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Gauge-invariant Green functions of Dirac fermions coupled to gauge fields
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We develop a unified approach to both infrared and ultraviolet asymptotics of the fermion Green functions
in the condensed-matter systems that allow for an effective description in the framework of quantum electro-
dynamics. By applying a path-integral representation to the previously suggested form of the physical electron
propagator we demonstrate that in the massless case this gauge-invariant function features a “stronger-than-
a-pole” branch-cut singularity instead of the conjectured Luttinger-like behavior. The obtained results alert one
to the possibility that construction of physically relevant amplitudes in the effective gauge theories might prove
more complex than previously thought.
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[. INTRODUCTION minimally coupled to an Abelian gauge field was found to
have a distinctly non-Fermi-liquid behavibrlthough the

In a generic many-body fermion system, a repulsivelatter appears to be quite different from the Luttinger bne.
electron-electron interaction is normally expected to resultin More recently, there has been an upsurge of interest in the
a suppression of any amplitude which describes propagatiof¢lativistic counterpart of this model, which is a zero-density
of fermionic quasiparticles. For instance, in the phenomenolx=0) system of theN-flavored relativistic Dirac fermions
logical Fermi-liquid theory, the residue of the electron Greencoupled to an Abelian gauge field which is described by the
function G(e,p)=Z(e)/[e—E(p)+ x] gets reduced com- standard action of quantum electrodynami@ED),
pared to the noninteracting val(iZ(e) =1], thus exhibiting
a partiall 0<Z(0)< 1] suppression of the simple pole which _
corresponds to the bare fermionic quasiparticles. 5[‘1’,‘1’1A]:f dx

The question as to whether or not the repulsive fermion
interactions can result in an even more severe, complete, 1
destruction of the polgZ(0)=0] remains the subject of an + 4—gz(t?,LAV—c9,,A,L)2
ongoing debate. Such a behavior is well known to occur in
the one-dimensiondlLD) Luttinger and related models with
short-ranged interactions, in which case the residue of th
fermion Green function exhibits a characteristic algebraic de-
cayZ(p)~p7” as a function of the Lorentz-invariant momen-

N
2‘1 V(i y,0,+ v,A,—m)Wy

: @

where, for the sake of completeness, we also included a finite
ermion masan.

Among the previously discussed examples of the 2D
condensed-matter systems that support the Dirac-like low-
tum p= /- p?=(p?~ w?)“2and is controlled by an anoma- energy excitations and allow for such an effective description
lous dimensionp>0. are the so-called flux phase in the planar quantum disordered

In the 1D coordinate space, this behavior corresponds tmagnet§4 and the layered disorderetwave superconduct-
the suppression of the electron propagat@(t,x) ors with strong phase fluctuations proposed as an explanation
~3 . exp(xikex)/|[x=t**7, which at long times and dis- of the pseudogad and insulating (spin-density wave
tances decays faster than the noninteracting oyee). In  phases of highr. cuprates. Also, the non-Lorentz-invariant
the absence of spin, the above Green function is Lorentgersion of QED.; was shown to provide a convenient de-
invariant, apart from the oscillating factors expkgx) that  scription of the normal semimetalic state of highly oriented
stem from a finite (Rz) separation between the two 1D pyrolytic graphite®®
Fermi points, in accordance with the fact that the low-energy The number of the fermion flavoié depends on the prob-
excitationsir | confined to the vicinity of the Fermi points lem in question, although it is not necessarily equal to the
constitute one Dirac fermio = (¢, ). number of different conical Dirac points in the bare electron

The marked difference between this, so-called Luttingerdispersion of a lattice system. In all of the previously dis-
behavior and the Fermi-liquid one prompts fundamentallycussed 2D examplés? N=2 is a number of the electron-
important questions pertaining to the possibility of a similarspin components, while the number of conical points turns
behavior in D>1 and/or the presence of long-ranged out to be either tw®° or four*~® which merely forces one to
electron-electron interactions. While in the case of the shortuse the four-component Dirac fermions and the correspond-
ranged interactions the possibility of tBe>1 Luttinger-like  ing (reducible representation of they matrices y,=o,
behavior is likely to be limited to the infinitely strong cou- ® o3 constructed from the triplat, of the Pauli matrices.
pling limit, the long-ranged forces appear to be capable of In the above-mentioned condensed-matter-related applica-
destroying the Fermi liquid even at finite couplings. As thetions, the effective gauge fields serve as a somewhat exotic,
best studied example of this kind, the model of degeneratget often more convenient, representation of such bosonic
nonrelativistic massive fermionsT&u<mc?) which are  collective excitations as spin or pairing fluctuations, while
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the Dirac fermions correspond to the auxiliary fermionic ex-sponding to the fermion’s propagation between the space-
citations such as, e.g., spinotisitopological” fermions’~’  time pointsx andy. Likewise, in the case of a generic mul-
and so forth. Generically, the quantum-mechanical amplitifermion amplitude, the allowed graphs can only contain
tudes describing such degrees of freedom turn out to bgpen fermion lines which connect the incoming and outgoing
gauge dependent, while all the physical observables whichsymptotical fermionic states, provided that the fermion po-
experimental probes can only couple to must be manifestlyarization has already been absorbed into the gauge-field
gauge invariant. . . . _ propagator.

~Among such gauge-invariant amplitudes is the ON€ CON- This approach can be viewed as a systematic improve-
taining a phase factofsometimes referred {0 as a “gauge ment of the celebrated Bloch-Nordsieck model, where all the
connector” or a “parallel transporte) spin-related effects are ignored, which makes this model ex-

actly solvable but restricts its applicability to the infrared

Gﬁw(x,y)=<‘lf(x)exp( if Aﬂdzﬂ)xf(y)>, 2 (R regime|p2_— m?|<m? near the fermion’s mass shell.

r We emphasize that the IR regime can only exist if the
whose suggestive form makes it tempting to identify E). fermions are massive, while in the massless case the entire
with the physical electron Green functigim spite of its be- ~ region below the upper cutoff (which is set by the condi-
ing gauge independent, the functi@j,, explicitly depends tions of the applicability of the effective QED-like descrip-
on the choice of the contodt). tion itself) falls into the opposite, ultravioletuV), regime

To this end, it was conjecturédhat by analogy with the Which, in the case of a finite fermion mass, is defined as
problem of the compressible quantum Hall effect describedp’—m?[>m?.
by yet another kind of 2D auxiliarythis time, nonrelativis- The rest of the paper is organized as follows. We first
tic) fermionic quasiparticles, the so-called composite fermi-describe Schwinger’s functional technique and investigate
ons, interacting with the statistical Chern-Simons fféithe ~ both the IR and UV asymptotics of the ordinafgauge-

electron Green function is given by E() with the contour ~dependent fermion Green function in the general
I chosen as a straight line from the end poirtp y. D-dimensional case. Then, after having compared our gen-

Furthermore, it was argued in Ref. 4 that in the case €ral formulas with the well-known 3D results as well as with

=0 and at energies and momenta which are small as coni® partially known 2D ones, we proceed with the gauge-

pared to the bandwidth and the inverse lattice spacing, rdnvariant fermion amplitude proposed in Ref. 4 and ascertain

spectively, the gauge-invariant amplitud®) features the its true behawqr. We conclude our analysis with a discussion

Luttinger-like behavior with a positive exponent(hereafter ~ Of the alternatives to the previously suggested form of the

we use notations- p=q,p, andp=y,p,) physical electron propagator as well as to the fits to the
rER pERS ARPES dat& exploiting the QED. ;-related scenarios.

Glo,(P)~p/p? 7, 3
which was also invoked in Refs. 4 and 6 to explain the exdl. FUNCTIONAL-INTEGRAL REPRESENTATION OF
perimental data on angular-resolved photoemission spectra FERMION AMPLITUDES

(ARPES in high-T, cuprates?

In the general case of @-dimensional condensed-matter
system which possesses a number of isolated Fermi poin
located atkg;, the conjectured behavidB) corresponds to
the algebraic suppression of the electron propagator at long
times and distances,

The conventional fermion Green function is given by the
@roperly normalized functional integral over the fermion
and gauge-field configurations,

G(x,y)=(V(x)¥(y))

| ~ ikgi- X — — =
Gln, ()~ 25 €' vrer 4) =f D[W]D[¥]|D[A]¥ (X)W (y)expiS[¥,¥,A]).
where the sum is taken over all the Fermi points. (5)

In the present paper, we employ a functional-integral
technique to compute the functidB) and discern the true
nature of its singular behavidif any). This approach, which Upon integrating the fermions out, one arrives at the expres-
had been pioneered by Schwinger and later advanced by 0n
number of other authorsee, e.g., Refs. 10 and 11 and ref-
erences therejnexploits a functional-integral representation
of the exact solution of the equation fGinv(x,y|A) as a .
functional of an arbitrary configuration of the gauge field G(x,y):f D[A]G(x,y|A)expiSer{Al), (6)
A(z). Subsequently, by averaging over the gauge field, one
obtains a sum of all the multiloop diagrams with no cou-
plings between the fermion polarization insertions into thewhere the effective action of the gauge field includes the
gauge-field propagators, and the open fermion line correfermion polarization
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1 defi9+A—m] In this expression, the terms which are oddAifz) contrib-
Seff[A]=FJ dx(ﬁMA,,—aVA#)ZJrIn.A— ute to the gauge-invariarisee below part of the mass op-
9 defid—m] erator

1
=5 ] ox[ wya0pdoeyAm - @ dq

S
M(S|V)=fWDW(Q)JOOITM[ZUV(T)JFZDV
By neglecting all but the Gaussian term in E@) one ex- T

cludes from consideration any processes of “light-light scat- _ (s

tering” and alike. Thus far, none of the aforementioned ef- —UVxQA]eXF{ZIP'CI(S— 7')+2|J q-v(7)d7y |,
fective QED-like descriptions of the condensed-matter 7

systems has gone anywhere beyond this common approxima- (12
tion.

dvhile the even ones stem from the exponential of(feuge-

Nonetheless, the gauge-field is not completely quenche dependent“phase factor,”

as one still accounts for the quadratic polarizatiditq),
resulting in the gauge-field propagator, which, in the covari- g
ant\ gauge, assumes the form q s n
gaug @(S|V)=prMV(Q)deT1fO de[ZUM(Tl)‘f‘Zp”
aa

2

g 4.9,

D,W(Q)Im O, T(N—1) | (8) +0409a1[20,(72) +2p,— 0,50,]
In turn, the fermion Green functio®(x,y|A) computed for XeX[{Zip-q( 71— Tp) + 2i jrlq.v(%)dT3 . (13
a given gauge-field configuration obeys the equation 72

. In the above expressions, the integrations over the proper
[i9+A(X)—m]G(x,y|A)=8(x—Yy). (9 time parameters; are ordered according to the order of their
appearance in the products of the noncommutative factors

Its formal solution can be written in the form of a quantum-
. [2v,u,(7-l)+2p;l,io-,uqu]

mechanicali.e., single-particle) path integraf

Ill. INFRARED BEHAVIOR

_ i [T qeds(-m+is) P90 A(x) 4
GixylA) |f0 dsé Lo+ AG)+m] By using Eqs(11)—(13) one can readily determine the IR

behavior of the fermion Green function. With its momentum
Xf D[a]s x—y—ZfSa( Tz)de) satisfying the conditiomp?— m?|<m? a fermion behaves as
0 a heavy particle whose velocity remains essentially un-
changed after emitting and absorbing an arbitrary number of
X ex;{ o J’SdT‘ gauge-field quanta. Therefore, the Green function receives its
0 main contribution from the fermion trajectories close to the
. straight-line patwhich only coincides with the semiclassi-
-~ cal trajectory in the case of a timelike separation between the
X ZL al Tl)dTl)] ’ (10 end points k—y)2>0].
This allows one to neglect the fluctuations of the total
where o,,=[v,,7,]/12 and 6—0". The integral over the fermion’s momentum with respect to its average vatén

fermion’s momentuna(s) as a function of the proper tim@  \hich case the mass operator introduces only a small correc-
parametrizing its space-time trajectory is normalized in suchjgn

a way that
f D[a]exr{—ifsaz(f)
0

. . . - 1
Next, we perform functional averaging over different gauge- = pO(—)
field configurations with the use of E@7), then Fourier sp’
transform Eq.(10) to the momentum representation, and fi- p2-m? .

nally switch to the integration over the fluctuating part of the ~p———<p. (14)
total fermion momentunv(s)=a(s) —p, thus obtaining m

a(r)— [2a,(7)+0,,id,]

XA,

dr=1. IR (2m)P+1 Y “Evgep

In deriving Eq.(14) we took into account that a characteristic
value of the parametes~|p?—m?| "1 is determined by Eq.
(11) and the fact that the integrél4) receives its main con-
tribution from small transferred momentg<1/sp~|p?

X[ p+m+M(s|v)]exdi®(s|v)]. (1)  —m?/p<p.

G(p):—if:dséS(PZ*mz”‘”f D[v]ex;{—ij'osvz(T)dT
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In contrast, the integrals over in the gauge-dependent stable against the effects of the fermion polarization. In fact,
IR phase factor are formally divergent. They must be tackledor q=Ng? the gauge propagator is totally dominated by the
by first computing the momentum integral and then applyingfermion polarization, which, foN>1, is given by the one-
the so-called “ribbon” regularizatiot p(r,— 7,)—p(7; loop term
—15)+1 with (p-1)=0 and|l|=1/A, which yields the ex-

pression Ng?
I(q)=—5~ -, (20)
dg s
‘I’|R(S):4f WDW(Q)LdH and the gauge-field propagator reads as
1 .
2ip-q(7q—75) 8 q,.qv
x fo drop p,e2P-ari D= el et D] @
S T 2 H H'H
:igleJ dle 1d72 (D—2+)\) P - Instead of the bare coupllr_g; itis 1/N Fhat now becomes a
0 0 [p(7—75) +]] parameter of the perturbative expansion. We note that above

the momentum scalg® no further logarithmic corrections

p*(T1—75)? are generated, so that the latter is now playing the role of the
—2r-1) Ip(r— ) +1|* UV cutoff. Nonetheless, for the sake of uniformity of our
e presentation, in the following discussion we will continue
i T using the notation\ and the label UV for the range of mo-
=ig7lp| (D=2+M)| 5 (spA)—In(spA) mentam<qg= A =Ng?.

It is also worth mentioning that, owing to the parity con-
serving structure of the reducible four-fermion representa-
: (19 tion, the radiative corrections generate no Chern-Simons
terms.

In the massive case, the linear divergenC@QS) would be Using Eq(21) we obtain a Coup”ng_independent anoma-
routinely attributed to the renormalization of the bare masgoys exponent

m—m+O(A). After having separated this linear diver-
gence, we observe that the subleading logarithmic terms con-

—2(\— 1)(%(spA)—ln(spA))

spire to give rise to the nonperturbative formula nfgz%()\_z), (22)
Gir(p)=—i(p+ m)fwdsés(pz—mzﬂé)(sp/\)—mR/Z thus discovering the 2D analog. € 2) of the 3D Yennie's
0 gauge.
- Notably, the IR wave-function renormalization assumes
p+m (16) the anticipated power-law form, in full accord with the

physical origin of the IR singularity. The latter is known to
. o o stem from the processes involving independent emission and

(p2_m2+i5)l— mr/2’

behavior(3) with the IR anomalous dimension Due to their uncorrelated nature, these multiple “bremsstrah-
lung” events obey a Poisson distribution formula, hence the
mr=29%lp(\—D), (170 appearance of the factorials in the statistical weights, result-
where ing in the natural exponentiation of the lowest-order
(~g?In A) correction.
Ip=[2°#PTV2r({D+1}/2)] L. (18
Thus, in the 3D case of the conventional weakly coupled V- ULTRAVIOLET BEHAVIOR
QEDs, 4, we recover the well-known IR exponefsee, e.g., Schwinger’s functional technique is also capable of ex-
Ref. 14 ploring the UV regime [p?—m?>m?), which is the only
regime of interest present in the massless case. Despite the
. e? fact that the procedure is straightforward, there seems to
MR =7 2(A=3), (19 have been no such systematic attempt made in the past.

Technically, the UV behavior is more difficult to analyze,
which vanishes in the so-called Yennie's gauge3 (7,ris  because the path integréll) is no longer saturated by the
also known to be zero in some noncovariant gauge, such dgsajectories close to the semiclassical straight line. In fact, the
the Coulomb gaugg-A=0). relevant paths can strongly deviate from the straight-line one,

In the (parity-even 2D case, which is of a particular in- for they suffer no exponential suppression, unlike in the IR
terest in view of its condensed-matter-related applications, regime.
the weak-coupling regime turns out to be intrinsically un-  Despite the fact that the functional integration ovés)
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dqg

can no longer be carried out exactly, one can instead resort to o
s(pc+id)
j dsé f 27T)D+1D#V(q)

the formula 61Gyuv(p)=
0

1—eis(a*+2q-p)

f D[v]exp(—if v2dr+F[v] X W%(Qﬁﬂpv—%x%)
. F[v] <F>>2 . 1— e 2P 1 i5(q?+2q-p)
=P D[v]ex;{ jzd Z +p (P 20.p)? (a,+2p,

(23)
+ O-,uaqa)(QVJr 2pv_ O-V,Bqﬁ) - ipS&MV

where(F)=[D[v]exp(—i[v?d7)F[v].

Equation(23) has been extensively used, e.g., in imple- 9D
menting Feynman'’s variational principle in the polaron and =5
related problems. Expanding E¢l1) to the first order in 2p
Dy.,(q) we obtain By using the identity

I +oo @D

D(3-D) (AZ
"D+1 p?

n
p

(= o . IayM(6+a)yvl5:ﬁ(qﬂ+2p#+O-;Laqa)(qv+2pv_o-vﬁqﬁ)
01Gyv(p)=—i jo dse>PHAMyy(s)) +ip(Pyv(s))].

—¥,P%(4,+2p,— 0,)0)) — 8,,P(p+Q)?
(24

and integrating in Eq(27) over the proper tims prior to the
] . momentum integration, one can also check that the correc-
The functionally averaged mass operatb?) is now deter-  tjon given by Eq/(27) exactly reproduces the one-loop result

mined by the transferred momerdap~1/y/s and it needs  of the conventional diagrammatic expansion
to be computed only to the first order

. dq D,.(q)
. 5lGUV(p):_|J = PP+ Q) .p.
f dq 1— eis(a?+2a-p) (2m)°** p*(p+aq) -
Muv(s))=i D,y
(Myw(s)) (2m)P L * (a) +2qp ' ' .
Instead of expanding E¢11) to higher orders irD,,,(q) one
Xy,(d,+2p,—0,,0)) can perform a summation of the leading?(n A)" terms by
D virtue of the standard renormalization-group equation, which
—2020| IN(SA2) + - - - 25 reflects the scaling properties of a generic two-point ampli-
9Plopig n(sA™) @9 tude (gauge invariant and noninvariant aljkeinder the

change of the upper cutoff,

Notably, Eq.(25) is independent of the gauge parameter. In

contrast, the averaged phase fa¢t®), which can be calcu- ~ |~ ~
lated in thep—0 Iirgit, P A——B(g) =+ 7(9) |PGuv(p;A;9)=0, (29

where the Ieadmg-order dependence of the anomalous di-
mension of the fermion Green function on the renormalized

P _ 1 5 ) ~ o )
(Pyv(s)= (2Pl . (Q) coupling strengtfy is given by the explicit form of the first-
order correction27),

1—e's@+20) js(q2+ 2q- p)
(4°+2q:p)?

X (qM+2p#

Jd .
7](9)=_Amp&Guv(p;A;gﬂp:Aa (30)

while ,B(g):A(?E;/&Mp:A:O, and, therefore, the coupling

strength retains it bare valgg=g, for as long as the dynam-

. ics of the gauge field is considered quenched.

= '_gz| 5(D+N)In(sA2)+ - - -, (26) The solution of Eq(29) suggests that the first logarithmic
2 correction(27) merely gets exponentiated, thus yielding the

algebraic behavior controlled by the UV exponent,

does manifest a dependence on the gauge parameter. Com-
bining Eqgs.(25 and (26) together, we obtain the total cor-
rection to the Green function,

+ O-Maqa)(qv+ 2p1/_ O-Vﬁqﬁ) - isap,v

nuv=0%p| A+ (31

D(D-3)
D+1 )
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Further corrections to Eg31) require one to not only extract
the subleading corrections of ordeg®"InA from the
nth-order terms in the expansion of E@1) in powers of
v(s) and account for the improved fermion polarization

I1(q), but also to proceed beyond the quenched approxima-

tion (7) for the effective action of the gauge field.
In the weakly coupled 3D case, E(1) reproduces the
well-known resuft*

eZ

3D_
uv= 82 A, (32

PHYSICAL REVIEW B65 235111

Sd T3

S
+2i(T3_T4)/SJ q'V(T5)dT5 -
0 o S

S
xexr{Zip'q(s—rlHZiJ q-V(7,)d7y
1
S
—2ip-qr3—2i7'3/sf q'V(Ts)de) . (36)
0

In the IR regime the path integration can still be carried out
exactly by simply neglecting(s) with respect to the average

while in the 2D case it yields the coupling-independent UVermion momentump. In the same approximation as that

exponent

4
o= 3,28 3 2), (33

in agreement with the result obtained in Ref. 15.

V. GAUGE-INVARIANT FERMION AMPLITUDE

After having tested our formalism against the known ex-

used in Sec. llkwhich is only justified in the vicinity of the
mass shell, provided that# 0), one readily obtains

dq

Miny,1r(S) = ZJ WDW(Q)

X Jsd 7_,}/Mpy[eZip-q(s— T _ e2ip~q7]
0

amples, we turn to the proposed candidate for the physical

electron propagator, which is given by E) with the
straight-line contoul’,

Gloy (X, y)—f D[A]G(x,y|A) exp(—lf dz*A (z))

X expl(iSer Al). (34)

(37

and

dq

S T1
(Dinu,IR(s):4f WDW(Q)DMPVLC*HJ'O dr,

Proceeding by analogy with the derivation presented in Sec.

I, one readily obtains Eq11), where Eqs(12) and(13) are
replaced, respectively, with

dq

Minv(S|V)=fWDW(Q)deTm

(rqu}exp( 2ip-q(s—1)

{2v,(7)+2p,

S
+2iJ Q‘V(Tl)d7'1> —[2v,(72)+2p,— 0,\0\]

Sd’Tz
Xexp 2ip- qr+2|7-/sf q-v(7)dry j S
0
(35)
and
dqg s m
q)inu(5|v):JWp,uv(q)fodﬁjo dTZ[ZU;L(Tl)

+ 2pp,+ O-,ua/qa][zvv( TZ) + 2pv_ Uvﬁqﬁ]

exp( 2ip-q(11— 1)+ 2i f 1q'v(7-3)d7-3)
2

Sd’T3

.

7'3d’7'4

—exp( 2ip-q(13— 74)
o S

S

: 2 (s 3 :
X EZIp.q(T17T2)+?J'OdT3J<O dr,e?Parz=m)

2 (s .
-3 fodeeZ'MS*TrTe) =0. (39)

Thus, as first pointed out by the authors of Refs. 10, in the IR
regime the gauge-invariant propagat84) retains a simple
pole

p+m

Glop 1r(P) = (39

pZ—m2+is’

hence,nin, r=0.

By comparing Egs(39) and(17) one can also deduce the
IR anomalous dimension of the exponential factor
exp(fdx,A,) itself,

7]eprRZZQZID(D_)\)v (40)
which of course vanishes in Yennie's gauge.

Next, going over to the UV regime and expanding Egs.
(35 and (36) to the first order inD,,(q) we arrive at Eq.
(24), where the functional average of the gauge-dependent
phase factor,
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dq g2 integrals over the auxiliary parametewith the use of the
(Piny UV(s))zf 5 “ribbon” regularization* This procedure yields the follow-
, 2W)D+l q +H(q) . . .. . . . .
( ing logarithmic integrals appearing in our calculation:
1—els(@®+24:p) 4 j5(g2+2q.
« e X IS(C]2 q-p) f dq q, il nM| (AZ)
+2q- — =— —5Inl—|,
(a7rza-p) (2m)P*t qP Hp+q)X(q-n) 2 NPT p?

24
X((Z(;)Z_(”’”q”)z_qZ) _isl

f dq a9,
(2mP*t qP " L(p+a)(qg-n)?

=0(p%s)=1, (41)
now exhibits neither linear nor logarithmic divergence as a :“_D 2n,n,— 5,uun2|n A?
function of s, unlike in the case of the noninvariant ampli- 2 n4 p?)
tude[see Eq(26)]. In turn, the value of the mass operator q
an
q g2 1— gis(a®+29-p)
Min, uv(S =2if d )
< in ,UV( )> (277')D+1 q2+H(q) q2+2qp f q q/},q q)\
(2mP*t g (p+a)*(g-n)
NP S . P .
X{p_qﬁ_q%—i—_z’)ﬂ/do—,uqu _ IID /nu5VA+nV6/L)\+n)\5/LV
q q 2(D+1)| 2
=29%pl b In(sA2)+ (42) 2
=40 Plop7 _huhuny InA—
Z 7|
n p

appears to coincide with Eq25). Thus, it is Eq.(42) that

solely determines the correction to the gauge-invariant Gree@ne can check that the above expressions are fully consistent

function, with the standard “principal-value” prescription for spurious
poles, whose advanced form is known in the field-theoretical

[ is(p?+i) literature as the Leibbrandt-Mandelstam riz=e Ref. 16
61Giny,uv(P) = —i o dse [{(Min,,uv(s)) and references therain
Finally, by invoking the renormalization-group equation
Fip(Din, uv(S))] (29 we find that the logarithmic correctio®3) tends to
) ’ exponentiate, thereby resulting in the UV anomalous dimen-
2922 | | AZ) (43) ston
=20°=lp=—=In| = |.
952 PD+1 | p?
The same result can be obtained by working in the axial ”inv,UV:_492|DD+1' (49)

gaugen-A=0 defined by the vecton=(x—y)/|x—y|. In

this gauge, the exponential factor in E&4) is identically ~ Which appears to beegatie.

equal to unity, and the first-order correction is given by Eq. Although we were unable to find in the literature any

(28), where one has to use the gauge-field propagator result pertaining to the weakly coupled 3D Abelian gauge
theory (e.g., the conventional QEDR;), in which case Eq.

2 (45) yields

» 0.0y NG,+0,N,

ax 9
P 7 (ng)? (n-q)

W(Q)Im

3g?
(44) Tine,0v= " g2 (46)

Notably, the resulf43) obtained with the use of E@29) is
independent of the direction of the vectarfor all the terms

proportional ton(n-p) cancel out and only those propor-

we did find some comfort in comparing EG6) with the
exponent which had been previously found to control the
power-law UV behavior of the non-Abelian analog of Eq.

tional to p remain in the final expression. (34) in the SU?3)-symmetrical cas&’
It is worth mentioning that the integrals in Eqg.l) and
(42) as well as in Eq(28) with the gauge propagat¢44) are g2
all plagued with spurious poles, such asqtff)? We Ty o=~ 5.2 (47)
handle these singular denominators by resorting to the expo- 7
nential integral representation: @)= —ifjdsexdis(q By construction, Eq.47) is proportional to the quadratic

-n+ié8)]. Then, after having performed the Lorentz- Casimir operator in the fundamental representation of the
invariant momentum integration, we carry out the remainingcolor group, which, in the case of SNJ, equals
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1 NZ-1 N2— semble that in Schwinger’s QED,, where the gauge field
CF:N 21 tr(TaT?) = N (48) acquires a magel ~g, and the analog of Eq34) behaves as
=
Evaluating Eq.(48) for SU(3) we obtaincE'®)=4/3 and, | 1
upon separating this factor out, recover the regtfi perti- Ginv(x)~eXF{ ~ 5 LIn(MX)+Ko(Mx)]=Mx . (52)
nent to the Abelian cas@with the electric charge substi-
tuted forg). It is worth noting that, should one decide to intentionally

Likewise, by using Eq(21) we obtain the anomalous ex- disregard the exponential facter M, Eq.(52) would appear
ponent which controls the gauge-invariant propagator ing exhibit a power-law decay-1/\x at x>1/M, thus sug-

QED,+1, gestingni> = —1/2.
We mention, in passing, that the exponential, rather than a
2D 32 power-law, behavior has also been found in the problem of
Tinv,Uv= T 32N 49 Dirac fermions in the presence of a static random vector

potential[ A(x) = (0,a(r))], which allows for an asymptoti-
which is negative, contrary to the result of Ref. 4. However,cally exact solution in the ballistic regime of large fermion
it remains to be seen whether the exponentiatioM§f/(s)  energied?®
as well as vanishing obﬁ]\,f(s) still hold beyond the leading Conceivably, in some of the above-mentioned physical
1/N order. applications of QEBR, ; with N=2, the problem of the slow
Lastly, by comparing Eqs(31) and (45) one can also space-time decay of the gauge-invariant amplit(@® can
deduce the UV anomalous dimension of the exponential fadee thwarted by a spontaneous development of a finite fer-
tor exp{/A,dz,), mion mass, in which case the behaviorcdfw(x) at largex
will be governed by théfree) IR asymptotic(39) instead of
ﬂexpuv=—92|D(D+>\)- (50) th_e uv one. H_owever, the intrinsic propgnsity .of the 2D
Dirac fermions in QEDR, ; towards generating a finite mass
Interestingly enough, fox=—D this exponent equals zero, (usually referred to as the phenomenon of chiral-symmetry
and the UV anomalous dimension of the noninvariant propabreaking is believed to occur only at sufficiently smail
gator coincides with Eq(45), in agreement with the obser- <N, .® While in the case of the Lorentz-invariant acticin

vation made in the 3D non-Abelian caSe. the critical number of flavordl, was found to be as low as
3/21° the Lorentz-(or even rotationally noninvariant gener-
VI. DISCUSSION alizations of the actiorfl) are still awaiting to be fully ex-
plored.

Our calculation demonstrates that in the massless case the To this end, the authors of Refs. 7 conjectured that the

gauge-invariant Green functior{34) appears to decay critical valueN, in the QED-like description of the quantum
slower than the bare one, in a marked contrast with thedisordered planard-wave superconductor may become
previously conjectured Luttinger-like behavior. In this con- greater than 2 due to the lack of rotational invariance. On the
cluding section, we make an attempt to rationalize thesether hand, in the finite-temperature counterpart of the 2D
findings, although we refrain from making any final judge- chiral-symmetry-breaking transition in thepatially rota-
ment on their physical implications. tionally invariant effective theory of a single layer of graph-

Albeit somewhat COUnterintUitive, the found UV behavior ite, NC was found to be further reduced as Compared to the
is not totally incomprehensible. In fact, the generic behavion_grentz-invariant cas®.

of an invariant fermion amplitude is manifested by the However, should one insist on maintaining both the gauge

asymptotic formula and Lorentz invariances of the renormalized gauge-field ac-
tion, the problem of the slow spatial decay of the alleged
Gﬁw(x)fvexr[ —C|x|A+ 7In(|x|A)], (52 physical electron propagat@4) associated with its negative

UV anomalous dimensio@5) could not be resolved without
whereC>0, and the expressiofb1) decays withx| expo-  reexamining the “minimal” form of this Green function. In
nentially, regardless of the sign gf because the logarithmic fact, the task of constructing the proper gauge transformation
term in the exponent is subleading to the linear one. Howwhich converts the auxiliary Dirac fermions into the physical
ever, in a renormalizable gauge theory, where the gauge irelectrons may not be limited to a particular choice of the
variance is reinforced throughout the whole process of renoreontourI” in Eq. (2), but may also require one to modify the
malization, the latter would be routinely canceled out byphase factor itself.
counterterms, which leaves behind the logarithmic term of It is worth noting that in the previous calculations of the
(potentially either sign. “zero-bias anomaly” in the tunneling density of states in the

This situation would change, however, should one chooseompressible quantum Hall effettthe construction of the
to relax the condition of renormalizability at the expense ofelectron Green function, albeit seemingly given by the same
the gauge invariance, since the radiative corrections to thEq. (34) with the contourl” now chosen along the temporal
action (1) generically produce a finite mass of the vectoraxis, was, in fact, more involved. Indeed, in the semiclassical
field A,. Roughly speaking, the situation would then re-approximation employed in Ref. 12, the gauge-field depen-
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dence of the exponential factor ekfrz,A,) would have where y=1/\/1—u? and both the parallel and perpendicular
been exactly compensated by that of the non-gauge-invariagomponents oA are determined with respect to the velocity
Green functionG(t,0/A), thus making the functional aver- vector. As shown in Ref. 16, Eq54) gives rise to the op-
age of the product of the two behave essentially as in therator whose propagator is both IR finite and UV renormal-
absence of any gauge coupling. izable atp,=my(1,u).

Nevertheless, the electron density of states computed in Sych a strong dependence on the exact details of the con-
Ref. 12 appeared to be strongly affected by the Chernstruction of the phase factor appearing in the gauge transfor-
Simons gauge fluctuations, which can be traced back to thgation (53) indicates that the true electron Green function
fact that, in addition to the above-mentioned factors, themay well be quite different from Eq34). In particular, it
electron Green function happened to contain yet another faGsmains to be seen whether one can at all find an alternate

tor: the exponent of the saddle-point value of the effectiv r : )
action of the Chern-Simons gauge field. It was, in fact, thi(saform Giny(X) which would decay faster than the bare propa

factor that was solely responsible for the strong suppressio%ator' Given the m_tellecfcu_al appeal of the QEL picture,
of the tunneling density of states, consistent with the physifs’UCh an e_nde_avor IS deflnl'FeI_y Wprth the effort, and a further
cal interpretation of the Chern-Simons field as representind!Vestigation into this possibility is currently under way.
the effect of the Coulomb coupling in the presence of strong _>nould, however, the sought after Luttinger-like behavior
magnetic field. In light of the fact that in the problem at hand'@il to occur even in the modified prototype of the electron
the time-reversal symmetry remains unbroken, no such aRropagator, one can still consider an alternative approach to
additional factor can be readily incorporated into the naivethe quantum disordered-wave systems, e.g., the one that
form of the electron propagat¢84). was put forward in the context of the scenario of a second
In order to further elaborate on this point, we mention yetpairing transition in the 2D superconducting ph&tn Ref.
another example demonstrating the sensitivity of a generi@l, apart from fully idenifying the true nature of this transi-
gauge-invariant amplitude to the details of its constructiontion and its critical propertieghe specific predictions of Ref.
To this end, we recall Dirac’s original idea of explicitly con- 21 for the critical exponents are consistent with the recent
structing a “dressed charge” corresponding to a physicatunneling data in Ca-doped YBaCuO, Ref)2Rwas further
electron by means of the gauge transformation speculated that it might be possible to extend the effective
Higgs-Yukawa theory of the nodal fermion excitations
_ coupled to the fluctuations of the secondary order parameter
‘prhys(x)=ex;<| f dyx,(X=Y)AL(Y) |¥(X), (53 of eitherid,, oris symmetry well into the pseudogap phase.
Rather than a global superconducting coherence, this would
where the vector functiony,(x) obeys the equation only require the presence of a local parelpt_y.-wave or-
3,X,.(X)=8(x). In the time-independent Schfimger opera-  der. If this speculation proves valid, it can provide a viable
tor representation, the originally proposed transformatioralternative to the QER, ;-based fits to the ARPES dat4,
from the bare fermions to the physical electrons was implesince in the Higgs-Yukawa theory the anomalous dimension
mented as a spacelike Dirac string between the location aff the Dirac fermions is indeedositive.?%%%:23
the fermion and an infinitely remote point To summarize, in the present paper we applied Schwing-
er’s functional-integral representation of the fermion ampli-
1 tudes to the analysis of both the infrared and ultraviolet as-
Xo=0, xi=(x —2&i|y). ymptotics of the conventiongdhon-gauge-invarianfermion
v Green function and a particular gauge-invariant amplitude
. (34).
The Fourier transform of the electron  propagator In the IR regime, this method provides a substantial im-
(W pnydX) Wonydy)) is IR finite [see Eq.(39)] and under-  provement with regard to the spinless Bloch-Nordsieck
goes multiplicative UV renormalization at a single p model or the customary semiclassi¢alkona) approxima-
=(m,0) on the mass shell corresponding to a static chatge, tjon, since it preserves the exact spinor structure of the fer-
in agreement with the general expectation that the absence gfion, amplitudes. Moreover, the intrinsic “exponential” form

any singularity other than a.S|mpIe polg is characteristic of Schwinger’s integral representation facilitates truly non-
the propagator of an exact eigenstate with the quantum nunﬂ)’erturbative calculations

bers of an electron. : .
It was shown in Ref. 16 that in the case of a dressed In the opposite, UV, regime, the method allows one to

) . - . naturally separate between the gauge-invariant and-
charge moving with a finite velocity the above phase factor . . o
o noninvariant contributions to the mass operator and system-
needs to be further modified,

atically compute the higher-order contributions into both
kinds of terms. For a specific class of problems, including
_ b1 1 s the amplitudes given by Ed?2), it has a significant advan-

W onyd X|u) =ex 'VJ d yldyH(x|§|y>[y INA tage as compared to the conventional diagrammatic tech-
nique, which is not particularly well suited for such calcula-
tions, for the very rules of the diagrammatic expansion turn

+¢9LAL—u-E])\If(x), (549 out to be amplitude specific and depend on a particular
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