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We propose a scheme to utilize photons for ideal quantum transmission between atoms located a
spatially separatednodes of a quantum network. The transmission protocol employs special laser
pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped int
a time-symmetricphoton wave packet that will enter a cavity at the receiving node and be absorbed by
an atom therewith unit probability. Implementation of our scheme would enable reliable transfer or
sharing of entanglement among spatially distant atoms. [S0031-9007(97)02983-9]

PACS numbers: 89.70.+c, 03.65.Bz, 42.50.Lc
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We consider a quantum network consisting of spatia
separated nodes connected by quantum communica
channels. Each node is a quantum system that stores q
tum information in quantum bits and processes this
formation locally using quantum gates [1]. Exchange
information between the nodes of the network is acco
plished via quantum channels. A physical implemen
tion of such a network could consist, e.g., of clusters
trapped atoms or ions representing the nodes, with o
cal fibers or similar photon “conduits” providing the qua
tum channels. Atoms and ions are particularly well sui
for storing qubits in long-lived internal states, and recen
proposed schemes for performing quantum gates betw
trapped atoms or ions provide an attractive method for
cal processing within an atomyion node [2–4]. On the
other hand, photons clearly represent the best qubit ca
for fast and reliable communication over long distanc
[5,6], since fast and internal-state-preserving transporta
of atoms or ions seems to be technically intractable.

To date, no process has actually been identified
using photons (or any other means) to achieve effic
quantum transmissionbetween spatially distant atoms [7
In this Letter we outline a scheme to implement this ba
building block of communication in a distributed quantu
network. Our scheme allows quantum transmission w
(in principle) unit efficiency between distant atoms 1 a
2 (see Fig. 1). The possibility of combining local qua
tum processing with quantum transmission between
nodes of the network opens the possibility for a varie
of novel applications ranging from entangled-state cr
tography [8], teleportation [9], and purification [10], an
is interesting from the perspective of distributed quant
computation [11].

The basic idea of our scheme is to utilize strong coupl
between a high-Q optical cavity and the atoms [5] formin
a given node of the quantum network. By applying la
beams, one first transfers the internal state of an a
at the first node to the optical state of the cavity mo
The generated photons leak out of the cavity, propag
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as a wave packet along the transmission line, and en
an optical cavity at the second node. Finally, the optic
state of the second cavity is transferred to the internal st
of an atom. Multiple-qubit transmissions can be achiev
by sequentially addressing pairs of atoms (one at ea
node), as entanglements between arbitrarily located ato
are preserved by the state-mapping process.

The distinguishing feature of our protocol is that b
controlling the atom-cavity interaction, one can absolute
avoid the reflection of the wave packets from the seco
cavity, effectively switching off the dominant loss chann
that would be responsible for decoherence in the comm
nication process. For a physical picture of how this c
be accomplished, let us consider that a photon leaks ou
an optical cavity and propagates away as a wave pac
Imagine that we were able to “time reverse” this wav
packet and send it back into the cavity; then this wou
restore the original (unknown) superposition state of t
atom, provided we would also reverse the timing of th
laser pulses. If, on the other hand, we are able to dr
the atom in a transmitting cavity in such a way that th
outgoing pulse were already symmetric in time, the wa
packet entering a receiving cavity would “mimic” this tim
reversed process, thus “restoring” the state of the first at
in the second one.

The simplest possible configuration of quantum tran
mission between two nodes consists of two atoms 1 a
2 which are strongly coupled to their respective cavi
modes (see Fig. 1). The Hamiltonian describing the int
action of each atom with the corresponding cavity mo

FIG. 1. Schematic representation of unidirectional quantu
transmission between two atoms in optical cavities connec
by a quantized transmission line (see text for explanation).
© 1997 The American Physical Society 3221
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is (h̄ ­ 1)

Ĥi ­ vcâ
y
i âi 1 v0jrliikrj 1 gsjrliikgjâi 1 H.c.d 1

1
2

3 Vistd fe2ifvLt1fistdgjrliikej 1 H.c.g si ­ 1, 2d .
(1)

Here,âi is the destruction operator for cavity modei with
frequencyvc, jgl, jrl, and jel form a three-level system
of excitation frequencyv0 (Fig. 1), and the qubit is stored
in a superposition of the two degenerate ground stat
The statesjel and jgl are coupled by a Raman transitio
[3,4,12], where a laser of frequencyvL excites the atom
from jel to jrl with a time-dependent Rabi frequenc
Vistd and phasefistd, followed by a transitionjrl !

jel which is accompanied by emission of a photon in
the corresponding cavity mode, with coupling consta
g. In order to suppress spontaneous emission from
excited state during the Raman process, we assume
the laser is strongly detuned from the atomic transiti
jDj ¿ V1,2std, g, j Ùf1,2j (with D ­ vL 2 v0). In such
a case, one can eliminate adiabatically the excited sta
jrli. The new Hamiltonian for the dynamics of the tw
ground states becomes, in a rotating frame for the cav
modes at the laser frequency,

Ĥi ­ 2 dâ
y
i âi 1

g2

D
â

y
i âi jgliikgj 1 dvistd jeliikej

2 igistd feifistdjeliikgjai 2 H.c.g si ­ 1, 2d .
(2)

The first term involves the Raman detuningd ­ vL 2

vc. The next two terms are ac-Stark shifts of the grou
states jgl and jel due to the cavity mode and lase
field, respectively, withdvistd ­ Vistd2ys4Dd. The last
term is the familiar Jaynes-Cummings interaction, wi
an effective coupling constantgistd ­ gVistdys2Dd [13].
The notationjel as “excited” andjgl as “ground” state is
motivated by this analogy.

Our goal is to select the time-dependent Rabi freque
cies and laser phases [14] to accomplish theideal quantum
transmission

scgjgl1 1 cejel1d jgl2 ≠ j0l1j0l2jvacl

! jgl1scgjgl2 1 cejel2d ≠ j0l1j0l2jvacl , (3)
where cg,e are complex numbers; in general, they hav
to be replaced by unnormalized states of other “spec
tor” atoms in the network. In (3),j0li andjvacl represent
the vacuum state of the cavity modes and the free el
tromagnetic modes connecting the cavities. Transmiss
will occur by photon exchange via these modes.

In a quantum stochastic description employing th
input-output formalism the cavity mode operators ob
the quantum Langevin equations [15]:
dâi

dt
­ 2ifâi , Ĥistdg 2 kâi 2

p
2k â

sid
in std si ­ 1, 2d .

(4)
The first term on the right-hand side (RHS) of this equ
tion gives the systematic evolution due to the interacti
3222
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with the atom, while the last two terms correspond to pho
ton transmission through the mirror with loss ratek, and
(white) quantum noise of the vacuum field incident on th
cavity i, respectively. The output of each cavity is given
by the equation [15]

â
sid
outstd ­ â

sid
in std 1

p
2k âistd , (5)

which expresses the outgoing field at the mirror as a su
of the incident field plus the field radiated from the cavity
The output field of the first cavity constitutes the inpu
for the second cavity with an appropriate time delay, i.e
â

s2d
in std ­ â

s1d
outst 2 td, where t is a constant related to

retardation in the propagation between the mirrors. Th
output field of the second cavity is, therefore,

â
s2d
outstd ­ â

s1d
in st 2 td 1

p
2k fâ1st 2 td 1 â2stdg . (6)

Introducing this relation in Eq. (4) we obtain

dâ1

dt
­ 2 ifâ1, Ĥ1stdg 2 kâ1 2

p
2k â

s1d
in std , (7a)

dâ2

dt
­ 2 ifâ2, Ĥ2stdg 2 kâ2 2 2kâ1st 2 td

2
p

2k â
s1d
in st 2 td . (7b)

Note that the first equation is decoupled from the se
ond one; i.e., we consider here only a unidirectional co
pling between the cavities (see Fig. 1) [16]. The prese
model is a particular example of a cascaded quantum s
tem and can be described within the formalism develop
by Gardiner and Carmichael [17,18]. We can eliminat
the time delayt in these equations by defining “time
delayed” operators for the first system (atom1 cavity),
e.g., ãstd ; âst 2 td, etc.; in a similar way we rede-
fine the Rabi frequencỹV1std ­ V1st 2 td, and phase
f̃1std ­ f1st 2 td. In the following we will assume that
we have performed these transformations, and for simpl
ity of notation we will omit the tilde. This amounts to
settingt ! 0 in all these equations. Equations (7a) an
(7b) have to be solved with the corresponding equatio
for the atomic operators and with the condition that th
field incident on the first cavity is in the vacuum state
i.e., â

s1d
in std jC0l ­ 0 ;t.

In the present context, it is convenient to adopt th
language of quantum trajectories [18,19]. Let us consid
a fictitious experiment where the output field of the secon
cavity is continuously monitored by a photodetecto
(see Fig. 1). The evolution of the quantum system
under continuous observation, conditional to observing
particular trajectory of counts, can be described by a pu
state wave functionjCcstdl in the system Hilbert space
(where the radiation modes outside the cavity have be
eliminated). During the time intervals when no coun
is detected, this wave function evolves according to
Schrödinger equation with the non-Hermitian effectiv
Hamiltonian

Ĥeffstd ­ Ĥ1std 1 Ĥ2std 2 iksây
1 â1 1 â

y
2 â2 1 2â

y
2 â1d .

(8)
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The detection of a count at timetr is associated with a
quantum jump according tojCcstr 1 dtdl ~ ĉjCcstrdl,
whereĉ ­ â1 1 â2 [17,19]. The probability density for
a jump (detector click) to occur during the time interv
from t to t 1 dt is kCcstdjĉyĉjCcstdldt [17,19].

We wish to design the laser pulses in both cavities
such a way that ideal quantum transmission condition
is satisfied. A necessary condition for the time evolution
p

l

in
3)

that a quantum jump (detector click; see Fig. 1) never o
curs, i.e.,ĉjCcstdl ­ 0 ;t, and thus the effective Hamil-
tonian will become a Hermitian operator. In other word
the system will remain in adarkstate of the cascaded quan
tum system. Physically, this means that the wave packe
not reflected from the second cavity. We expand the st
of the system as
jCcstdl ­ cg j ggl j00l 1 cefa1stde2if1stdjegl j00l 1 a2stde2if2stdjgel j00l 1 b1std jggl j10l 1 b2std jggl j01lg . (9)
3)
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Ideal quantum transmission (3) will occur for

a1s2`d ­ a2s1`d ­ 1, f1s2`d ­ f2s1`d ­ 0 .
(10)

The first term on the RHS of (9) does not chang
under the time evolution generated byHeff. Defining
symmetric and antisymmetric coefficientsb1,2 ­ sbs 7

bady
p

2, we find the followingevolution equations

Ùa1std ­ g1stdbastdy
p

2 , (11a)

Ùa2std ­ 2g2stdbastdy
p

2 , (11b)

Ùbastd ­ 2g1stda1stdy
p

2 1 g2stda2stdy
p

2 , (11c)

where we have chosen the laser frequenciesvL 1 Ùf1,2std
so thatd ­ g2yD and

Ùf1,2std ­ dvistd (12)

in order to compensate the ac-Stark shifts; thus Eqs. (11
(11b), and (11c) are decoupled from the phases. Thedark
state conditionimpliesbsstd ­ 0, and therefore
Ùbsstd ­ g1stda1stdy

p
2 1 g2stda2stdy

p
2 1 kbastd ; 0 ,

(13)

as well as the normalization condition

ja1stdj2 1 ja2stdj2 1 jbastdj2 ­ 1 . (14)

We note that the coefficientsa1,2std andbsstd are real.
The mathematical problem is now to find pulse shap

V1,2std ~ g1,2std such that the conditions (10), (11a)
(11b), (11c), and (13) are fulfilled. In general this is
difficult problem, as imposing conditions (10) and (13) o
the solutions of the differential equations [(11a), (11b
and (11c)] give functional relations for the pulse sha
whose solution are not obvious. We shall construct
class of solutions guided by the physical expectation th
the time evolution in the second cavity should reverse t
time evolution in the first one. Thus, we look for solution
satisfying thesymmetric pulse condition

g2std ­ g1s2td s;td . (15)

This impliesa1std ­ a2s2td, andbastd ­ bas2td. The
latter relation leads to a symmetric shape of the phot
wave packet propagating between the cavities.

Suppose that we specify a pulse shapeV1std ~ g1std for
the second half of the pulse in the first cavity (t $ 0) [20].
e

a),

es
,
a
n
),
e
a
at

he
s

on

We wish to determine the first halfV1s2td ~ g1s2td (for
t . 0), such that the conditions for ideal transmission (
are satisfied. From (13) and (10) we have

g1s2td ­ 2

p
2 kbastd 1 g1stda1std

a2std
st . 0d .

(16)

Thus, the pulse shape is completely determined provid
we know the system evolution fort $ 0. However, a
difficulty arises when we try to find this evolution, since
it depends on the yet unknowng2std ­ g1s2td for t . 0
[see Eqs. (11a), (11b), and (11c)]. In order to circumve
this problem, we use (13) to eliminate this dependence
Eqs. (11a) and (11c). This gives

Ùa1std ­ g1stdbastdy
p

2 , (17a)

Ùbastd ­ 2kbastd 2
p

2 g1stda1std (17b)

for t $ 0. These equations have to be integrated with t
initial conditions

a1s0d ­

∑
2k2

g1s0d2 1 k2

∏ 1

2

, (18a)

bas0d ­ f1 2 2a1s0d2g
1

2 , (18b)

which follow immediately froma1s0d ­ a2s0d, and (14)
and (13) att ­ 0. Given the solution of Eqs. (17a) and
(17b), we can determinea2std from the normalization (14).
In this way, the problem is solved since all the quantitie
appearing on the RHS of Eq. (16) are known fort $ 0.
It is straightforward to find analytical expressions for th
pulse shapes, for example, by specifyingV1std ­ const
for t . 0, as will be done in the following.

As an illustration, we have numerically integrated th
full time-dependent Schrödinger equation with the e
fective Hamiltonian (8). The results are displayed
Fig. 2(a). We have used a pulse shape calculated us
the above procedure, withg1std ­ 2dv1std ­ k ; const
for t . 0 [see Fig. 2(b)]. As Fig. 2 shows, the quantum
transmission is ideal.

In practice there will be several sources of imperfe
tions. First, there is the possibility of spontaneous em
sion from the excited state during the Raman pulses.
effects can be accounted for in the effective Hamiltonia
(8) by the replacementD ! D 1 iGy2, whereG is the
3223
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FIG. 2. Populationsa1,2std2 and bastd2 for the ideal trans-
mission pulseg1std ­ g2s2td given in the inset, specified by
g1st $ 0d ­ 2dv1st $ 0d ­ k ­ const.

decay rate from leveljrl. If we denote byt [ømax3

s1yk, 1yg1,2d] the effective pulse duration, the probability
for a spontaneous emission is of the order ofGsV2

1,2 1

4g2dys8D2dt ø 1. Forg1 ø k this probability scales like
1yD, so that the effects of spontaneous emission are s
pressed for sufficiently large detunings. A second sour
of decoherence will be losses in the mirror and durin
propagation. They can be taken into account by adding
term 2ik0sây

1 â1 1 â
y
2 â2d in Heff (8), wherek0 is the ad-

ditional loss rate. Typically, we expectk0 ø k. Never-
theless, one can overcome the effects of photon losses
error correction [21]. We have included these imperfe
tions in our numerical simulations. Figure 3 shows th
probability of a faithful transmissionF as a function of
k0yk for different values ofGyD for the same parameters
and pulse shapes as in Fig. 2.

In conclusion, we have proposed for the first time a pr
tocol to accomplish ideal quantum transmission betwe

FIG. 3. Fidelity of transmissionF including the effects of
mirror losses and spontaneous emission as a function ofk0yk
for GyD ­ 0, 0.01, and 0.05 (solid, dashed, and dot-dash
lines, respectively). Other parameters are as in Fig. 2.
3224
p-
e

g
a

by
-

e

-
n

d

two nodes of a quantum network. Our scheme has be
tailored to a potential network implementation in which
trapped atoms or ions constitute the nodes, and phot
transmission lines provide communication channels b
tween them. Extensions of the present scheme will b
presented elsewhere [11], including error correction an
new quantum gates in cavity quantum electrodynamics.
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