2v . The steepest descent valwdlS(u?'®), can be identified with
wii(g)=— q1-v Civjrairj(Q). (26)  the physical stress tensor, E8).
A convenient parametrization of this field was proposed
Note thatw;; describes the volume change due to the presin Ref. 6
ence of dislocations, which vanishes whers % (incom-
preSSibIe SOliﬁ o'ik:isijl8kmanthln:iT8ij|VjAlk
Substituting Eq(23) into Eqg. (21), we finally get
1
A==
<UdISUdIS — I|m E(”)(kl)(q)i T
a-0 whereh,(x) is a real symmetric tensor field. By construc-
— ~ tion, oy, Ay, and F are invariant under the local gauge
Eijk(D=Sjij (DSaxn (=DDirjrens (@), (27) transfolrkmatilgns
where bracketsi{) and (l) denote symmetrization over
indicesij andkl respectively an@)i,j,k,|/(q) is the Fourier
transform of the charge-charge correlation function

Dij i (X—x")=(aij(X) ay(x")) (28

In the next section we calculate this correlation function usWhereA(x) is an arbitrary vector field. To integrate over the

ing the field-theoretical formulation of the problem of inter- fieldsh; we must fix a gauge condition, which we choose in

responds to the “Coulomb gaug¥; A,k 0 and the free
energy(30) takes an especially simple form

EkmnY mNin » (31

hix—hik=ViA = VA,

1
Aik— A=V ¢y, @k:fskmanAn, (32

IV. GAUGE FIELD THEORY OF DISLOCATIONS

We proceed to evaluate the partition function of a solid _ar 4 3 2 v 2
that contains a given distribution of dislocation loops. The O[h]z_F[U]_J d XE((Ah‘k) ~ 1y, (A ]
presence of dislocation loops results in the distortion of the (33)
solid in which they are embedded. It is convenient to replace
the above “geometrical” picture of a deformed medium by ~ The term linear iruf; in Eq.(29) can rewritten in the form
that of interacting dislocation charges and to introduce a lo-
cal field that mediates théntra _and in'terloopintoractions d3x UikUﬁ? _ f d3x UikV-UE
between the segments of the dislocation loops, in close anal-
ogy to the role played by the electromagnetic field, which

mediates  the interaction between charges in :f d3xV,(uSoi) =iTby é dx A,
electrodynamic§’ This is achieved by the following c
Hubbard-Stratonovitch transformati§n (34)

where we have used the conditidho; =0 to derive the
second equality in Eq34). The last equality in this equation
L was derived using Gauss’ theorem and noticing that since the
c normal component of;, vanishes on the boundary of the
Xex;{? E(;: f dXari(X) Ui (X) | solid, the onply contribtﬁion to the integral comes )f/rom the
discontinuitybg oy, of the functionuf o at the surface .
(29 The resulting surface integral of a cUfEg. (31)] can be
Here Fel[udis] is the elastic free energy,is the temperature recast, using Stokes’ theorem, into a contour integral and the
and the integration goes over the stress-tensor-like figld last equality in Eq(34) follows. Using the definitiont12) of
which is taken to be symmetric and divergencelghis re-  the dislocation current, E@34) can be recast into a form that
duces the number of independent components tif three, ~emphasizes the analogy with electromagnetism
the number of components of the displacement vealt).

exp(— Fo[udis]/T)= f Do expF[o]/T)

N . . . 1

F[ o] is the deformation energy for a given, : ?J d3XUik(x)uﬁ<(x)=if d3xA|k(x)j,C(x)bE. (35)
. 1
F[o]zf d3xm( oh— 1: crﬁ) (30) Changing the functional integration in EQ9) from o to

h and substituting Eqg33) and(35), we obtain

Note that in order for the integral, E§29), to be well ; o o
defined we have to integrate over a purely imaginary tensor e~ Feilt '51/T=J Dhe ™ FolM/THIJdXAK()Zci ()b (36)
field oy . The steepest descent evaluation of this functional
integral (which is exact for Gaussian integralis done by  Notice that all the dependence on the coordinates of the dis-
deforming the integration contour from the imaginary,  location loops is contained in the second term in exponent on
axis, around the segmef, ad's(udis)] of the realo axis.  the rhs of Eq.(36), which describes the deformation of the
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solid due to the presence of dislocations and accounts for althere the partition function of a noninteracting lo@f,(0),
the interactiongboth intra and interloogpbetween the seg- s defined in Eq(A4) of Appendix A-Dgu«v is the charge-

ments of the dislocation loop&o[h] is the free energy as- charge correlation function of noninteracting dislocations
sociated with the usual thermal fluctuations of the solld(AZO)

(phonon$ that are present even in the absence of disloca-

tions. In the following we will use Eq(36) to calculate the 0 N

correlation function of dislocation charges. Dt (X=X )=, n(N,b)bby Dy, (x—x'), (42
The charge-charge correlation functibg , (x—x"), Eq. NP

(28), can be expressed as a response function to an extemghere D, can be interpreted as the current—current cor-

1 ext
field A" relator of a noninteracting dislocation loop Nf segments.
The Fourier transform of this expression is calculated using

Dy (X x) = 8 InZ[A™] (7 E0s-(37), (4D, and(A9). We obtain
ij Kkl 5A|e]Xt(X) 5AE|Xt(X,) Aext=0, 1
=N __ a2 242
whereZ[ A®] is obtained by replacing—A+A®*!in the Dy (@) =y Quea'Nd(a'a™N/8), @3
Boltzmann weight, Eq(36), and performing the trace over h
all the conformations of the loops where
Qi = Sk — Ak /9 (44)
ext]—
ZLA t]_l,\_ulj n(N,b)!f DX is the transverse projection operator that satistgs gy
= Qui Ak’ =0, Qi Q1= Qyi, and where
xf Dhe~ FolhVT+if (At ARYZCIFbY (3
a
d(y)=1+i \/4—ye*y erf(ivy), (45)

Here,n(N,b) is the number of dislocation loops with Bur-
gers vectorb and contour lengtfaN, with a the size of @  wjth erf denoting the error function.

loop segmentthe length of a bond in a lattice model of the  gypstituting Eq(43) into Eq. (42), we get
solid) andN the number of segments. The functional integra-

tion [Dx is over the coordinates of the segments of the dis-  _ 0 a2 -
location loops{C}. D ()= VQKK’% n(N,b)Nb,b,,d(a“qN/8).
We proceed to calculate the partition function in the pres- (46)

ence of an infinitesimally small external fiedf*'. Changing
the order of integration over and over the loop coordinates For an isotropic distribution of Burgers vectors(N,b)

we arrive at the following expression =n(N,b), this reduces to
_ (Gnp[ A+ AS)n(ND) Dy i1 (@) =D(0) Qe Sy
ext) _ Folhl/T KIKk'I” kk' ©I17
Z[ A the 0 ];[b D]
39 a?
(39 D(q)=W n(N,b)Nb?d(a?g?N/8). (47
where Nb
In the long-wavelength limig— 0, we get from Eq(43)
GNb[A+Aext]zf A3XGrp(X, XA+ ASY . (40) 4
D(q)=Dg? D n(N,b)N?b?. (48)

The partition functionGy,(x,x’|A) of a dislocation line of 36V b

lengthN and Burgers vectdn (with end pointsx andx’), on

a lattice with lattice constard is calculated in Appendix A.
In the random phase approximati¢RPA), the partition

function of a dislocation is a Gaussian functional Af

+ A®Xt and the total partition function can be written in the

form

The vanishing oD (q) in the limit g—0, is a consequence
of the relationfj(x)d®x=¢$ds(dx/ds)=0 [see Eq(12)].

It is interesting to reflect on the physical meaning of the
above results. Note that sincgx)=$ds(dx/ds)d x(s)
—X] is the tangent to a dislocation loop =t DEk,(x—x’)
=(jk(X)jk(x")) is the correlator of the tangent vectors at
[VG’%(O)]n(N,b) two points on the dislocation logjpf N segments separated
zZ[A =11 —lf Dhe FIN/T, by spatial distancéx—x'|. A large noninteracting disloca-

Nb n(N,b)! tion loop obeys the same Gaussian statistics as a polymer

chain in theta solvent, where one expects such correlations to
decay on length scales comparable with the persistence

T
F[h]=F h+—fd3xfd3x’D0 o (X=x' ~
[h]=Folh]+ 3 i ) lengtha.! Fourier transforming the expression g, (q),
- : ' 172
<[A + ACKY Awrtr (X1 + AT ()7, Eq. (43), we find that in the ranga<|x—x’|<aN"4 the
(A +ATEOT A (X + Ay, ()] correlation is given bythis result was first derived in Ref.
(42 12, in a study of interacting vortices in turbulent fluids
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3o S Taking the trace of Eq(52) aﬂd usingQ;;=2 and Q; C;;
(i(r) Jir (0)) ~ Y (49 =c; we calculate the trace df
. o _ — i 2uD(q)/Tg?
Note that while the scalar produg{r)-j(0)) vanishes on hy=—— . (549
length scales larger than the persistence lemgtihe corre- q1-v+2u(1+v)D(Q)/Tq?
lation between different components of the tangent vectogpstituting this expression into EG2), we get
decays as a power law and is therefore quite long ranged.
Since the only difference between our correlator and the one— _R(q) ~ ox ~ ox ~ ox
that appears in the usual calculation of the persistence lengtRik= 1 T[QnAu ikt QAR Cyi + S(A) QAR Cy ],
of Gaussian chains is the condition that the loop must pass
through both pointx andx’, this imposes an unexpectedly uD(qQ)/T
strong constraint on the set of possible chain conformations. R(qQ)=——, (55)
The conformations that make the dominant contribution to 0°+2uD(q)/T
the correlator and lead to the appearance of long-range ori-
entational correlations, are thus very different from the ones 2v
that dominate the ensemble of unconstrained Gaussian S(q)=

_ 2°
chains. Finally, as expected, the correlation decays exponen- 1=v+2u(1+v)D(a)/Tq

tially on length scales larger than the Gaussian chain size, Performing the Gaussian integral in E@l) and using
reflecting the fact that the probability to find two segmentsEq_ (37) we obtain the following expression for the charge-

belonging to the same chain separated by distance larger thafjarge correlation function of interacting dislocation loops
the average chain size, decreases exponentially with

r?/a?N.1t = _
Di (9)=D(q){Qi8, —R
We return to the calculation of the charge-charge cor- i1(@=D(@1{Qud ~R(a)
relator of interacting dislocation loops. The Gaussian path X[QikQj +CyCii +S(a)CijCy1}.  (56)

integral (41) can be calculated by introducing a shift of the The first term in the curly brackets gives the contribution of

integration Variableﬁik(m_’Eik(Q),TKjk(Q)’ whereﬁik IS noninteracting loops and the remaining terfpsoportional
found from the condition of equilibrium of the solid in a R(q)] describe the “polarization” of the elastic medium

given external fieldA®, due to the interaction between the segments of dislocation
loops. An alternative interpretation is to view the interaction

oF[h] _ dq ., between the dislocation loops as mediated by phonons. In
5ﬁik(—Q) =0, F[h]=VTJ (277)3f(q). (50 this languageR represents the contribution of transverse

phonons ands that of longitudinal phonons. Sincnﬁﬁij Kl

Here,f(q) is the Fourier transform of the free-energy densityzqkf)ij « =0, only transverse phonons couple directly to the
charge-charge correlator, and longitudinal phonons contrib-
v o - ute only indirectly, through their coupling with the transverse
mhll(Q)hjj(_Q)} ones[the RSterm in Eq.(56)]. The appearance & in the
denominators oR and S can be interpreted as a renormal-
T % < ext ~ ization effect, which reduces the effective interaction be-
+ ED(Q)Qkk’[AkI(Q)J“AkI (D[ Awi(—a) tween the dislocations. Note that the polarization correction
vanishes in the limig—« and therefore does not affect the
+ A (—a) ]+ APy (—a)+h(—q)]  (51)  small-scale behavior of the charge-charge correlation func-
o tion which is given by its bare valuBj (q).
and\; are Lagrange multipliers that enforce the “Coulomb  pjslocation-induced corrections to the elastic moduli of
gauge” constraintyh;,=qih;=0. an isotropic solid have the following tensorial structure
Upon some algebra we obtain

4

F(q)= :'—M Fic(@) P — ) —

1 ) )
V<Uidj'SUE|'S> =A1(6ik )+ 61 Oj) — A28 8. (B7)

qz(— v —\ D
— | hik— 77— Qikhy | +2—=—hj
A T The scalar functions
_ P O Rexe o A (50 D 20B,(v) uDIT
' (QiA; Cikt QuA; Cji), (52 A= | ay(v)— ' . (59
1+2uDIT 1-v+2(1+v)uDI/T

whereA®*tis the Fourier transform of the functiok®'and  were calculated in Appendix Bexplicit expressions for the
Cj; is an antisymmetric tensor defined in EB4). The solu-  coefficientse;(v) and Bi(v) are given in Eq.(B9)]. The
tion of these equations can be simplified by noticing that theenormalized elastic moduli are obtained by inserting the ex-
matricesQ andC have the following group properties under pressions in Eqg57), (58), and(20) into Eq. (19
matrix multiplication

1 1 A

@'=Q QC=CcQ=c, C=-Q (53 dae T 59
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““ functionD;; (), with D(q)=Dg? [Eq. (48] andR(q) and
T \\}“‘\ N S(q) app'roa}chlng constant yaluéEq. (55)]. SinceD di-
X “‘\g ‘3::\ verges Wlth increasing I_oop siege_ Eq(48)], strong renor-
W “:\‘8‘3:282::2::‘ malization of the elastic moduli is expected. This is pre-
S <> . .
0. ::i::i:.i:§:§:§§:§§.‘ vented by the appearance Bfin the denominators dR(q)
<> . .
o ‘s::?:?i:izgzgs§§§§§:,. andS(q), which suppresses the phonon-mediated long-range
e interactions between the loops.
IRSSSEEIRIRES Does this mean that there is no dislocation-induced melt-
S OTIESIEIEIIITRIES -1 ing transition in 31? A careful examination of the above
0.5 COSEHREILSTHT> . . . .
‘ 'ozzzzgizzzg? 0.5 argument shows that it breaks down if “open” dislocation
AN 0 lines that terminate on the boundaries of the solid, appear in
HD/T 205 A% the system. For example, let us consider the force on a dis-

location with contoud”, due to constant stressinside the

FIG. 1. A three-dimensional plot of the renormalized Shearsolid

modulusug/u as a function of the bare Poisson raitcand the
dimensionless parametgD/T.

fzf dxX (a-b). (61)
r

1 2v 1 2v A
R 2 (60)

4ug l+vg 4u l+v " T This expression vanishes for closed loops but remains finite
for open lines and since the force on a dislocation must van-
In Fig. 1, we present adplot of the scaled renormalized sh in equilibrium, we conclude that the stress must vanish
shear modulusyr/u, as a function ouD/T andv. We find  inside the sample. This also means that in the presence of
that the modulus is a monotonically decreasing function obpen infinite dislocation lines, shear stress applied to the sur-
the concentration and size of dislocation loops and that itace does not penetrate into the bulk of the sample and there-
approaches a finite limit when the average loop size divergegre the system behaves asrnviscous fluid. This screen-
(D—). This statement is valid as long as the size of theing of the stress is analogous to the expulsion of the
loops is smaller than the size of the sample. It is interestingnagnetic field by a superconductdveissner effect).
to note that a qualitatively similar behavior of the shear Although this simple mechanical argument does not ac-
modulus was predicted in the low-temperature phasedof 2 count for the statistical nature of the problem, the conclusion
solids? that the system behaves as a liquid in the presence of infinite
In Fig. 2 we plot the renormalized vs the bare Poissordislocation lines, remains valid even when fluctuations are
ratio of the solid, in the limitD—c (the effect of disloca- taken into consideration. The presence of shch« lines
tions is maximized in this lim)t As expected, there is no |eads to the screening of interactions between dislocations on
renormalization of the bare Poisson ratio of an incompresstength scales larger than a screening length and is character-
ible (v=3) or an unstable = —1) solid and the renormal- istic of the “confining” phasé&* in which there are no free-
ization is rather small for intermediate valuesiofThe pres-  transverse phonons. The magnitude of this screening length
ence of dislocations increases the Poisson ratio when thgan be estimated as follows. Differentiating twice the dislo-
bare ratio is in the range-0.2—0.5 and decreases it for cation line energy, EqA14) [Appendix(A)], with respect to
smaller values ob. . A we obtain the following RPA expression for the current-
The observation that the shear modulus remains finite iRrrent correlator, valid for aja<1,
the presence of a finite concentration of dislocation loops of
arbitrary finite size, deserves some explanation. The renor- _ a2N
malization of the elastic moduli is determined by the long- D{\li(q)z TQ”" (62)
wavelength ¢—0) limit of the charge-charge correlation

Fourier transforming);, back to coordinate space gives the
current-current correlator of a noninteracting loop, E#f).
The identity of the correlators follows from the observation
that, on length scales smaller than loop size, the segments do
0.5 not “know” whether they belong to a finite loop or to an
Vv infinite line. Equation(62) gives a g-independentD(q)
=a¢/3 where ¢ is the volume fraction occupied by the
dislocation linegwe assumed that the distribution of Burgers
vectors is isotropic and replaced the Burgers vector by its
minimal value~a). The screening length is obtained by
substituting this constant into the expression R{q), Eq.
(55), and demanding that the two terms in the denominator
of R(q) be equal forg=1/\. This yields

0.5

Vr

FIG. 2. Plot of the renormalized Poisson ratig as a function

of the bare Poisson ratie, for uD/T—o. The dottedvg=v line is A= ! ~a/ T , (63
drawn for comparison. N2uD(qQ)/T pace
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In the presence of such strong screening, different dislocasaussian integrals in E¢41), we introduce a cutoff at wave
tion lines contribute independently to the correlatorvectorgy=1/a and add core enerdy,(qo) per segment of a
(Uﬂ'SU‘k’{S). Since the characteristic displacement associatedislocation loop with Burgers vectds, to the free energy.
with a dislocation line is of ordeb, integrating over the This core energy accounts for interactions between loop seg-
surface of the solid, Eq18), yields U%s~L2b, whereL is ~ ments separated by spatial distances smaller thag We

the size of the systerfwe omit tensor indices in this simple arrive at the following expression for the excess free energy
scaling estimabe The dislocation correction to the inverse in the presence of dislocations with a given distribution

elastic modulus, Eq.19), scales as n(N,b)
1 o 1 n(N,b)
L ndisgydisy T 0l 2p)2 ] 2 F=> n(N,b)| TIn————+E,(qo)N
V(U ues) I_3n(L b) s~ ¢L*, (64 < eva(0) b(Co
wheren~ ¢L3/N is the number of dislocation lines and we dq | 2uD(q)
have used the free Gaussian chain relathr;L2. The di- lal<ao(277)3 i+ TP
vergence of this correction with system size shows that the
modulus is renormalized to zero when a nonvanishing con- 1 2uD(q) 1+ v
centration of infinite dislocation lines appears in the system. + Eln I+ —— 1=l [ (65
This conforms with the intuitive expectation that the system Tq

can not sustain shear in the presence of such dislocation lingghere the functionD(q) is defined in Eq.(47). The first
and should be considered as a liquid. Note, however, that ihgarithmic term describes the translational and conforma-
real solids the motion of dislocations may be hampered byjonal entropy of the loops. The two logarithmic terms under

the presence of kinetic barriers and solidlike response téhe integral account for both the intra and the interloop in-
stress on experimentally relevant time scales may result eveBractions between the dislocations.

in the presence of infinite dislocation lings. Minimizing the above free energy subject to the relation
betweenD(q) and n(N,b), Eq. (47), and substituting the
V. EQUILIBRIUM DISTRIBUTION OF DISLOCATIONS expression forG%(O), Eq. (A4), we find the equilibrium
Up to this point we have assumed that the distribution Ofvalue ofn(N.b)
dislocation loops is fixed, i.e., that dislocations are created by v o
some irreversible method and that they can no longer be neq(N7b?T)=—23/2e*EbN/T, (66)
created or annihilated later on. The rationale behind this ap- (2ma®N)

proach is that since the core energy per bond in a typicaherez is the coordination numberr of the lattice and
solid is of the order of few electron voltfar in excess of the

thermal energkgT), the probability of creating a dislocation pa2b2q, [3—v 21D (qy) vz

loop by a thermal fluctuation is exponentially sriadind EbR:Eb(q0)+ 5 T e ,
dislocations are nonequilibrium entities. With this assump- 9m v Tdo

tion there is a close analogy between the statistical physics of 3/

dislocation loops and that of polymer molecules, the chemi- c 52+(1+ v 67)
cal structure of which is assumed to be fixed and only the v 1-v

conformational degrees of freedom are taken into consider- . o
! A can be regarded as a renormalized core energy. In deriving

ation. The main simplification compared to the polymer cas 66) and (67, we used the approximation

is the fact that dislocations can pass freely through each other ' PP

2 PR ; s _
and therefore topological entanglements play no role in thxﬁ‘D(q")/Tq°< 1, which is equivalent to the condition of va

conformational statistics of dislocation loops. d|t|3/ ﬁf th_e RtIZA' lizati aChwe d
Despite the fact that dislocations in most solids are not of ofiowing the renormalization group appro € de-

. “ ” bare ; H
thermal origin, in this section we will follow the path of our !In€ the “bare” core energye," ™ into which we adsorb all

predecessofs’ and consider the free energy and the equilib-th€ details of the small-scale behavior
rium distribution of dislocations. While this can be viewed as

2K2
an formal exercise in equilibrium statistical mechanics, there e
is a possibility that such a scenario can be realized in inter- 972 1—v
mediate phases of some “soft” solids. Potential candidates o _
are the so-called “rotator” phases of normal alkah®g  Substituting Eq(68) into Eq. (67), we get
which shear moduli are at least two orders of magnitude 202 2
smaller than in the low-temperature crystalline ph&se. R_ pbare_ ~ M il
: - - T Ep=E," —C, 2=D(qp) (69
Assuming that dislocations reach thermal equilibrium 2T

with respect to their loop sizes and Burgers vecitnss is

possible only if the core energy per segment is not much The energyE2?"®= uab? accounts for deviations from the
larger thenkgT), the equilibrium value ofn(N,b) is ob- linear theory of elasticity in the strongly deformed region
tained by minimizing the free energy=—TInZ, where the associated with the core of a dislocation, and does not de-
partition function of the system of interacting dislocations ispend on the distributiofn(N,b)}. The second term on the
defined in Eg.(41). To eliminate the divergence of the rhs of Eq.(69) gives the contribution of effective interactions
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between non-neighboring segments of a loop, that can behich states that the average interaction energy between dis-
described in the framework of the linear theory of elasticity.location segments is much smaller than the thermal energy.
Although the interaction between the segments can be repuSince for most solidg.a®>T throughout the physical range
sive or attractive depending on their relative orientation andf parameters, RPA applies only at very small dislocation
the direction of the Burgers vector, configurations in whichdensities.

the interaction is attractive will have a larger Boltzmann Inspection of Eq(73) shows that, for a given concentra-
weight and the resulting effective interaction will be attrac-tion of dislocations, the RPA breaks down at sufficiently low
tive, thus reducing the core energy, E@§9). Note that temperatures. The situation is reversed in equilibrigwvith
within the domain of validity of the RPA, corrections to the respect to formation and annihilation of dislocatigrsnce
bare core energy due to fluctuation-induced attractions behe equilibrium concentration of dislocations increases expo-
tween segments of loops are small and thereExfeis of  nentially with temperaturésee Eq(66)]. The breakdown of

orderEP"®. RPA occurs when fluctuation-induced attractions between
Using the same renormalization procedure for the freéegments overcome the conformational entropy of the loops,
energy, Eq(65), we find and the random walk configurations of large loops are re-

placed by more compact ones. The physical origin of this

n(N,b) effective attraction was discussed in the preceding section:

F=> n(N,b)| TIn——— +EDPaeN while the interaction between loop segments may be either

Nb eVCﬁ(O) attractive or repulsive, depending on the relative orientation
VT 3 of their directorgtangents to the loopsBurgers vectors and

—Cc — ZED(qO) (70) relative separation, conformations in which intersegment at-

"em2l T ’ tractions dominate have a higher Boltzmann weight and oc-

) ) ) ~cur more frequently in the process of thermodynamic fluc-
where the last term is due to fluctuation corrections Wh|Chuati0ns_ In this Section, we use a variational approach to
reduce the free energy. _ study the change of conformational statistics of the loops

Substituting Eq.(66) into Eq. (48) we obtain a closed- produced by this effective attraction. In Appendix C we
form equation for the parametér(qo) (which does not de- present a perturbative analysis of the effect of intersegment

pend on the cutoffj) attractions on the radii of gyration of dislocation loops and
) show that the results are in good agreement with those of the
a . :
_4 ) 2 variational calculation.
D (do) 3V sz Neg(N, b TIND®. (72) We begin with the exact expression for the partition func-

tion of a loop in the presence of a “potentialtensoj field
Inserting this expression into E{Z0) we find that the fluc-  A(x) [see AppendiXA)],
tuation correction to the free energy scales with heower
of the concentration of dislocation segments, in agreement )
with the result of Edwards and Warrfein principle, one can Gr[A]= fﬁ Dxexp — i N(%) ds
use the thermodynamic free energy, E¢0), to study the Nb 2a%Jo \0s
dislocation-induced melting transition. This was done in Ref.
4 and will not be repeated here. Instead, we will go beyond _
the random phase approximation and study the hitherto ne- - fﬁ dx(s)~A[x(s)]-b]
glected effect of fluctuation-induced attractions on the con-

formation of dislocation loops.
= ¢ Dxexp —H[x|A]), (74
VI. FLUCTUATION EFFECTS ON LOOP
CONFORMATION where the second equality defines the effective Hamiltonian
In the preceding sections we used the random phase a'é'—.' We approximate this partition function by the following
L ; ) L . - “trial function

proximation (assuming Gaussian statistics of dislocation

loops and found that this approximation is selfconsistent in

the parameter range . f]g > 1 JN<axi)2

GnlAl= ¢ Dxexp — 2, — —1 ds
Nb[ ] i 2a|2 0 Js

2 4
pa _ pa _ 2
T D(A0)= 31y 2 Ned N TIND* <1, (72) )

1—i édx(s)-A[x(s)]b]
which can be interpreted as the Ginsburg critefidor our

system. Defining the average volume fraction of loop seg-
ments as¢ and assuming that only the smallest Burgers
vectors p=a) contribute to the sum, this criterion can be

rewritten as The trial HamiltonianH" is defined by the second equality.
3 The renormalized statistical segment lengthsdepend on
E¢<1 _2 > ng(N;T)N (73 the potential field and will be determined selfconsistently
T ’ \Y edi later on. Because of the mean-field character of our varia-

= % Dx exp(—H"[x|A]). (79

w
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tional procedure the loop dimensions are those of an aniso- ;g2 6m2as 213
. ) ; . s Nby2
tropic Gaussian random walk, i.dR)"=a’N along thei 25 Dyar(do) =) =, % N(N,b)[1-(A"P)7]p <1
axis {i}=x,y,2). v 81)
To calculate the partition functiofr4) we use the follow- _ o o
ing variational principl&’ Note that unlike the criterion for the validity of the RPA,

which involves the density of segments, the above criterion
InGy[A]=In GHb[A]_<H[X|A]_ HY[X|A])y, (76) for the validity of the variational approach involves the far
o . _ o smaller density of loops and therefore has a much broader
where the averaging is taken with the trial Hamiltonian Ed.domain of applicability.
(75. We will use the right-hand side of E¢76) as an ap- The renormalized elastic moduli are defined by E&S)

proximation to the exact I@y,, with parameters; , which  and (60), where the coefficients; are given by Eqs(58)
minimize the free energy. Expanding it to the second order ifyith the substitution

A we get(see Appendix A

4

a
D—D,ar=2x7 > (A9)*n(N,b)N?bZ (82
In Grp[A]=INVGy(0)— X 36V b

a 2 2
Since the renormalized shear modujusis a monotonically

(aR)zqu} decreasing function db, we conclude that the RPA overes-

8 timates the dislocation-induced suppression of the shear

modulus. Although our variational estimate is by no means
~ ~ exact, it suggests that fluctuations tend to reduce the effect of
X QnmPibiAn (A) Ami( =), (77 the dislocations on the elastic constants of the solid. Note
with (aR)2= %Xaiz- that Fig. 1 remains unchanged provided we replace the vari-

We shall not repeat the derivation of the free energy an@P!€ #D/T by uDya /T
show only the final expression

_(aR)sz dq
2V (2m)3

VII. DISCUSSION

n(N,b i i ; i i ielo.
F=E n(N,b){ TIn (N,b) n EgareN I.n this paper, we _studled the physics qf interacting dislo
Nb eVC{,(O) cation loops and their effect on the elastic moduli of isotro-
pic solids. We found that while the Poisson ratio can either
1 1(7\Nb)2H increase or decrease in the presence of dislocations depend-
5 U\

+T

In N0+ 2 2 ing on its “bare” value, the shear modulus decreases mono-
tonically to a finite limiting value with increasing concentra-
312 tion and size of the loops. The conclusion that an arbitrary
} , (78)  concentration of finite dislocation loops in a solid has a rela-
tively minor effect on the elastic moduli is quite unexpected.
Inspection of the derivation shows that this is a consequence
of the fact that the renormalization of the moduli depends on
the interplay of two opposing effects: while the introduction
of additional dislocations increases the correlations between
22 1 the “charges,” it also enhances the screening of their inter-
Dyar(Go)= o< > = > (A\N?)2n(N,b)Nb2.  (79)  actions. These two effects largely cancel each other and,
3V 39 therefore, within the limits of validity of our model, the shear

) modulus does not vanish when the concentation of finite
Note that the RPA corresponds to the chai¢®=1. Here, loops increases.

we Qeyermine these coefficients from the condition that they gyen though the physics of topological defects appears to
minimize the free energy Eq78) be very different in 2 and in@®, our prediction that the shear
modulus vanishes and the solid undergoes dislocation-
induced melting only when infinite dislocation lines appear
in the sample, agrees with that of Ref. 2 fat 2olids. In the
final analysis, the physics of fluctuating loops may be not
whereC, is defined in Eq(67) and)\iNb=)\Nb. This expres- very different from that of that of vortices; due to the long-
sion agreegwithin few percenk with the perturbative result range vectorial correlations between segments of a disloca-
in Appendix C. tion loop, its partition function is dominated by configura-
Since ANP<1, we conclude that fluctuation-induced at- tions in which the forces between the segments are
traction between segments leads to isotropic compression gfedominantly attractive and, in this sense, a single disloca-
the radii of gyration of the loops compared to their unper-tion loop resembles a vortex-antivortex pair. Furthermore,
turbed Gaussian dimensions. Within our approximation, thevhile there is no vortex unbinding transition i 3both the
compression increases with loop size and with average corkosterlitz-Thouless transition indand the appearance of
centration of dislocations. One can easily show, using Eqinfinite dislocation lines in 8@, are closely related to the
(80), that the condition of validity of the variational theory screening of interactions between topological defects.
becomes Are our results relevant to real solids? In principle, one

VT | w
- CV@ 2? Dyar(do)

where A\ NP=aN/a=((R"?)2)¥%/(aNY?) are the compres-
sion coefficients of a loop dfl segments and Burgers vector
b and

1 na’b?N

o
— =1+ o
(ANP)? 9m’T

1/2
Z?Dvar(QO)} ) (80)
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could prepare solids with different concentrations of disloca-<can arise in soft solids such as, for example, rotator phases of
tions and study their response to small applied deformatioralkanes® and colloidal crystals. More exotic candidates are
As long as the dimensionless parametexD/T  amorphous solids and glasses in which disclinations of an

~(ua¥T)$N is much smaller then unityd is the volume ~ Unusual typgRivier lines®) are possible. Since the underly-

fraction of sites occupied by dislocation loops aNds the ing symmetry Is that of rotat_ions ind3 a f!eld-theoretical
average loop sizewe predict that the shear modulus is not de;cnp'uon of these topologlcgl defects |n.v<|)%lﬂ\)/es a _Yang—
affected by the presence of dislocations. Indeed, while dislo'—v::ns'.wple theory of non-Abgh::m bgaulge'dflt?[ dsand its
cations are known to control the response of solids to Iarg@ ysical consequences remain fo be elucidated.
applied stresses and account for plastic flow and limiting

strength of material$’ they have little effect on the shear ACKNOWLEDGMENTS

modulus, which determines the response to infinitesimal We would like to dedicate this work to Shlomo Alexander
8 . .
stressed® We expect the renormalization of the shear mModU+y whom we are greatly indebted for numerous discussions

lus to become significant only when the above dimensionles&nd suggestions. We would like to thank S. Obukhov, N.
parameter becomes of order unity. The prospects for experier and R. Zeitak for written correspondence and helpful
mental observation of this phenomenon are unclear becau%%mments Discussions with M. Kigan and D. Shechtman

of the difficulty of controlling the distribution of disloca- ¢ gratefﬁlly acknowledged. This work was supported by

tions. .
rants from the Israel Academy of Science and from Bar-llan
Another issue that should be kept in mind when ConSid%niversity. y

ering the application of our results to real solids is that of

time scales. Experimental studies of the response of the solid
to external perturbations on time scales smaller than that on
which rearrangement and deformation of dislocation loops
takes place(e.g., instantaneous measurement of stress fol- 1. Finite loops

lowing step straii measure the “adiabatictbarg modulus We calculate the partition function of a dislocation loop

m. In order to measure the “isothermal(renormalized
. : of N segments(of length a each and Burgers vectob,
shear modulug.g one has to monitor the elastic response on . ; . '
laced on a lattice with lattice constaat We find the fol-

time scales longer than the relaxation times associated Witowing recurrence relation
the kinetics of dislocations. Whether such time scales are
experimentally accessible or not, depends on the temperature A
and on the height of the corresponding kinetic barérs. Gy 1p[X.X'|A]=>, e @ANbG Ix+ax'|A]
Consideration of such issues is outside the scope of the a
present work. _
We would like to discuss our model assumptions regard- = edlV-iA-blg Ix x'|A],  (Al)

ing the distribution of dislocations in a solid. Application of a
the methods of equilibrium statistical physics to the problemyhereA-b is a vector with component&;;b; and the sum-
of topological defects in @ crystalline solids is somewhat mation is overz nearest neighbors on the lattice. In the
artificial in view of the fact that the core energies of thesecontinuum limit, Eq.(A1) reduces to the following differen-
defects are normally much higher than thermal energies anga| equation for the partition function
therefore there should be almost no dislocations in a solid in
true thermal equilibrium. In this paper we assumed that a d a2 ) ’
given distribution of dislocations was produced by some m—ln Z_E(V_'A'b)
nonequilibrium process such as nonequilibrium crystal o N
growth or application of large stresses to the sample. AlWith the initial condition
though we allowed the dislocation loops to move and change . PIAq ,
their conformation in the process of thermal fluctuations, we '\IIITOGND[ny |A]=8(x=x"). (A3)
did not consider the higher energgnd therefore less prob-
able events of creation and annihilation of dislocation loopsThe solution forA=0 is well known in polymer physick;
and changes of their contour length. While plausible, these
model assumptions were motivated mainly by considerations 0 N (x—x")?
of simplicity and the wish to maintain as close an analogy as GN(X=X')= —————exg — ———
possible with polymer physics, in order to benefit from the (2ma’N) 2a’N
well-developed thgoretlcal tgols in this field. In order to obtain the solution fak+# 0 we notice that Eq.

In order to decuje what kind of systems are the b‘?St CaMrA2) can be recast into the following integrodifferential
didates for observing some of the phenomena predicted bé(quation
our theory, one has to ask the following question: in what
type of solids is the energy of topological defects sufficiently a2 (N
low for thermal effects to play an important role? Since dis- GNb[x,x’|A]=Gﬂ,[x—x’]— ?f dN’f d3yGafN,(x—y)
locations can be easily created on the surface of a crystal, 0
they are expected to affect the physical properties of small X{2iA;; ()b Vi +i[ ViAii (y)]b;
particles and it is possible that they play a role in the ob- : ! ! J
served surface melting of nanocryst(lﬁfquilibrium defects + A (V) Ai(Y)bjby} Gl y, X' |A]. (A5)

APPENDIX A: PARTITION FUNCTION
OF DISLOCATIONS

Gnel XX |A]=0, (A2)

(Ad)
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This equation can be solved perturbatively by expanding th&or lines of infinite lengthN—, only the ground state

right-hand side to second orderAn We then Fourier trans- =0 contributes to the sum in EAL0).

form Aj; (the corresponding Fourier components are denoted The partition function of an infinite dislocation line with

by ﬁAij)' setx=x' and integrate ovex using the Feynman- enq points 'on the surface of the Sd}@['A], can be obtained

Kac relation by integrating over the surface coordinates of both ends. Up
to 1N corrections this gives

f d3X Gy s (X1 = X) Gy (X—Xg) = GR(X, —Xp) (AB) ING,[A]=NInz—Neg[Al. (A12)

and the integral relatiofvalid for an arbitrary functiorf) Note that the eigenvalug[ A] can be found from the varia-
tional principle

N N’ N
de’f dN”f(N”)=J’ ds(N—s)f(s). (A7)
0 0 0

a2
eO[A]=minJ A [(V—iA-b) gl Jd3X|l/’o|2:1-
Since we want to calculate the contribution of the loop par- o (A13)

tition function to the free energy, we take the logarithm of
both sides of Eq(A5) and, expanding the logarithm to order Expanding this function in powers &f we find the energy of

A? we obtain an infinite line with finite densityN/V of occupied bonds
| @xGulxxial [A] asz—dan 10 R (@) B — )
n X X, X € =— —q).
VG(0) Nb 0 2V ) (2m) nmPIDAN(Q)Amd —q
(Al4)
a2 dSq

=— oo | =A@ AR —a)byby

2V (27,-)3 APPENDIX B: CALCULATION OF RENORMALIZED
MODULI
2
a N .
x(&nmN—Tf OIS(N_S)jd3xe'q'X In an isotropic homogeneous medium the correlator
2G\(0) Jo (UU® defining the renormalization of elastic moduli
ox ox tensor(19) has the following tensor structure
x| idn= 2 |[1dm= 5 —|GAXNGR_(X) |- .
a’s a‘(N—s) disy disy _
v(Uij Uki®) =A1(8ikji + 8 6j) — A28 6. (BL)
(A8)
Calculating the int | d ¢ To find the constant8,; we consider different contractions of
alculating the integrals overands, we ge the tensor(B1)
GnolA]  a®N ([ d’q [a’g®N 1
oo 2v) sl T8 I=(UfPUE) =BA— 9A,
VGy(0) (2m) Vv

XQnmbIbk’Anl(Q)hAml&_Q)a (Ag)

where d(y)=1+iw/dye Yerf(i\ly) and erf is the error
function.Q,,, is the transverse projection operator defined in
Eq. (44).

1 -
=1 (Ui Ui =12, - 3A,
in terms of whichA; can be expressed as

A;=(3J-1)/30, A,=(J—2l)/15. (B2
2. Infinite lines
. . i We now proceed to calculateand J.
The general solution of E§A2) for the partition function We begin with the calculation of by substituting Egs.
of a dislocation line with ends at points and x’ can be (23) and (56) into (27)

represented in the form

— _ Qi 1 qq;
Gl XX [A1=2VY g7 () (x)e N, (AL0) Siii (=) G Ciir = greiivirt 17,72 G
r
where i, (x) are the normalized solutions of the eigenvalue S Co— qi 1 qq; c
equation X1 0 Cir EsjkwﬂLlT—z at
a-2 . ><D 'rl§'rI_R i’k! i’
_?(V_IA'b)Zwr(X):Gar¢r(x)n {Q| k" @j’l (q)[Q| k Qj |
+Ck!JIC|!|!+S(q)C|!J!Ck!|!]}, (B3)

* 30 where the constar is defined in Eq(48). Multiplying the
f Y7 () Ps(X)d°X= Gy (A11) expressions in the first two brackets and evaluating the trace
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over the indices andj [here and in the following we use the 1 2 (1-2v)(3—4v)
group multiplication properties of the matric€sandQ, Eq. a(V)=3- 1 Y (B10)
(53)] yields (1-v)
3 4 (1-2v)(2—v)
ar g
'r|rQ|rkr q 8“ 'rC]kr J 8jk’|’Cji’ Bl( ) 5 15 (1_1/) !
1-2v _2 4 (1-2v)(3—4v)
+5i’k’5j’|’_5i’|’5j’k’__—V)Zci’j’ck’V' ﬁz(v) 5 15(1_—1})

Multiplying this expression by the expression in the square

(B4)
APPENDIX C: RADII OF GYRATION OF INTERACTING

DISLOCATION LOOPS

brackets in Eq(B3) and tracing over the remaining indices

we obtain
Eijij(Q) 1-2v 1-2v
=6-2 —R(q){ 10-4
D (1-v)? (Q)[ (1-v)?
+5(q)| 6-4 kz”]
(¢ =2l

Repeating the same steps, we calculgtg; ()

i@ 1-2v 1-2v
I R (O')[ A
N )6 1-2v
S(q 1-n2||

Note that since the above expressions do not depend on t
direction of the wave vectay, the limit g—0 can be taken
by substituting the corresponding limiting valuesR&andS

instead of function®k(q) and S(q)

IIm[_., i (@+Ei i ()]
q—»O
Py 1-2v
_p|5-2 2](1—2R)—2DR{3 2=
—v) (1 _V)

The calculation of proceeds in a similar fashion. After some

algebra we obtain

(1-2v)?

I=lim 2, (q)=D
40 ||”(Q) (1—

Substituting the expressions fbandJ into Eq. (B2) yields

A D 2vBi(v)uDIT
T 1+2uDIT ()= 1= v+2(1+ ) uD/T|

where

1 2 (1-2v)(2—»)

a(V)=5~ 1 (1-0)?

~[2(1-2R)—4RS).

Theith (i =x,y,z) component of the radius of gyration of
a dislocation loop is defined by
2>

To calculate it we use the following chain of equalities

(CD

1 (N
X‘(O)_NJO xj(s)ds

(BS)
1 (N 1N
X (0)— NJ; Xi(s)ds= Nfo [xi(0)—xi(s)]ds
LN (e Xi(S)
= Nfo dsfods puy
N s\ ax(s)

p¢here the last equality follows from E@A7). Substituting
Eqg. (C2) into Eq.(C1) we find

- ?InGE[A]
9 9B?

. GRlAl= | PxGIxx(AL
B=0

(C3

where the vectoB(s) has componentB;(s)=B;(1—s/N)
and the partition function

x(s) X ax(a)
SS,[x X |A]— Dx ex f do
(B7) x(s")=x"
s, 9xX(o)
+|f do p -[B(o)+AX(ag))-b]
SI
(CH
obeys the differential equation
(B8) J 22
&—S—|n2——[V—IB(S)—IA b]? SS,[xx |A]1=0
(CH
for s>s’ with the initial condition
(BY) lim GSS,[x,x’|B]= S(X—x"). (Co)

s—s’

Note that since the vect@(s) depends explicitly ors, GSS,
is a function of boths ands’ (and not only of the difference
s—s').
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Equation(C5) can be rewritten in a gauge-invariant form
by introducing the functiorG?,

[x,x'|A]= GSS,[xx |Alexi ¢(x)-b—ig(x")-b]
(C7)

ss’

with V2¢(x)=V-A(X). The functlonGSS,[x,x’|A] obeys

Eq. (C5) with the substitutioPA—A=A—V - ¢.
We are looking for the solution of this equation fér
=0 in the form

B%a%p(s,s')/2],
(C9

SS,(x)— o S,(x)exp:lB Xa(s,s')—

where the partition functiorGR,(x) is defined in Eq.(A4).
Substituting Eqg.(C8) into Eq. (C5 we get the following
differential equations for functiona(s,s’) and 8(s,s’)

sda(s,s’)/ds+ a(s,s’)—1+s/N=0,

dpB(s,s')os=[a(s,s’)—1+s/N]? (C9)
with boundary conditions
lim a(s,s")=1-s'/N, lim B(s,s')=0. (C10
s—s’ S—s/
The solution is
o1 s (S’)Z
ASS)17oN T 2N
(C1y

1 (s+3s')(s—¢s')3

BlsS)= 15— 5

Substituting Eqs(C8) and (C11) into (C3) we reproduce

the well-known expression for the gyration radius of the

Gaussian chain

1
R2 =—a?N.

=15 (C12

In the case of interacting loops, E(C3) for the radius of
gyration is generalized by

1 9°F

TaB,Z 5o

2

2= , (C13

where the fieldB(s) acts on a “test” loop of lengttN and
Burgers vectob. We now have to find the partition function
of the test loop in the given field3(s) andA. Recasting Eq.
(A2) into the integrodifferential form we get

SERGEI PANYUKOV AND YITZHAK RABIN

PRB 59

&8 XX |AT= GE(x— x)——J aN' [ ¢y (x-y)

+Aij(y)Aik(y)bjbk

+2Bi(N )AL (V)b GR o[y, X'|A]. (C14

Assuming that the field varies on scales small with respect
to the radius of gyratloR of the loop, we can substitute the
unperturbed functlomiB,\,,O in the rhs of Eq(C14) and get

B)

G50 Al=GE(0)V— > ( 27T)3
Xﬂij(q)zkl(_q)Qikbjbl ,
N
IN(B):L dN’f d3xGpy, (X)Gro(—X).  (C15

Calculating the integraly(B) we find

1 fN
——— | dN’
(27a®N)¥2Jo

B2a?
o -

—a(N’,O))2+,6’(N,N’)+,B(N’,O)]}. (C16

In(B)=

[N/(N—N")/N(a(N,N")

We assume that the external fi@ccan not affect the bare
core energyER2" per lattice bond and conclude that the free
energyF is defined by expressidiv0) with the renormalized

parameter

2
DR(QO):s_V{E n(N',b'>N'<b'>2+IN(B>b2]

N'b’
(C17
Taking the derivatives in EC13 we find
1 17 ua®b®N[ u 172
2 _~ _=! » SR
Ra= 122 N[l 350 34T [ZTD (%)
(C19

The numerical coefficient in front of the above correction to
the Gaussian chain result nearly coincidesthin few per-

ceny with that given by the variational procedufexpanded

to lowest order in the perturbatipnThis suggests that the
variational procedure gives a reasonable estimate of the size
of large loops even when the perturbation re$Git8 is no
longer valid.
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