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We propose a scheme to utilize photons for ideal quantum transmission between atoms located at
spatially separatechodes of a quantum network. The transmission protocol employs special laser
pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into
a time-symmetrigphoton wave packet that will enter a cavity at the receiving node and be absorbed by
an atom therewith unit probability Implementation of our scheme would enable reliable transfer or
sharing of entanglement among spatially distant atoms.  [S0031-9007(97)02983-9]

PACS numbers: 89.70.+c, 03.65.Bz, 42.50.Lc

We consider a quantum network consisting of spatiallyas a wave packet along the transmission line, and enter
separated nodes connected by quantum communicati@n optical cavity at the second node. Finally, the optical
channels. Each node is a quantum system that stores quastate of the second cavity is transferred to the internal state
tum information in quantum bits and processes this in-of an atom. Multiple-qubit transmissions can be achieved
formation locally using quantum gates [1]. Exchange ofby sequentially addressing pairs of atoms (one at each
information between the nodes of the network is accomnode), as entanglements between arbitrarily located atoms
plished via quantum channels. A physical implementaare preserved by the state-mapping process.
tion of such a network could consist, e.g., of clusters of The distinguishing feature of our protocol is that by
trapped atoms or ions representing the nodes, with opticontrolling the atom-cavity interaction, one can absolutely
cal fibers or similar photon “conduits” providing the quan- avoid the reflection of the wave packets from the second
tum channels. Atoms and ions are particularly well suitectavity, effectively switching off the dominant loss channel
for storing qubits in long-lived internal states, and recentlythat would be responsible for decoherence in the commu-
proposed schemes for performing quantum gates betweerication process. For a physical picture of how this can
trapped atoms or ions provide an attractive method for lobe accomplished, let us consider that a photon leaks out of
cal processing within an atofion node [2—4]. On the an optical cavity and propagates away as a wave packet.
other hand, photons clearly represent the best qubit carriégmagine that we were able to “time reverse” this wave
for fast and reliable communication over long distancegpacket and send it back into the cavity; then this would
[5,6], since fast and internal-state-preserving transportatiorestore the original (unknown) superposition state of the
of atoms or ions seems to be technically intractable. atom, provided we would also reverse the timing of the

To date, no process has actually been identified folaser pulses. If, on the other hand, we are able to drive
using photons (or any other means) to achieve efficienthe atom in a transmitting cavity in such a way that the
quantum transmissiobetween spatially distant atoms [7]. outgoing pulse were already symmetric in time, the wave
In this Letter we outline a scheme to implement this basi@acket entering a receiving cavity would “mimic” this time
building block of communication in a distributed quantumreversed process, thus “restoring” the state of the first atom
network. Our scheme allows quantum transmission withn the second one.

(in principle) unit efficiency between distant atoms 1 and The simplest possible configuration of quantum trans-
2 (see Fig. 1). The possibility of combining local quan- mission between two nodes consists of two atoms 1 and
tum processing with quantum transmission between th@ which are strongly coupled to their respective cavity

nodes of the network opens the possibility for a varietymodes (see Fig. 1). The Hamiltonian describing the inter-
of novel applications ranging from entangled-state crypaction of each atom with the corresponding cavity mode
tography [8], teleportation [9], and purification [10], and

is interesting from the perspective of distributed quantum cavity 1 (\detector cavnyg

computation [11]. aom
The basic idea of our scheme is to utilize strong coupling qu(t/\g §| KQ2 t/\g §|
1) P

between a high@ optical cavity and the atoms [5] forming o
a given node of the quantum network. By applying laser '
beams, one first transfers the internal state of an aloBiG 1. Schematic representation of unidirectional quantum

at the first node to the optical state of the cavity modetransmission between two atoms in optical cavities connected
The generated photons leak out of the cavity, propagatiey a quantized transmission line (see text for explanation).
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is(h=1) with the atom, while the last two terms correspond to pho-
. Tt . 1 ton transmission through the mirror with loss rateand
H; = wca;a; + wolr)irl + g(lricgla: + H.c) + 5 (white) quantum noise of the vacuum field incident on the
il ‘ . cavity i, respectively. The output of each cavity is given
X Qi) [e M ryiel + Hel (0= 1.2). by the equation [15]
(1) abn(n) = al (o) + V2K aa). (5)

Here,a; is the destruction operator for cavity modwith i L i
frequencyw., |g), |r), and|e) form a three-level system which expresses the outgoing field at the mirror as a sum

of excitation frequencyo, (Fig. 1), and the qubit is stored of the incident field plus the field _radiated _from the cr?lvity.
in a superposition of the two degenerate ground stated.N® output field of the first cavity constitutes the input
The statede) and |¢) are coupled by a Raman transition fcg)the sec(cl))nd cavity with an gpproprlate time delay, i.e.,
[3,4,12], where a laser of frequenay; excites the atom @in (t) = Gou(t — 7), Where 7 is a constant related to
from |e) to |r) with a time-dependent Rabi frequency retardation in the propagation between the mirrors. The
Q;(r) and phaseg;(r), followed by a transition|ry —  output field of the second cavity is, therefore,

e} which is accompanied by emission of a photon into 2(1) = all’(+ — 7) + V2x[a1(t — 7) + ax(1)]. (6)

the corresponding cavity mode, with coupllng ConStanﬁntroducing this relation in Eq. (4) we obtain

g. In order to suppress spontaneous emission from the

excited state during the Raman process, we assume that dai _ ... - o (1)

the laser is strongly detuned from the atomic transition dr ilar B1(0)] = kan — V2@ (1), (72)

Al > Q15(1), g, P12 (With A = @, — wp). In such dé .

a case, one can eliminate adiabatically the excited states = — i[ay, Hy(t)] — kar — 2ka1(t — 7)

|r);. The new Hamiltonian for the dynamics of the two dt W

ground states becomes, in a rotating frame for the cavity — V2K ap, (t — 7). (7b)

modes at the laser frequency, Note that the first equation is decoupled from the sec-
7 Ty g .t ond one; i.e., we consider here only a unidirectional cou-

Hi == oard; + A ailghidgl + dwilt)lediel pling between the cavities (see Fig. 1) [16]. The present

e ii(0)) .. L . model is a particular example of a cascaded quantum sys-
i (2 i ; H.c. =1,2). i o -
igi(0)]e leidgla 1@ ) 5 tem and can be described within the formalism developed
] ] ) (2) by Gardiner and Carmichael [17,18]. We can eliminate
The first term involves the Raman detuniig= w. —  he time delayr in these equations by defining “time

w.. The next two terms are ac-Stark shifts of the grounddelayed” operators for the first system (atamcavity),
states|g) and |e¢) due to the cavity mode and laser e.g. a(t) = a(t — ), etc.; in a similar way we rede-

field, respectively_, withb w; (1) = Q,»('t)z/(4'A). The Iast_ fine the Rabi frequencyd,(r) = Q,(r — 7), and phase
term is t'he fam|I|far Jaynes-Cummings interaction, Wlth(z)l(t) — &.(t — 7). In the following we will assume that
an effective coupling constagf (1) = g€:(1)/(24) [13]. e have performed these transformations, and for simplic-
The notationle) as “excited” andg) as “ground” state is iy, of notation we will omit the tilde. This amounts to
motivated by this analogy. _ setting7 — 0 in all these equations. Equations (7a) and
_Our goal is to select the time-dependent Rabi frequenczpy have to be solved with the corresponding equations
cies and laser phases [14] to accomplishidleal quantum 4 ‘the atomic operators and with the condition that the
transmission field incident on the first cavity is in the vacuum state,
(cglgh + celedr) lg)2 ® 10)110)2lvag ie.a (1) W) = 0 V.

— [g)i(cglg)r + cele)r) ® 10)1[0).]vao, (3) In the present context, it is convenient to adopt the
where ¢, . are complex numbers; in general, they havelanguage of quantum trajectories [18,19]. Let us consider
to be replaced by unnormalized states of other “spectaa fictitious experiment where the output field of the second
tor” atoms in the network. In (3)0); and|vac) represent cavity is continuously monitored by a photodetector
the vacuum state of the cavity modes and the free eledsee Fig. 1). The evolution of the quantum system
tromagnetic modes connecting the cavities. Transmissiounder continuous observation, conditional to observing a
will occur by photon exchange via these modes. particular trajectory of counts, can be described by a pure

In a quantum stochastic description employing thestate wave functiof¥,(¢)) in the system Hilbert space
input-output formalism the cavity mode operators obey(where the radiation modes outside the cavity have been
the quantum Langevin equations [15]: eliminated). During the time intervals when no count
da; A R () ) is detected, this wave function evolves according to a
ar —ilan Bi(0] = xa; = N2k aw () (= 1.2). Schrodinger equation with the non-Hermitian effective

4) Hamiltonian

The first term on the right-hand side (RHS) of this equa-Hert (1) = Hy(1) + Ha(r) — ix@lar + ala, + 2alay).

tion gives the systematic evolution due to the interaction (8)
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The detection of a count at timg is associated with a that a quantum jump (detector click; see Fig. 1) never oc-
qguantum jump according toW.(z, + dr)) « &|V.(z,)), curs,i.e.&|V.(r)) = 0 V¢, and thus the effective Hamil-
where¢ = a; + a, [17,19]. The probability density for tonian will become a Hermitian operator. In other words,
a jump (detector click) to occur during the time interval the system will remain in dark state of the cascaded quan-
fromzrtor + dr is(V.(¢)|ete| W, (1))dr [17,19]. tum system. Physically, this means that the wave packet is
We wish to design the laser pulses in both cavities imot reflected from the second cavity. We expand the state
such a way that ideal quantum transmission condition (3pf the system as
is satisfied. A necessary condition for the time evolutioq is

[We()) = cg 188)100) + co[ai(t)e " V]eg)100) + aa(t)e™ ' V|ge) |00) + Bi(1)1gg) [10) + Ba(t) Igg) 101)]. (9)

Ideal quantum transmission (3) will occur for | We wish to determine the first hadl(—1) < gi(—1) (for
o) — — o) — _ t > 0), such that the conditions for ideal transmission (3)
(=) = ap(te) =1, $1(=) = $al+) = 0. are satisfied. From (13) and (10) we have

(10)
The first term on the RHS of (9) does not change g,(—) = _V2kBal) + g1(Den(0) (t >0).
under the time evolution generated Bf.¢;. Defining as (1)
symmetric and antisymmetric coefficiengs, = (8, * (16)
B4)/2, we find the followingevolution equations Thus, the pulse shape is completely determined provided
a1 (t) = g1(1)Balt) /N2, (11a) we know the system evolution far= 0. However, a
difficulty arises when we try to find this evolution, since
da(t) = —g2(t) Bal(t)/ V2, (11b) it depends on the yet unknown(r) = g (—1) forr > 0

. /3 N [see Egs. (11a), (11b), and (11c)]. In order to circumvent
Ba(t) = —g1()ai(1)/V2 + g2()ar()/v2,  (11€)  his problem, we use (13) to eliminate this dependence in

where we have chosen the laser frequenaigst ¢,(r)  EQs. (11a) and (11c). This gives
so thats = ¢*/A and a(1) = g1(1)Ba(1)/V2, (17a)
P12(t) = Sw;(1) (12) .
Ba(t) = —kBa(1) — V2 g1(t)ai (1) (17b)

in order to compensate the ac-Stark shifts; thus Eqgs. (11a),
(11b), and (11c) are decoupled from the phases. dénk  for # = 0. These equations have to be integrated with the

state conditiorimplies B,(¢) = 0, and therefore initial conditions
Bi(1) = g1(0ai(0)/V2 + g2 ax(t)/V2 + kBu(t) =0, (0) — [ 22 } (183
(13) ! 2102 + k2|~
as well as the normalization condition B.(0) =1 — 2a1(0)2]%, (18b)
a1 (P + a2 + 1B, = 1. (14)  which follow immediately frome;(0) = a»(0), and (14)
We note that the coefficients; »(r) and B,(¢) are real. and (13) at = 0. Given the solution of Egs. (17a) and

The mathematical problem is now to find pulse shape$§17b), we can determine;(z) from the normalization (14).
Q1(t) = g12(t) such that the conditions (10), (1la), In this way, the problem is solved since all the quantities
(11b), (11c), and (13) are fulfilled. In general this is aappearing on the RHS of Eq. (16) are known foe 0.
difficult problem, as imposing conditions (10) and (13) onlt is straightforward to find analytical expressions for the
the solutions of the differential equations [(11a), (11b),Pulse shapes, for example, by specifyifig(z) = const
and (11c)] give functional relations for the pulse shapéor # > 0, as will be done in the following.
whose solution are not obvious. We shall construct a As an illustration, we have numerically integrated the
class of solutions guided by the physical expectation thaull time-dependent Schrddinger equation with the ef-
the time evolution in the second cavity should reverse théective Hamiltonian (8). The results are displayed in
time evolution in the first one. Thus, we look for solutions Fig. 2(a). We have used a pulse shape calculated using

satisfying thesymmetric pulse condition the above procedure, with (t) = 28 w;(¢) = k = const
_ for t > 0 [see Fig. 2(b)]. As Fig. 2 shows, the quantum
&) = gi(=1) (V1) (15)  transmission is ideal.
This impliesa;(t) = ay(—1), andB,(t) = B.(—t). The In practice there will be several sources of imperfec-
latter relation leads to a symmetric shape of the phototions. First, there is the possibility of spontaneous emis-
wave packet propagating between the cavities. sion from the excited state during the Raman pulses. Its

Suppose that we specify a pulse sh&pér) « g(z) for  effects can be accounted for in the effective Hamiltonian
the second half of the pulse in the first cavity=f 0) [20].  (8) by the replacemenh — A + iI'/2, whereT is the
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two nodes of a quantum network. Our scheme has been
tailored to a potential network implementation in which
trapped atoms or ions constitute the nodes, and photon
transmission lines provide communication channels be-
tween them. Extensions of the present scheme will be
presented elsewhere [11], including error correction and
new quantum gates in cavity quantum electrodynamics.

We thank the members of the ITP prograpuantum
Computers and Quantum Cohererfoediscussions. This
work was supported in part by the Osterreichischer Fonds
zur Forderung der wissenschaftlichen Forschung, by the
European TMR network ERB4061PL95-1412, by NSF
PHY94-07194 and PHY-93-13668, by DARPARO
through the QUIC program, and by the ONR.

FIG. 2. Populationsa;,(¢)> and B,(t)> for the ideal trans-
mission pulseg;(r) = g,(—t) given in the inset, specified by
g1t = 0) = 28w, (t = 0) = k = const. [1] D.P. DiVincenzo, Scienc€70, 255 (1995).

[2] J.1. Cirac and P. Zoller, Phys. Rev. Lef4, 4091 (1995).

_ [3] T. Pellizzariet al., Phys. Rev. Lett75, 3788 (1995).
decay rate from levelr). If we denote byr [~maxX 5 o ponreet al., Phys. Rev. Lett75, 4714 (1995).

(l/K, 1/81,2)] the effeCti.Ve.pu|§e duration, the prozbability [5] Q Turchette et al., PhyS Rev. Lett75, 4710 (1995)Y
for a spontaneous emission is of the orderl@f)i, + M. Bruneet al., Phys. Rev. Lett77, 4887 (1996).

4g%)/(8A%)7 < 1. Forg; = « this probability scales like  [6] K. Mattle et al., Phys. Rev. Lett76, 4656 (1996).

1/A, so that the effects of spontaneous emission are supf7] In the context of quantum cryptography, long distance
pressed for sufficiently large detunings. A second source transmission of (correlated) photon states is achieved
of decoherence will be losses in the mirror and during  (see Ref. [8]). In contrast, here we are interested in the
propagation. They can be taken into account by adding a _ interface between atoms and photons.

term _iK/(&Ir&1 n &;&2) in H.;; (8), wherex! is the ad- [8] C.H. Bennett, Phys. Toda$8, No. 10, 24 (1995); A.K.

diti N te. Tvpicall { <« N Ekert, Phys. Rev. Let67, 661 (1991).
itionatloss rate. 1ypically, We expeet < k. NeVer- 191 ¢ 4 Bennetet al., Phys. Rev. Lett70, 1895 (1993).
theless, one can overcome the effects of photon losses byg) ¢ H. Bennetet al., Phys. Rev. Lett.76, 722 (1996);

error correction [21]. We have included these imperfec- ~ p. peutschet al., Phys. Rev. Lett.77, 2818 (1996):
tions in our numerical simulations. Figure 3 shows the N. Gisin, Phys. Lett. A210, 151 (1996).
probability of a faithful transmissioff as a function of [11] J.I. Ciracet al. (to be published).
'/« for different values of"/A for the same parameters [12] C.K. Law and J.H. Eberly, Phys. Rev. Left5, 1055
and pulse shapes as in Fig. 2. (1996).

In conclusion, we have proposed for the first time a pro{13] We ignore for the moment the small effects produced

tocol to accomplish ideal quantum transmission between Py spontaneous emission during the Raman process. Its
effects will be studied in the context of Fig. 3.

[14] One could also modulate the cavity transmission, but this
is technically more difficult.
]. o [15] C.W. Gardiner,Quantum Nois€Springer-Verlag, Berlin,
hN 1991).

l, AN [16] In a perfect realization of the present scheme no light field
‘o N will be reflected from the second mirror, and therefore the
T, DN assumption of unidirectional propagation is not needed.

",E’ el TS [17] C.W. Gardiner, Phys. Rev. Left0, 2269 (1993).
TS, S3S [18] H.J. Carmichael, Phys. Rev. Lef0, 2273 (1993).
) =3 [19] For a review, see P. Zoller and C.W. Gardiner, in
‘= “Quantum Fluctuations,” Proceedings of the Les Houches
Summer School, edited by E. Giacobieb al. (Elsevier,
New York, to be published).
0.5 [20] Q,(¢) has to be such that, (=) = 0. This is fulfilled if

O 0 5 Q1() > 0, which also guarantees that the denominator in

/ . .
K /KJ (16) does not vanish far > 0.
[21] P.W. Shor, Phys. Rev. B2, R2493 (1995); A. M. Steane,

FIG. 3. Fidelity of transmissionf including the effects of Phys. Rev. Lett77, 793 (1996); J.1. Cirac, T. Pellizzari,
mirror losses and spontaneous emission as a functiotf /of and P. Zoller, Scienc@73 1207 (1996); P. Shor, Report
for I'/A =0, 0.01, and 0.05 (solid, dashed, and dot-dashed No. quant-pt{9605011; D. DiVincenzo and P.W. Shor,
lines, respectively). Other parameters are as in Fig. 2. Phys. Rev. Lett77, 3260 (1996).

3224




