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Droplet State and the Compressibility Anomaly in Dilute 2D Electron Systems
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We investigate the space distribution of carrier density and the compressibility of two-dimensional
(2D) electron systems by using the local density approximation. The strong correlation is simulated by
the local exchange and correlation energies. A slowly varied disorder potential is applied to simulate the
disorder effect. We show that the compressibility anomaly observed in 2D systems which accompanies
the metal-insulator transition can be attributed to the formation of the droplet state due to a disorder
effect at low carrier densities.
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The recent discovery [1] of a two-dimensional (2D
metal-insulator transition (MIT) has raised the importa
question concerning the existence of a metallic phase in
systems. In contrast to the scaling theory of localizati
[2], which predicts that only an insulating phase exists
2D, there is strong experimental evidence [1] for metall
like behavior in many 2D samples. This should not be
tally surprising because the dominant Coulomb interact
in these systems may invalidate the noninteracting sca
theory. These intriguing experiments generate renewed
terest in studying the properties of low-density 2D electr
systems, especially in the combined effects of interact
and disorder in such systems [1]. Most experimental wo
in the past has concentrated on transport measurem
Some recent experimental studies [3,4] on thermodyna
properties, such as compressibilityk in 2D systems, have
shed further light on understanding the 2D MIT. It
found [3] that the negative1�k at low densities reaches
minimum value at a certain densityn, and then increases
dramatically with further decreasingn. Although this sur-
prising upturn of1�k (compressibility anomaly) was ob
served much earlier in a pioneering work by Eisenste
et al. [5], this is the first time that the minimum point in
1�k is identified as the critical density for the 2D MIT
[3]. On the theory side, there are recent efforts [6,7]
addressing the interplay between interaction and disor
and their effect in thermodynamic properties.

In this Letter, we investigate the space distribution
carrier density and the compressibility of 2D electron sy
tems by using the local density approximation. The stro
correlation in such systems is simulated by the local
change and correlation energies. A slowly varied disor
potential is applied to simulate the disorder effect. W
find that at low average densities electrons form a drop
state which is a coexistence phase of high- and low-den
regions. We show that the compressibility anomaly o
served in 2D systems that accompanies the metal-insul
transition can be attributed to the formation of the drop
state [8]. The phase separation has been seen in a re
experiment [9].
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To investigate the density distribution of a disordered
electron system, we use the density functional theory.
total energy functional reads

E�n� � ET �n� 1 Eee�n� 1 Ed�n� 1 Ex�n� 1 Ec�n� .

HereET �n� is the functional of the kinetic energy,Eee�n� is
the direct Coulomb energy due to the charge inhomoge
ity, and Ed�n� is the potential energy due to the disord
The strong correlation effect caused by the electr
electron interaction is included in the final two term
Ex�n� is the exchange energy andEc�n� is the correla-
tion energy. The ground state density distribution can
obtained by minimizing the total energy functional wi
respect to the density.

Using the local density approximation, the total e
change and correlation energies are written as

Ex�c��n� �
Z

dx e
0
x�c��n�x��n�x� ,

where e
0
x�c��n� is the exchange (correlation) energy density

for a homogeneous 2D electron system at a given density
n, which can be determined by quantum Monte Carlo cal-
culations. In this paper, we use the result from Tanatar and
Ceperley [10],

e0
x�n� � 2

8
3

s
2
p

p
n ,

e0
c�n� � a0

1 1 a1x
1 1 a1x 1 a2x2 1 a3x3

,

where x � 1��pn�1�4. The energy unit is 1 Ry � me4�
2´2 h̄2, with ´ being the dielectric constant and m the ef-
fective mass of an electron. The values for the parame-
ters are a0 � 20.3568, a1 � 1.13, a2 � 0.9052, and
a3 � 0.4165.

The kinetic energy functional can be written as

ET �n� �
Z

dx
X
s,i

c
y
is�x� �2=2�cis�x� ,

where the sum is over all occupied quasiparticle energy
levels �i� and the spin index �s�.
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The energy functional for the disorder potential Vd�x�
can be written as

Ed�n� �
Z

dx Vd�x�n�x� .

Two kinds of disorder potentials are used in this work.
(i) The off-plane charge impurity potential:

Vd�x� � 2
X

i

1p
jx 2 xij

2 1 d2
,

where d is the distance between the electron and the im-
purity planes, and the impurities are randomly distributed
with a density ni .

(ii) The correlated disorder potential with the correlation
between the different positions:

�Vd�x�Vd�x0�� � V 2
s exp

µ
2
jx 2 x0j

j

∂
,

where Vs is the amplitude of the potential fluctuation, and
j is the correlation length of the disorder. The model simu-
lates a slowly varied disorder potential, and j is roughly
the average size of valleys in a disorder landscape.

The density distribution of the ground state can be ob-
tained by minimizing the energy functional under the con-
straint of a constant total electron number. One gets the
effective single particle Schödinger equation,

�2=2 1 Vsc�n, x��cis�x� � eiscis�x� , (1)

where

Vsc�n, x� � Vd�x� 1
d

dn
�e0

x �n�n 1 e0
c �n�n�

is the potential self-consistently determined by the density
distribution. n�x� �

P
is jcis�x�j2, where the sum is over

all occupied quasiparticle energy levels and the spin index.
To further simplify the calculation, we make an approxi-

mation to the kinetic energy so that it can be written in the
form of a density functional [11]:

ET �n� �
Z

dx
∑

pn�x�2 1
1
4

j=n�x�j2

n
�x� 1 · · ·

∏
. (2)

The first term provides the local density approximation
for the kinetic energy, while the second term includes the
effect of the density gradient.

To minimize the total energy functional with the con-
straint of a constant total electron number, we introduce
the new variable x so that

n�x� 	 N
x�x�2R

dx0 x�x0�2
,

where N is the total number of the electrons in the system.
The constraint for the constant total electron number is
automatically satisfied with the new variable. The steepest
descent method [11] is used to minimize the total energy
functional to x,
086401-2
xm11�x� � xm�x� 2 g
dE�x�

dx

Ç
x�xm�x�

,

where g is the iteration constant which is chosen so that
the interaction is convergent, and the chemical potential
can be calculated by

m �

R
dx x �x� �2=2 1 2pn 1 Vsc�n, x��x�x�R

dx x�x�2 .

The calculation is carried out in a 128 3 128 discrete
space. The size of the system is set as L � 256a�

B, where
a�

B is the effective Bohr’s radius, a�
B � ´h̄2�me2. The

periodic boundary condition and the Ewald sum for the
Coulomb interaction are applied to minimize the finite size
effect. The electron density is adjusted by changing the
total electron number N . The density distribution is cal-
culated by using the wave function method, [Eq. (1)], and
the chemical potential is calculated by using the gradient
approximation, [Eq. (2)], which is found to be accurate in
calculating the chemical potential comparing to the results
obtained from the wave function method.

The compressibility of the system is calculated by

1
k

�
N 2

S

≠m

≠N
,

where S is the total area of the system.
Figure 1 shows the density distribution of the system.

It can be clearly seen that the electrons form some high-
density regions, while the density of other regions are es-
sentially zero. The boundary of each high-density region
can be easily identified because the density rapidly decays
to zero beyond the boundary. The electron number con-
tained in each high-density region depends on the detail
landscape of the disorder. For the specific disorder po-
tential used in the calculation, there are 3–10 electrons in
each high-density region. Depending on the average den-
sity of the system, the high-density regions may connect
to each other �rs � 10�, or form some isolated regions
�rs � 19�. There exists a certain density �rs � 14�, where
the high-density regions start to percolate through the
system, and form a conducting channel. The calculation
clearly demonstrates the idea of our earlier theory [8],
i.e., the metal-insulator transition observed in the 2D elec-
tron systems is the percolation transition of the electron
density.

The electron-electron interaction is important for the
conducting behavior of a dilute electron system in the
sense that it makes the density distribution more extended
because of the Coulomb repulsion. Figure 2 shows the
density distribution for the free electron gas with the same
density as in Fig. 1(b) by turning off the electron-electron
interaction. The system forms only some isolated high-
density regions at the disorder valleys, while the den-
sity distribution of the corresponding interacting system
[Fig. 1(b)] is quite extensive at the same density. At a given
disorder strength, the critical density for the free electron
gas is much higher than its interacting counterpart.
086401-2
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FIG. 1. The density distributions for the different electron den-
sities. We use the contour plot for the local density parameter
rs � 1�

p
pn. The density of the white area decreases rapidly

to zero. The disorder potential is generated by off-plane charge
impurities with d � 10a�

B, ni � 2.5 3 1023�a�2
B .

Figure 3 shows the compressibility of the systems. To
compare with the experiments [3,5], we calculate dm�dN ,
which is the direct measured quantity in the experiments.
It is well known that the compressibility of a uniform elec-
tron gas is negative in the low-density region due to the ef-
086401-3
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FIG. 2. The density distribution for the free electron gas on
the same disorder landscape as Fig. 1 at density rs � 14.

fect of the exchange and correlation energies, as shown by
the solid line in Fig. 3(a). However, when the disorder is
present, the behavior changes greatly. In the low density,
the electrons tend to occupy the valleys of the disorder
landscape, and the local density, instead of the average
density, determines the compressibility of the system. On
the other hand, at higher densities, all of the valleys are
filled, and one can expect the compressibility of the sys-
tem to resume the behavior of a uniform electron gas.
We have a nonmonotonic behavior for dm�dN, as shown
by the squares in Fig. 3(a), which are in good agreement
with the experimental measurement [3,5]. Comparing with
Fig. 1, we find that the turning point of the compressibility
(N � 100, rs � 14) coincides with the percolation thresh-
old of the system. At low densities, the data points in the
plot show strong fluctuation, indicating the effect of the
local fluctuation of the disorder potential.

The compressibility anomaly is caused by the inhomo-
geneity of spatial distribution of the electrons. In this case,
local density, instead of average density, determines the to-
tal energy of the system. Following the definition of the
chemical potential, we have

m�N� �
d

dN

´0�neff�N��N� ,

where ´0�n� is the energy per electron for the uniform elec-
tron gas, and neff is the effective local density. The effec-
tive local density can be estimated by neff�n� � n�f�n�,
where f�n� is the fraction of the high-density region. In
the low-density limit, f�n� ! 0. As a consequence, the
density dependence of the chemical potential, dm�dn,
changes greatly. In general, supposing f�n� � na in the
low-density limit, the analysis shows that dm�dn will have
a nonmonotonic behavior if a . 1. The behavior of f�n�
is determined by the local disorder potential profile. In a
2D system, the infinite harmonic potential has f�n� � n.
086401-3
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FIG. 3. dm�dN as a function of the electron density. Solid
lines are for the uniform electron gas, squares are the data points
for the disordered system, and the dashed lines are the results
from the theory discussed in the text. Two kinds of disorder
are used in the calculation: (a) the off-plane charge impurities
(the same parameters as in Fig. 1 are used); (b) the correlated
disorder potential with Vs � 0.2 Ry, j � 0.2L. The parameters
in the dashed lines: (a) n0 � 0.5 3 1023�a�2

B , a � 2.3; (b)
n0 � 1023�a�2

B , a � 1.5. N is the total number of electrons in
the simulation box. N � 60 corresponds to rs � 19; N � 100
corresponds to rs � 14; N � 200 corresponds to rs � 10.

So the requirement a . 1 is equivalent to the condition
that the local disorder potential has a weaker confinement
effect than the harmonic potential. In Fig. 3, we use the
previous equation for m with the following relation of f�n�
to fit the data:

f�n� �
1

1 1 �n0

n �a .

The effect of the detail potential profile can be seen from
Fig. 3. The behavior of the compressibility near the turn-
ing point shows a great difference in the two kinds of
disorder potentials.

Before summarizing, we would like to make some com-
ments. (i) In this paper, we focus on the relation between
the spatial distribution of electrons and the compressibil-
ity anomaly. The transport properties could be understood
with the percolation picture by assuming that the system
has a contrast in local conductivities between high- and
low-density regions [8]. One problem with the percola-
tion approach is that if the system is quantum in nature
086401-4
there should not be a 2D quantum percolation. We believe
that percolation transition here is semiclassical in nature
[8]. (ii) Quantum Monte Carlo calculations [12] claim
that there is a phase transition from an unpolarized to
a fully polarized state shortly before the transition to a
Wigner crystal. If this is the case, it is reasonable to as-
sume that the high-density region is spin unpolarized while
the low-density region is spin polarized in GaAs since the
GaAs samples have extremely low critical densities. On
the other hand, the disorder may play a more essential role
in Si samples since their critical densities are much higher.
(iii) In our understanding, the compressibility anomaly is
caused by disorder and strong interactions. Some of the
2D MIT models in which the disorder effect is not empha-
sized might have difficulty in addressing the compressibil-
ity anomaly.

In conclusion, we have studied the electron space dis-
tribution and the compressibility of disordered dilute 2D
electron systems by using the local density approxima-
tion. Electron distribution confirms the formation of the
droplet state that consists of high- and low-density re-
gions. Our calculated compressibility is in good agreement
with the experimentally observed behavior showing unex-
pected anomaly at low densities. The turning point of the
compressibility happens around the percolation threshold.
Our theory based on the droplet state provides a possible
mechanism of the compressibility anomaly.
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