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a b s t r a c t

We introduce an analytical model to investigate the localized defect modes associated with a defect cell

inserted in a one-dimensional photonic crystal for both transverse electric (TE) and transverse magnetic

(TM) polarizations, at an arbitrary angle of incidence. The defect cell, which is made of two dielectric

constituents, leads to the appearance of several localized defect modes within the photonic band gaps.

We develop an analytical approach based on the both transfer matrix and Green’s function methods to

determine the number and frequency of the defect modes that can be controlled easily by varying the

parameter values of the constituent layers of the photonic crystal. The method demonstrates that the

electric field amplitude depends on the defect cell position in the photonic crystal while the defect

mode frequency is independent of it. This method is useful for photonic band gap engineering and

designing the photonic-based devices.

Crown Copyright & 2008 Published by Elsevier B.V. All rights reserved.
1. Introduction

During the last few decades, starting from the pioneering work
of Yablonovitch [1] and John [2], photonic band gap (PBG) materials
or photonic crystals (PCs) have received considerable attention for
fundamental physics studies as well as for potential applications in
photonic devices [3–5]. The main attraction of PCs is the existence
of forbidden band gaps in their transmission spectra.

The perfect PC has many applications, but its doped versions
may be more useful, as semiconductors doped by impurities are
more important than the pure ones. Due to the important role of
defects in technical applications, they have been studied exten-
sively in PCs [6]. The defects have also attracted considerable
attention in other materials possessing spatial periodicity such as
plasmonic crystals [7], phononic crystals [8] and magnonic
crystals [9,10].

A defective PC is constructed by introducing a disorder into the
regular structure of the PC. For instance, in a one-dimensional
(1D) PC, the defect is a layer different in nature (materials and
size) from the other layers. By inserting a defect into a PC, it is
possible to create highly localized defect modes within the PBG.
Such defect modes are localized at the position of the defect. The
08 Published by Elsevier B.V. All
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control of defect modes is of major interest for their application in
narrow band filters [11,12] and low threshold lasers [13,14].
However, the design of controllable defect modes in PCs requires
predictive formulae for dependence of the defect mode frequen-
cies on physical parameters of PCs and on the angle of incident
light. Conducting even numerical investigations such as frequency
difference time domain [15,16] and plane wave expansion [17] on
PBG defect problems still remain a challenge for two- and three-
dimensional PCs; therefore, 1D PCs are common choices for
analytical investigations because of their simplicity.

There are some analytical techniques for defect mode fre-
quencies in 1D PCs such as the interface response theory [6] and
Bloch wave approximation [18]. A closure formula for defect mode
frequencies can also be derived using the transfer matrix method
(TMM) [19], which is usually utilized to calculate the transmission
and reflection coefficients of incident electromagnetic waves. In
this order, besides applying boundary conditions at each interface
between PC layers, supplementary equations, which are provided
regarding the physical conditions in the PC, are applied to obtain a
closure formula. For instance, in the perfect PC, the dispersion
relation can be obtained using the transmission and reflection
spectra derived from TMM and simultaneously applying the Bloch
condition. In a defective PC, the Bloch condition is not fulfilled and
other supplementary equations such as zero condition for
reflection spectra [20] or boundedness condition [21] should be
employed. A simple equation was first proposed by Ozbay and
Temelkuran [23] to study defect modes in a 1D PC and has been
developed recently by Nemec et al. [22]. The method is based on
rights reserved.
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Fig. 1. Schematic of 1D PC with a defect cell. A defect cell, D, consisting of binary X

and Y layers is located in I ¼ 0. The other cell, N, consists of alternative A and B

layers. Here, yJ is the incident angle, k is the incident wave vector, E is the electric

field and H is the magnetic field. The plane of the incidence is the x–z plane.
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the application of the total reflection of a perfect PC and quantities
that can be determined experimentally. This method is applicable
only for the defect located at the center of a perfect PC. On the
other hand, these conditions can explain some experimental
situations but each of them represents a reduction of generality.
To our knowledge, there is no TMM-based analytical report
regarding more general calculations of defect mode frequencies in
defective PCs.

In this study, using TMM, we develop an analytical method for
calculating the defect mode frequencies with less limitations. In
this order, by applying boundary conditions for electric and
magnetic fields of the electromagnetic waves at the interface
between PC layers and implementing some mathematical proce-
dures, a recursion relation for the electric field at the surface of
each unit cell can be obtained. We will show that it is possible to
write this relation as the sum of two terms; one of them is merely
related to the perfect PC and the other one is due to the existence
of the defect. Subsequently, considering an infinite PC and
applying Green’s function method, an analytical relation for
defect frequencies can be deduced. In comparison with the results
of TMM, it will be shown that we do not lose the generality by the
assumption of an infinite PC. The method allows us to investigate
analytically the dependence of defect mode frequency and electric
field amplitude on the defect cell position. We apply this method
to a 1D PC consisting of periodically repeated bilayer cells
perturbed by a defect cell. We consider general conditions that
include non-absorbing and non-dispersing isotropic dielectric
materials, and calculate the PBG and defect mode frequencies for
both transverse electric (TE) and transverse magnetic (TM)
polarizations at various angles of incidence.

2. Theoretical description

Let us consider an infinite 1D PC comprising the periodically
repeated thin layers of two types, i.e. yABABABy The layered
structure is periodic in the z direction and homogenous in the x–y

plane. The layers are characterized by their thicknesses, dA and dB,
and their refractive indices, nA and nB, respectively, and L ¼ dA+dB is
the length of periodicity of the PC. A defect is modeled as a double
layer inserted into the PC, as shown in Fig. 1. The thicknesses of the
defect constituent layers are dX and dY, and their refractive indices
are nX and nY. This model also allows for the treatment of two
different types of single-layer defect: (a) when the thickness of one
of the defect layers is equal to zero, the model describes a ‘‘defect of
insertion’’, i.e. yABABABy, and (b) when the thickness and
refractive index of one of the defect layers are identical to those of
the non-neighboring PC’s normal layer, the model describes a
‘‘defect of replacement’’, i.e. yABABABy The latter establishes a
defective symmetric PC with respect to the defect layer position.

Let a plane wave be injected from vacuum into the PC as shown
in Fig. 1. In this case, the electric field can be written as

Eðx; zÞ ¼ ðcþJ eikJ cos yJ z þ c�J e�ikJ cos yJ zÞeikJ sin yJ x, (1)

in which the magnitude of wave vector, kJ ¼ kJ sin yJx̂+kJ cos yJẑ, for
a wave with a frequency of o propagating in the Jth layer (i.e.
J ¼ A,B,X and Y) with a refractive index of nJ, is kJ ¼ onJ/c where
c is the speed of light in vacuum. In Eq. (1), cJ

+ (cJ
�) is the

amplitude vector of the incident (reflected) electric field and yJ is
the propagation angle in the Jth layer. Using the Maxwell
equations and Eq. (1), a similar equation for the magnetic field
can be derived. For the TE (TM) wave the electric field E
(the magnetic field H) is in the y direction. At the interface
of adjacent layers, the tangential components of E and H should
be continuous. It has been derived that E and H just before the Ith
unit cell are related by the transfer matrix TI to those just before
the next unit cell [24]. We label the transfer matrix for a normal
cell, TN (Ia0) and for the defective cell, TD (I ¼ 0). The transfer
matrix for a normal cell is given by

TN ¼
lN sN

zN mN

" #
, (2)

in which

lN ¼ cos a cos b�
pA

pB

sin a sin b, (3a)

sN ¼ �i
1

pA

sin a cos bþ
1

pB

cos a sin b
� �

, (3b)

zN ¼ �iðpA sin a cos bþ pB cos a sin bÞ, (3c)
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mN ¼ cos a cos b�
pB

pA

sin a sin b, (3d)

where a ¼ kA cos yAdA and b ¼ kB cos yBdB. In Eqs. (3a)–(3d), pA and
pB are as follows:

pA ¼
nA cos yA

cm0

;

pB ¼
nB cos yB

cm0

for TE mode

and

pA ¼
1

cm0

nA

cos yA
;

pB ¼
1

cm0

nB

cos yB

for TM mode

where m0 is the magnetic permeability of vacuum. The transfer
matrix TD related to the defect cells can also be written similarly as

TD ¼
lD sD

zD mD

" #
, (4)

where the matrix elements are defined by Eqs. (3a)–(3d) in terms
of parameters relevant to the defect layers.

Using the transfer matrix in a general case, we can write

EIþ1

HIþ1

" #
¼ TI

EI

HI

" #
(5)

in which

TI ¼
lI sI

zI mI

" #
(6)

is the generalization of Eqs. (2) and (4). Combining Eq. (1) and
Eq. (5), for the electric field, a similar equation for the magnetic
field, the following recursion relation governing the electric field
amplitude at interfaces of the adjacent unit cells can be obtained
[8] as follows:

1

sI
EIþ1 þ

1

sI�1
EI�1 ¼

lI

sI
þ
mI�1

sI�1

� �
EI . (7)

Definitely, for a PC consisting of only normal cells, Eq. (7) is
reduced to

EIþ1 þ EI�1 ¼ ðlN þ mNÞEI . (8)

In a structure with an infinite number of layers, translational
symmetry along the direction perpendicular to the layers leads to
Bloch wave solutions of the form

Ekðx; zÞ ¼ EkðzÞe
ikzeikJ sin yJ x,

where Ek(z) is periodic with a period of length L, and k is the Bloch
wave number given by the solution of the following equation [19]:

2 cosðkLÞ ¼ lN þ mN � FNðoÞ. (9)

If |FN|o2, the wave number of the propagating Bloch wave is
real but when |FN|42, k constitutes an imaginary part and the
Bloch wave will be evanescent. The latter case corresponds to the
so-called forbidden bands of the periodic medium and therefore
the band edges of the PC can be determined by the use of the
condition |FN| ¼ 2.

The dispersion relation of a PC containing a defect cell may be
obtained by Eq. (7), which may be written as

ð1þ dKIÞEIþ1 þ ð1þ dKI�1ÞEI�1 ¼ ðFN þ dJI þ dMI�1ÞEI , (10)
where

dKI ¼ dKdI;0 ¼
sN

sD
� 1

� �
dI;0,

dJI ¼ dJdI;0 ¼ sN
lD

sD
�
lN

sN

� �
dI;0,

dMI ¼ dMdI;0 ¼ sN
mD

sD
�
mN

sN

� �
dI;0. (11)

Note that dKI, dJI and dMI are non-zero only at the defect cell, i.e.
for I ¼ 0. In order to solve Eq. (10) we formally express it asX

h

ðLIh þ dLIhÞEh ¼ 0, (12)

where

LIh ¼ dI;h�1 þ dI;hþ1 � FNdI;h,

dLIh ¼ dKðdI;0dI;h�1 þ dI;1dI;hþ1Þ � ðdJdI;0 þ dMdI;1ÞdI;h. (13)

Eq. (12), in the case of a perfect PC, will reduce toX
h

LIhEh ¼ 0. (14)

Therefore, in Eq. (12) the term related to the defect has been
completely separated. Now, we introduce Green’s function GIh,
similar to that in Ref. [25], defined byX

m

LImGmh ¼ dI;h (15)

or equivalently by

GðIþ1Þh þ GðI�1Þh � FNGIh ¼ dI;h. (16)

For an ideal perfect PC, expanding GIh in a Fourier series will
then result in Ref. [23]

GIhðFNÞ ¼
1

p

Z p

0

cos½ðI � hÞq�

2 cos q� FN
dq ¼ gI�hðFNÞ. (17)

Here, integration in Eq. (17) has a closed form only if |FN|42 [9];
therefore, from here we assume the condition to be fulfilled. For a
PC with (I�1) normal cells on either side of the defect cell, Eq. (12)
may be written as

ð1þG d LÞE ¼ 0, (18)

where G and d L are 2I�2I matrices with elements GIh and dLIh,
respectively, and 1 is the 2I�2I unit matrix. In Eq. (18), E is the
2I–component column vector

E ¼ ½ E�Iþ1 � � � E�1 E0 E1 � � � EI �
t , (19)

where t represents the transposition of a vector. It is easy to show
that d L has only four non-vanishing components and can be
written as

d L ¼

0 0 0

0 d l 0

0 0 0

2
64

3
75 (20)

in which the 2�2 matrix d l is introduced in the form of

d l ¼
�dJ dK

dK �dM

� �
. (21)

Moreover, the matrix G is partitioned in the same fashion,

G ¼

G11 f G13

f t g ht

Gt
13 h G33

2
664

3
775, (22)
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where f , g and h are (I�1)�2, 2�2 and (I�1)�2 matrices,
respectively, defined as

f ¼

gI�1 gI

..

. ..
.

g1 g2

2
664

3
775; h ¼

g2 g1

..

. ..
.

gI gI�1

2
664

3
775; g ¼

g0 g1

g1 g0

" #
. (23)

Using the quantities given by Eqs. (20–23), Eq. (18) reduces to

ð1þ g d lÞ
E0

E1

" #
¼ 0, (24)

E�Iþ1

..

.

E�1

2
664

3
775 ¼ � f d l

E0

E1

" #
(25)

and

E2

..

.

EI

2
664

3
775 ¼ �h d l

E0

E1

" #
, (26)

where 1 is now a 2�2 unit matrix.
Solving Eq. (24) will determine electric field amplitudes at

interfaces between the defect cell and the host cells and the defect
mode frequencies. Eq. (24) may then be written as

1� g0dJ þ g1dK �g1dM þ g0dK

�g1dJ þ g0dK 1� g0dM þ g1dK

" #
E0

E1

" #
¼

0

0

� �
. (27)

The solvability condition for this equation, i.e. detð1þ g d lÞ ¼ 0,
leads, after some algebra, to

1þ dK ¼ 0, (28)

g0FD � g1ðlNmD þ lDmN � sNzD � sDzNÞ ¼ 0, (29)

where FD ¼ lD+mD. Using Eq. (17), g0 and g1 are given by

g0 ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
N � 4

q , (30a)

g1 ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
N � 4

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

N � 4
q

þ FN

2

0
@

1
A, (30b)

where the minus (plus) sign is applied for FN42 (FNo�2). Eq. (28)
results in sN ¼ 0, which leads to a singularity in Eq. (7). Hence, the
frequency satisfying sN ¼ 0 does not turn out to be a reasonable
answer and therefore must be excluded.

The integral in Eq. (17) is responsible for FN42. This condition
is precisely related to the region where the PBG appears for a
perfect PC. Thus, each defect mode frequency is located only in the
PBGs. Consequently, for an arbitrary direction of propagation,
Eq. (29) determines the frequencies and the number of localized
modes in each PBG with respect to the parameters of the PC and
bilayer defect and Eq. (9) gives the allowed modes of Bloch wave
propagation, FNo2.

The electric field amplitudes for defect mode frequencies
at interfaces away from the defect cell can be determined by
Eqs. (25) and (26) in terms of E0 and E1. They can be written as

EI ¼ gIðdJE0 � dKE1Þ þ gI�1ð�dKE0 þ dME1Þ,

E�Iþ1 ¼ gIð�dKE0 þ dME1Þ þ gI�1ðdJE0 � dKE1Þ. (31)

One can observe from this equation that the electric field
amplitude decreases by moving away from the defect cell.
According to Eq. (17) this is due to the reduction of gI when I is
increased.
In contrast to other methods [20–23], we can develop the
above analytical formalism to investigate the effect of moving
defect cell position on the field and the frequency of the defect
modes. To study such effects, we assume the defect cell to
be located in layer I ¼ j. Thus, dI,0 in Eq. (11) changes in dI,j, and
Eq. (13) can be rewritten as

dLIh ¼ dKðdI;jdI;h�1 þ dI;jþ1dI;hþ1Þ � ðdJdI;j þ dMdI;jþ1ÞdI;h. (32)

One can find that matrix elements of d l do not change because
of these replacements, but their locations in d L change. Further-
more, f , g and h of Eq. (23) are replaced by f 0, g0 and h0,
respectively, with dimensions of (I+j�1)�2, 2�2 and (I�j�1)�2,
respectively, and can be written as

f 0 ¼

gIþj�1 gIþj

..

. ..
.

g1 g2

2
664

3
775; h0 ¼

g2 g1

..

. ..
.

gI�j gI�j�1

2
664

3
775; g0 ¼ g ¼

g0 g1

g1 g0

" #
.

(33)

Finally, using such replacements, Eqs. (24)–(26) can be
rewritten as

ð1þ g d lÞ
Ej

Ejþ1

" #
¼ 0, (34)

E�Iþ1

..

.

Ej�1

2
664

3
775 ¼ �f 0d l

Ej

Ejþ1

" #
(35)

and

Ejþ2

..

.

EI

2
664

3
775 ¼ �h0d l

Ej

Ejþ1

" #
, (36)

where 1 is now a 2�2 unit matrix.
It is seen easily that Eq. (34) is similar to Eq. (24), which gives

the defect mode frequency when the defect cell is located at j ¼ 0.
Therefore, one can say that changing the defect cell position does
not affect the defect mode frequency. On the other hand, Eqs. (35)
and (36), which express electric field amplitudes for unit cells
�I+1 and I, are different from Eqs. (25) and (26), which are
corresponding equations when the defect cell is located at j ¼ 0.
Therefore, the electric field amplitude varies by translating the
position of the defect cell. Finally, it is found from Eqs. (35) and
(36) that the highest transmission coefficient is obtained when
the defect cell is fixed at j ¼ 0. That is because in this situation the
elements of f 0 and h0 matrices have their maximum values.
3. Results and discussion

As a model system, the SiO2 and Si as dielectric materials
of A and B were chosen, respectively. In our calculations, the
thicknesses and the refractive indices are according to Ref. [26].
Therefore, the calculations were carried out using the values
nA ¼ 1.5, nB ¼ 3.7, dA ¼ 234.9 nm and dB ¼ 95.3 nm. Applying
Eqs. (9) and (29) and using the aforementioned parameters, the
dispersion relation and the defect mode frequencies were
calculated for the yABXABy structure. In this structure the
defect layer was Si with a thickness of 220.6 nm.

Fig. 2 demonstrates the band structure for normal incident and
shows that the defect mode frequencies are inside the PBGs. It can
be seen that more than one defect mode may exist in a PBG.
According to Eq. (29), the frequency and number of defect modes
depend on the incident angle and both normal and defect layers
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Fig. 2. Dispersion spectra of a 1D PC with a defect for the periodic structures of

y(SiO2/Si)Si(SiO2/Si)y The calculations were carried out using nA ¼ 1.5, nB ¼ 3.7,

dA ¼ 234.9 nm, dB ¼ 95.3 nm, L ¼ 330.2 nm, dX ¼ 220.6 nm. Dashed lines represent

the defect mode frequencies.

Fig. 3. The defect mode frequencies as a function of defect thickness (at yA ¼ 0).

Fig. 4. Photonic band structures in terms of normalized frequency for the

propagation angle yA. The white areas represent the propagation bands and the

gray areas are the forbidden bands.
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parameters. It can be seen that the PBG width becomes zero
where kL ¼ 0. As is well known, the defect mode frequency must
appear only within the PBG. On the other hand, the defect mode
frequency and PBG are degenerative for kL ¼ 0. However, it is not
a general case and by changing the layer thickness at yA ¼ 0 or at
different incident angles even in the same thickness, the PBG
width does not become zero, and the degeneracy disappears
where kL ¼ 0.

Fig. 3 shows the dependence of the number and frequencies of
the localized modes upon the thickness of the defect layer. In this
figure, the white areas represent the forbidden bands, the cross
hatch areas are the propagation bands and the solid lines are the
defect modes within the PBGs. As the defect thickness increases,
the frequencies of the localized modes shift from the higher levels
to the lower ones. Therefore, by varying the size of the defect cell,
the defect mode frequencies can be adjusted within the band
gaps. This figure also indicates that the number of defect modes in
a band gap can be controlled by thickness. As a result, we can find
a range of thicknesses suitable for designing multi-frequency
filters.

Fig. 4 shows the band gap regions and the defect mode
frequencies as a function of propagation angle, yA. In this figure,
the gray regions represent the forbidden bands and the propaga-
tion bands are illustrated by the white areas. Defect mode
branches can also be seen within the band gaps as dashed lines.
This figure demonstrates that the number and frequency of defect
modes change as the incident angle becomes higher. With
increase in the oblique angle, the first gap of the TE mode
increases; whereas that of the TM mode decreases up to Brewster
angle and then increases again. At the Brewster angle
(yBr ¼ tan�1(nB/nA)ffi67.93), there is no reflection of TM waves
and therefore the gap closes. There is no defect mode at the gap
closing points. The number and position of TM closing points
change for the higher gaps. There is no such closing point in the
first band gap of the TE mode. However, there are some closing
points in higher TE gaps. The closing points are useful to design the
PCs for suitable applications. For example, knowing these closing
points helps to create an omnidirectional reflector, operating in
several distinct frequency ranges by using only a single PC [27,28].

The proposed analytical model determines the defect mode
frequencies, the band gaps and the gap closing points for a variety
of parameters of interest, including the defect layer thickness and
the propagation angle. In order to have a comparison with a
reference method, the calculation of defect mode frequencies for
the (AB)NX(AB)N structure has been carried out by TMM for N ¼ 1,
2, 3 and 5. Both the defect mode frequencies and the band gaps
calculated using this model are in very good agreement with those
evaluated by TMM for N ¼ 5 and at an arbitrary propagation
angle. Therefore, the results of the two methods will exactly
coincide with each other for large enough N values. Consequently,
we can conclude that by assuming of an infinite PC, we do not lose
any generality.
4. Conclusion

The present paper has demonstrated an analytical study of the
localized defect modes in the PBGs of a 1D PC at an arbitrary
propagation angle for both TE and TM polarizations. This method
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is able to derive an analytical closure formula to investigate the
effect of the defect cell position on the defect mode frequency and
electric field amplitude. We have found that changing the defect
cell position does not affect the frequency of the defect mode, but
strongly influences the electric field amplitude. The typical results
of the proposed analytical approach for y(SiO2/Si)Si(SiO2/Si)y
show an excellent consistency with those derived using TMM.
Furthermore, the effect of the defect layer thickness on the defect
mode frequency has been investigated. We have shown that it can
affect greatly the defect mode frequency. However, by compar-
ison, this model can evaluate important quantities of the PCs,
directly. This formalism may be applied to design photonic
crystal-based devices.
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