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A current-driven homogenization (CDH) approach to calculating all 36 linear constitutive parameters of

a metamaterial crystal is presented. Spatial dispersion is accounted for by evaluating the constitutive

parameters as a function of frequency and wavenumber. For two-dimensional centrosymmetric crystals

spatial dispersion is shown to result in bianisotropy. The accuracy of the CDH constitutive parameters is

verified by comparing the radiation efficiencies of a simple directional antenna embedded inside the

homogenized and un-homogenized metamaterial slabs.
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1. Introduction

Since the invention of artificial materials with negative
magnetic response about a decade ago [1], considerable work has
gone into the study of electromagnetic metamaterials (artificial
materials engineered to have exotic optical properties). In that time
both analytic [1,2] and numerical [3–6] methods have been
suggested for determining the constitutive parameters of such
metamaterials. Although analytic expressions are useful for
approximating a metamaterial’s response and providing general
intuition, ultimately numerical methods are needed to accurately
calculate constitutive parameters. The full constitutive parameters
matrix (CPM), which relates the electric and magnetic induction
vectors D and B to the electric and magnetic fields E and H
according to Eq. (1), has 36 components. Currently, all proposed
numerical methods are severely limited to extracting a small
number of the total 36 entries of the CPM. In this paper we outline
a numerical procedure, current-driven homogenization (CDH), for
calculating all components of the CPM as a function of o and k.

An important aspect of the CDH method is that it enables
computing constitutive parameters for frequencies and wave-
numbers both on and off of the dispersion curve o¼oðkÞ. Up to
now, research has only focused on the behavior of metamaterials
on the dispersion curve. However, applications such as, for
example, novel antennas embedded in metamaterial shells,
require the calculation of constitutive parameters both on and
off the dispersion curve, i.e. for arbitrary and unrelated o and k.
To the best of the authors’ knowledge, the CDH is the first
approach to calculating the constitutive parameters of a meta-
material crystal away from the dispersion curve.
ll rights reserved.

z).
Essential to the CDH approach is the idea of driving a
metamaterial crystal with both electric and magnetic charge-
current. In Section 2 we explain why this is necessary and how it
enables us to extract all 36 parameters of the CPM. In addition to
driving the crystal, a field averaging procedure which converts the
microscopic EM fields in a metamaterial into averaged (macro-
scopic) EM fields is required. The method of driving the crystal
with electric and magnetic charge-current is independent of the
averaging procedure used and different field averaging proce-
dures can be used interchangeably. In Section 3, a new field
averaging procedure is described that is particularly accurate at
providing approximately correct boundary conditions. Finally, in
Section 5 we calculate the constitutive parameters for a two-
dimensional plasmonic crystal and then validate the extracted
parameters by calculating the transmission of a simple metama-
terial antenna driven with a wide spectrum of k’s.
2. Current driven extraction of the constitutive parameters

First, we consider the procedure of extracting the constitutive
parameters of a homogeneous medium. The most common
definition of the constitutive parameters matrix (CPM) is

D

B

� �
¼

e x
z m

 !
E

H

� �
; ð1Þ

where the field vectors D, B, E and H, are the macroscopic electro-
magnetic induction and field vectors, respectively. The 6� 6 CPM
is, by convention, separated into four 3� 3 matrices known as e, x,
z and m [7]. Because the most general CPM contains 36 unknown
entries, we need 36 linearly independent equations of constraint
to calculate it. A single set of EM fields related through Eq. (1)
provides six equations of constraint. Therefore we need six sets of
linearly independent EM fields obeying Eq. (1) to compute the
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CPM. Specifically, we need six linearly independent sets of field
vectors providing us with 36 equations of constraint that can be
solved for 36 unknowns. Of course, the CPM of a homogeneous
medium is known, so what is described in this section is merely
an extraction procedure that recovers the a priori known CPM.

If we use only EM waves supported by the medium free of
source terms (either propagating or evanescent waves), as it is
conventionally done in the context of metamaterials [3,4], then
for a general material only one set of linearly independent fields is
available for a particular set of ½o;kðoÞ�, where o¼oðkÞ is the
dispersion relation. Three sets of linearly independent fields can
be obtained by driving the metamaterial crystal with electric
charge-current [6], but six sets are needed. A solution to our
problem becomes apparent when we inspect a modified form
[8,9] of the Maxwell equations in a homogeneous medium:

r � D¼ 4pr; r �H�
1

c

@D

@t
¼

4p
c

J;

r � B¼ 4pf; �r � E�
1

c

@B

@t
¼

4p
c

I; ð2Þ

where the magnetic charge density f and magnetic current
density I are introduced. In a homogeneous medium an electric
current J¼ J0eiðot�k�xÞ and magnetic current I¼ I0eiðot�k�xÞ that
are harmonic in time and space will generate an EM wave
Eðt;xÞ ¼ E0eiðot�k�xÞ and Hðt;xÞ ¼H0eiðot�k�xÞ according to Eq. (2),
which can be rearranged in o and k space and combined with the
constitutive matrices yielding

M
E0

H0

 !
¼

4pi

c

e�1J0

m�1I0

 !
; ð3Þ

where

M¼
o=c e�1ðk� þox=cÞ

�m�1ðk��oz=cÞ o=c

 !
: ð4Þ

Here the four blocks of theM matrix are represented by 3� 3
matrices, and ðk� Þij � eijlkl. All four constitutive matrices are
assumed to be functions of o and k. If o and k do not lie on the
dispersion curve of the metamaterial crystal (i.e. do not satisfy the
o¼oðkÞ dispersion relation), thenM is invertible and E0 and H0

can be solved for. Therefore, if we limit ourselves to electric
current only, then at most three linearly independent field vectors
are obtained. Those would be insufficient for solving Eq. (1) for
the constitutive parameters. However, if we allow ourselves
to drive the metamaterial crystal with both electric and magnetic
current, then six linearly independent field vectors can be
obtained. These can be used for extracting all entries of the CPM
from Eq. (1). Explicitly, the extraction procedure is as follows.
First, the following 6� 6 EM field matrices are defined:

D�
D1

0;D
2
0; . . . ;D

6
0

B1
0;B

2
0; . . . ;B

6
0

 !
;

E �
E1

0;E
2
0; . . . ;E

6
0

H1
0;H

2
0; . . . ;H

6
0

 !
;

J �
J1
0; J

2
0; . . . ; J

6
0

I1
0; I

2
0; . . . ; I

6
0

 !
: ð5Þ

Each column of the matrices in Eq. (5) is associated with a
single current-driven electromagnetic simulation that involves
the solution of Eqs. (2), subject to the medium’s constitutive
parameters. For example, in the first simulation the driving
current is J i1 ¼ ð1;0;0;0;0;0Þ, i.e. J0 ¼ ex and I0 ¼ 0; in the second
simulation J i2 ¼ ð0;1;0;0;0;0Þ, etc. Electromagnetic fields can
then be combined into the matrices E and D which are, by
definition, related through the CPM defined by Eq. (1). Finally, the
CPM is recovered:

C�
e x
z m

 !
¼DE�1: ð6Þ

Since the six electromagnetic simulations are performed for a
particular o and k, the calculated CPM is a function of o and k:
C¼ Cðo;kÞ. For the homogeneous medium, CDH procedure
returns the a priori known CPM, so no new information about
the medium is gained. The real utility of the CDH is that the same
extraction procedure can be applied to an inhomogeneous
(periodic) metamaterial if an field averaging procedure can be
introduced. The field averaging procedure resulting in the effective

CPM of the metamaterial is described below.
3. Field averaging and homogenization of periodic
metamaterials

By definition, a periodic metamaterial is highly inhomoge-
neous. A unit cell of a metamaterial may consist of various
arbitrarily shaped material inclusions such as metals and/or
dielectrics. Microscopic EM fields e, h, d and b inside each of these
inclusions are related through Eqs. (2), subject to the material’s
local constitutive parameters. In practice, solving Maxwell’s
equations (2) for e, h, d and b inside a single unit cell for a fixed
frequency o can be accomplished using any commercial finite
elements software package, e.g., COMSOL Multiphysics. Micro-
scopic EM fields are subject to phase-shifted periodic boundary
conditions determined by the wavenumber k. Introducing the
effective CPM of such metamaterial requires averaging strongly
inhomogeneous microscopic fields inside the unit cell in order to
obtain a matrix of macroscopic fields given by Eq. (5). The CDH
procedure is then applied to obtain the effective CPM according to
Eqs. (5) and (6).

Field averaging procedures are not unique, and several have
been utilized in the past [1,4,6] to predict wave propagation
inside a metamaterial. A new field-averaging procedure is
introduced below. Like the earlier procedures [1,4,6], it predicts
the correct dispersion relation for the propagating waves. In
addition, it provides approximately correct boundary conditions
[10]. The general three-dimensional volume-averaging procedure
is described below, although only two-dimensional examples are
provided in the rest of the paper.

Because of the unique way different components of the
EM field enter the Maxwell’s equations, the volume-averaging
technique also treats these components differently. Specifi-
cally, the following averaging formulas are used for the field
components of ðD0;B0Þ parallel to k� (the * indicates complex
conjugation) and the field components of ðE0;H0Þ perpendicular
to k:

�ik �
D0

B0

( )
SV ¼

Z
O

d3x

V
r �

d0

b0

( )
ð7Þ

and

�ik�
E0

H0

( )
SV ¼

Z
O

d3x

V
r �

e0

h0

( )
; ð8Þ

where integration is over the unit cell (O), V ¼ axayaz is the
volume of a unit cell with dimensions ax � ay � az, and SV the is
the three-dimensional generalization of the earlier introduced
[11] form-factor:

SV ¼
sinðkxax=2Þ

axkx=2
�

sinðkyay=2Þ

ayky=2
�

sinðkzaz=2Þ

azkz=2
: ð9Þ
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For the remaining field components, a straightforward volume
averaging is used:

k� �
D0

B0

( )
SV ¼

Z
O

d3x

V
k� �

d

b

� �
ð10Þ

and

k� �
E0

H0

( )
SV ¼

Z
O

d3x

V
k� �

e

h

� �
: ð11Þ

The macroscopic field components E0, H0, D0 and B0 are
defined as the method of least squares solution the system of
equations (7)–(11).

Different averaging recipes for different field components was
also utilized in an earlier averaging scheme [1,4]. For example,
without introducing different averaging recipes for H and B, it
would not be possible to predict effective magnetic activity (za0
or ma1) for metamaterials which do not contain any magnetic
inclusions. Also, it should be noted that if k is parallel to the
principle axis of a crystal and if the inclusions in the metamaterial
are small then our averaging method for the transverse compo-
nents of E0 and H0 are equivalent to the transversely averaged
fields used in Ref. [12]. Finally, because of the nature of the
definitions in Eqs. (7)–(11), we cannot rigorously compute the
constitutive parameters at the G point (k¼ 0). It is, however,
possible to compute the entire CPM for any finite wavenumber.
As we show below in Section 4, finite wavenumbers introduce a
new feature of metamaterials: finite bi-anisotropy caused by the
spatial dispersion.
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Fig. 1. Propagation of p-polarized (H¼Hzðx; yÞẑ) waves through the two-

dimensional lattice of SPOF structures. Top: the unit cell (a) of the SPOF

(description in the text). Bottom: real (b) and imaginary (c) parts of kx vs. l0

where k¼ kxx̂. Solid lines: dispersion curves kxðoÞ for a p-polarized wave obtained

from an eigenvalue simulation [15]. Dotted lines: dispersion curves calculated

from Eq. (12) using current driven constitutive parameters calculated from Eqs. (5)

and (6) by driving the SPOF at o and k¼ kxðoÞx̂.
4. Bianisotropy due to spatial dispersion

It has long been recognized [2] that many recently introduced
metamaterials lacking spatial inversion symmetry are bianiso-
tropic, i.e. exhibit cross polarization effects: an electric polariza-
tion as a response to an applied magnetic field and vice versa.
It is widely believed that a centro-symmetric crystal cannot be
bianisotropic (x and z must be zero). However, this is only true if
the constitutive parameters are functions of the frequency o only.
If the constitutive parameters are functions of both o and k, then
spatial dispersion can cause bianisotropy even in a centrosym-
metric crystal as shown below.

Consider the symmetry properties of the z pseudotensor under
coordinate transformations characterized by the transforma-
tion matrix T (limiting ourselves to transformations where

detðTÞ ¼ 71). The pseudotensor z, when dependent only on o,

transforms like z0ðoÞ ¼ detðTÞTzðoÞTT. For a centrosymmetric
crystal, the constitutive tensors (pseudotensors) should be un-

changed by the inversion Tinv ¼ diagð�1;�1;�1Þ, implying that

zðoÞ ¼ z0ðoÞ ¼�TinvzðoÞTT
inv ¼�zðoÞ ¼ 0. However, if z (or x) is a

function of k as well as o, then zðo;kÞ ¼ z0ðo; TT
inv

kÞ ¼�Tinvzðo; TT
invkÞTT

inv ¼�zðo;�kÞ. Instead of showing that z
(and x) vanish for a centrosymmetric crystal we obtain an

important symmetry relation zðo;kÞ ¼�zðo;�kÞ. There are
similar symmetry relations for the other constitutive matrices

for a centrosymmetric crystal: eðo;kÞ ¼ eðo;�kÞ, xðo;kÞ ¼
�xðo;�kÞ and mðo;kÞ ¼ mðo;�kÞ.

Formally, the k vector breaks the symmetry of the crystal. This
can be seen more clearly if we investigate how the pseudotensors
z and x are restricted under spatial reflections. Consider the case
when k¼ kxx̂. If we perform a reflection across the x–z plane our
transformation matrix is Ty ¼ diagð1;�1;1Þ. Under this transfor-
mation, for the zy component of z we find zzyðo;kÞ ¼
z0zyðo; TT

y kÞ ¼ zzyðo;kÞ since TT
y k¼ k for k¼ kxx̂. Therefore, zzy

can be non-vanishing. Now consider zzx which transforms like
zzxðo;kÞ ¼ z0zxðo; TT
y kÞ ¼�zzxðo;kÞ ¼ 0 for a centrosymmetric crys-

tal. So constitutive parameters that are functions of k as well as o
are restricted by symmetry in different ways than constitutive
parameters that are only functions of o. Naturally, in the limit
of k¼ 0, the k vector no longer breaks the symmetry of the
centrosymmetric crystal, and z and x as well as the off diagonal
terms in e and m vanish.
5. Constitutive parameters of a plasmonic metamaterial

In this section we present the results of applying the CDH
approach to extract the effective CPM of a two-dimensional
plasmonic metamaterial crystal known as a strip pair-one film or
a SPOF [13,14]. A diagram of the SPOF is given in Fig. 1(a); it is
comprised a square crystal lattice with a thin Au film in the center
of the unit cell and two Au strips on both sides of the film. The
permittivity of the Au is e¼ 1�o2

p=ðoðo�iGÞÞ with op ¼ 1:32�
1016=s and G¼ 1:2� 1014=s. The rest of the SPOF is dielectric with
permittivity e¼ 1:562. The SPOF structure has been shown [13] to
exhibit the negative index propagation. The dispersion curves
kxðoÞ corresponding to the wave propagation in the x-direction
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are obtained using the earlier described approach [15] and plotted
in Figs. 1(b,c) as the solid lines. Only p-polarized modes
(H¼Hzðx; yÞẑ) are studied in the rest of the paper. Only one
mode (blue line) is ever radiating, and only for certain frequency
bands. All other modes are evanescent.

As the first test of the CDH approach, we have extracted the
full set of current-driven constitutive parameters as functions of
(o;k¼ kxðoÞx̂) for the eigenmodes of the crystal following the
averaging and homogenization techniques described in Sections 2
and 3. The unit cell is driven slightly off the dispersion curve so as
to prevent the matrix M in Eqs. (3) and (4) from being singular.
Thus obtained entries of the CPM are used to calculate the real
and imaginary parts of the complex wavenumber for each
eigenmode according to the dispersion relation of the SPOF
(dotted lines), which for a p-polarized wave propagating in the
x-direction is given by

kx�ozzy=c

mzz

� �
kxþoxyz=c

eyy

� �
�
o2

c2
¼ 0: ð12Þ

Note from Eq. (12) that only four entries of the CPM (eyy, zzy, mzz

and xyz) affect the mode’s propagation in the x-direction. Fig. 1
indicates that the current driven constitutive parameters accu-
rately predict the correct dispersion for two of the modes, one of
which (blue line) is radiative for some frequencies and evanescent
for others while the other one (green line) is always evanescent.
Though not shown in Fig. 1, the current-driven constitutive
parameters fail to predict the dispersion of the third mode (red
line) due to the mode having an antisymmetric field profile.

The constitutive parameters eyy and zzy for the SPOF extracted
along the dispersion curve kxðoÞ of the ‘‘radiative’’ (blue line)
eigenmode are shown in Figs. 2(a,b), respectively. The CDH
procedure also yields xyz ¼ 0 and mzz ¼ 1 for all frequencies. We
conjecture that this simplification is due to two factors: that all
inclusions of the SPOF possess only a local electric response, and
that the SPOF is centrosymmetric structure.

Extracted mzz ¼ 1 is in apparent disagreement with the results
of the S-parameter retrieval [3] of mzza1 for the SPOF [13] or
20
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Fig. 2. Constitutive parameters of the two-dimensional lattice of SPOF structures

(see Fig. 1): eyy (a) and zzy=ðkxaxÞ (b) computed using Eqs. (5) and (6) along the

‘‘radiative’’ dispersion curve k¼ kxðoÞx̂ shown in Fig. 1 as a blue line. Not shown:

m¼ 1, x¼ 0 for all wavelengths. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
similar negative index structures. In fact, it directly follows from
Eqs. (4) and (12) that the only relevant quantity for this specific

propagation direction and wave polarization is ðkx�ozzy=cÞ=mzz.

Therefore, any set of effective parameters (zeff
zy ;m

eff
zz ) satisfying

ðkx�ozeff
zy =cÞ=meff

zz ¼ ðkx�ozzy=cÞ=mzz, including zeff
zy ¼ 0 (assumed in

S-parameter retrieval) and meff
zz ¼ ð1�ozzy=ckxÞ

�1 are valid con-

stitutive parameters. Thus defined meff
zz is indeed extracted using

S-parameter retrieval [10].
An important new capability of the CDH approach is that it can

calculate the constitutive parameters of a metamaterial for any o
and k that do not obey the dispersion relation inside the
metamaterial crystal. This has important implications for various
applications, such as metamaterial-embedded antennas and
quantum dots. Because an antenna can have an arbitrary shape
and position, detailed knowledge of the CPM on and off the
dispersion curve is necessary. Below we demonstrate a close
agreement between radiation patterns of a monochromatic flat
(infinitely extended in the y2z plane) directional antenna
embedded inside (i) a SPOF array comprised five layers stacked
in the x-direction, and (ii) a finite homogeneous 500 nm thick slab
with the CPM corresponding to the SPOF metamaterial. Owing
to the linear response of the metamaterial, it is sufficient to
investigate radiation patterns (transmission from the left and
right slab boundaries) for the electric currents in the form of
Jk ¼ J0ŷeiðot�k�xÞ. For example, a flat antenna with a finite size in
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Fig. 3. Radiation by the harmonic current Jk ¼ J0ŷeiðot�k�xÞ emulating a directional

antenna embedded inside a metamaterial slab. Radiation emerging from the right

(a) and left (b) boundaries of the slab is plotted for the current embedded inside a

five-layer thick SPOF metamaterial (solid lines) and a L¼ 500 nm homogeneous

slab with the CPM of the SPOF (dotted lines).
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the x-direction can be represented as a superposition of such
currents summed over a spectrum of k.

The results of the simulations for the cases (i) and (ii) carried
out for a wide spectrum of k’s are shown in Fig. 3 as solid lines
and dots, respectively. All simulations were performed for three
antenna frequencies corresponding to l0 ¼ 600, 800, and
1000 nm. The wavenumbers k are varied from k¼ 0 to k¼ p=ax̂
(right half of Fig. 3) and from k¼ 0 to k¼ p=ax̂þp=aŷ (left half of
Fig. 3). Finite value of ky enables steering the beam at an angle
with respect to the slab’s boundary. For the homogeneous
medium we assumed Maxwell boundary conditions (continuity
of tangential E and H fields). The radiation flux escaping through
the right and left slab’s boundaries are shown in Figs. 3(a) and (b),
respectively.

Strong antenna directionality is observed for l0 ¼ 600 and
1000 nm antennas which can couple to the low-loss propagating
modes: the peaks of the forward flux are matched by the dips of
the backward flux. Such phase matching is achieved when k
matches ReðkðoÞÞ on the dispersion curve in Fig. 1(b). Direction-
ality of the l0 ¼ 800 nm antenna is poor because at this frequency
all free modes in the SPOF are evanescent according to Fig. 1(c).
Very good agreement between the simulations of the cases (i) and
(ii) is observed, confirming the accuracy of the homogenization
procedure. The small observed discrepancies are believed to be
mostly due to the imperfect boundary conditions.
6. Conclusion

In conclusion, a new homogenization technique for metama-
terial crystal is introduced. The combination of the current-driven
homogenization technique and a new averaging procedure for the
microscopic EM fields of the crystal yields the full constitu-
tive parameters matrix of a metamaterial as a function of the
frequency and propagation wavenumber. A new result obtained
using this technique is the demonstration of bianisotropy of a
centrosymmetric crystal due to spatial dispersion. The theory
appears highly accurate at predicting the dispersion of free waves
in a metamaterial crystal. Our method can also calculates
constitutive parameters away from the dispersion curve which
is necessary for computing Green’s function solutions for the
currents embedded inside a metamaterial.
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