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A necessary and sufficient condition for a
Bedrosian identity

P. Cerejeiras,∗† Q. Chen and U. Kähler

We present a sufficient and necessary condition for the Bedrosian identity to hold for a large class of mono-components
based on a generalized Sinc-function. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction

The Hilbert transform is a well-known and useful concept in harmonic analysis and signal processing. Originally defined for periodic
functions, it was soon extended to functions defined on the whole real line. This transform solves the Riemann–Hilbert problem for
a real-valued function by providing (up to a constant) its harmonic conjugate. Furthermore, it stands as a standard example of a
singular integral operator and it is commonly described on the real line via a convolution with the Cauchy kernel.

Recently, the work of N. E. Huang brought a renewed interest in this transform (for a description of his method and several of
its applications, we refer to [1]). Based on a pure empirical method, the so-called Huang–Hilbert transform is capable of analyzing
nonlinear and non-stationary signals. Shortly speaking, the method relies on obtaining, from the Hilbert transform

y(t)= 1

�
p·v ·

∫ +∞

−∞
x(�)

�−t
d�

of a given Lp-function x =x(t), the amplitude and phase of the nonlinear and non-stationary signal x. Hereby, one obtains a (complex-

valued) function which can be written as z(t)=x(t)+ iy(t)=�(t)ei�(t), where �=�(t) represents its amplitude and �=�(t) its phase
function. From this last function, we can obtain (locally) the instantaneous frequency �(t)=d� / dt. However, previous works of
Cohen [2] showed that such a definition only makes physical sense when the function x =x(t) is a mono-component, that is to
say, whenever its (non-negative) analytic instantaneous frequency is well defined. Several authors have studied the problem of
admissible mono-components and the corresponding properties of its associated phases (see, for instance, the work of Qian, Chen,
Li, among many others [3--5]).

Another problem lies in the question of what functions � represent the amplitude of a given function ei�(t). A key point here
is the Bedrosian theorem (1965) [6--9], which states that whenever the respective frequency domains of two functions f , g are
non-intersecting and the frequency of g is higher than the one of f , then one has H(fg)= fH(g). Usually, the Bedrosian theorem is
used to ensure that the identity

H(�(t) cos(�(t)))=�(t)H(cos(�(t)))

holds. This identity, known as Bedrosian identity, characterizes the mono-component x(t)=�(t) cos(�(t)).
Unfortunately, there exists a large class of functions which are mono-components (or IMF’s, in Huang’s terminology) for which

Bedrosian theorem does not apply since �(t) and cos(�(t)) have intersecting frequency domains. Therefore, the problem of
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determining under which conditions a Bedrosian identity holds is an important problem. The authors would like to remark that
there exist already several such results for some special cases (see, e.g. [10, 11], among others). In this paper, we present conditions
for the Bedrosian identity to hold for a large class of mono-components, which we obtain by considering the boundary-value of a
single Blaschke product, i.e. a function which is of the form ei�a(t) = (eit −a) / (1−aeit).

The paper is organized as follows: the second section is dedicated to establishing the main results necessary for the desired
identities: we depart from the one side ladder function filter H+

a to construct a Fourier pair (H+
a , r) which is latter on used in order

to obtain the Hilbert transform of a generalized Sinc-function. Moreover, we also study the frequency behavior of each scale of the
generalized Sinc-function based on the properties of the Hilbert transform. Finally, in Sections 3 and 4 we give our main results,
Theorem 3.4 and Theorem 4.4, where we establish sufficient and necessary conditions, respectively, under which the Bedrosian
identity holds with respect to our nonlinear Fourier atoms.

2. Bedrosian identity for nonlinear Fourier atoms

In this section we will resort to the generalized Sinc-function (see [4]) in order to prove Bedrosian identities involving nonlinear
Fourier atoms. Shortly speaking, and as stated before, we wish to determine and study solutions of the equation

H(�cos�a)(t)=�(t)H(cos�a)(t), t ∈R (1)

where cos�a(t)=Re((eit −a) / (1−aeit)), for −1<a<1.
To start our study we show that the generalized Sinc-function is a special solution of the above equation.

Theorem 2.1
The generalized Sinc function Sinca(t) :=pa(t)sin t / t =sin�a(t) / t satisfies Equation (1), that is to say,

H(Sinca(·) cos�a(·))(t)=Sinca(t)H(cos�a)(t)= sin2 �a(t)

t
, t ∈R (2)

Moreover, for any l2 sequence c={ck}, the function

�(t)= ∑
k∈Z

ck
sin�a(t−2k�)

t−2k�
= ∑

k∈Z

ckSinca(t−2k�), t ∈R

satisfies the Equation (1).

Let us remark that since the Hilbert transform is translation invariant and cos�a, sin�a are both 2� periodic we get that if f
satisfies the Bedrosian identity, then 2� translations of f satisfy the identity as well. Therefore, to prove this theorem, it is enough
to prove relation (2). To this end we consider the so-called one-sided ladder shape filter

H+
a (t)=a�|t|��R+ (t) :=

∞∑
k=0

ak�[k,k+1)(t)= (1−a)
∞∑

k=1
ak−1�[0,k)(t)

This function appears when we calculate the Fourier transform of the generalized Sinc-function. We know that Sinca can be
represented as the multiplication of periodic Poisson kernel pa with the usual Sinc-function. Note that pa has the expansion
pa(t)=∑∞

k=−∞ a|k|eikt . It is now easy to see that Sinca can be represented as a weighted summation of modulations of the usual
Sinc, which means the Fourier transform of Sinca is a piecewise constant and exponential decaying function. This suggests us to
consider the piecewise constant function H+

a restricted to the positive real line.

Denoting the Fourier transform of f by f̂ or F[f ], as usual, we will show that H+
a and the function

r(t)= 1√
2�

1

1−aeit

1−eit

−it

form a pair under the Fourier transform.

Lemma 2.2
The one-sided ladder shape filter satisfies

F[H+
a ](�)= r(−�)= 1√

2�

1

1−ae−i�

1−e−i�

i�

and

F[r](�)=F

(
1√
2�

1

1−aei·
1−ei·
−i·

)
(�)=H+

a (�)
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Proof
A straightforward calculation leads to

F[H+
a ](�) = 1√

2�

∫ ∞

−∞
H+

a (t)e−i�t dt = 1−a√
2�

∫ ∞

−∞

∞∑
k=1

ak−1�[0,k)(t)e−i�tdt

= 1−a√
2�

∞∑
k=1

ak−1
∫ k

0
e−i�t dt = 1−a√

2�

∞∑
k=1

ak−1 1−e−ik�

i�

= 1−a√
2�

(
1

1−a
− e−i�

1−ae−i�

)/
(i�)= 1√

2�

1−ae−i�−(1−a)e−i�

i�(1−ae−i�)

= 1√
2�

1

1−ae−i�

1−e−i�

i�

This proves the first identity. The second one follows from an application of the inverse Fourier transform. �

Now, we consider the Möbius transform �a(z)= (z−a)(1−az)−1, with a∈ (−1, 1). Its real and imaginary part restricted to the unit
circle give us the following representation of the nonlinear Fourier atoms cos�a(t) and sin�a(t).

Lemma 2.3
For a real number a∈ (−1, 1), the following equations hold:

sin�a(t) = pa(t) sin t = (1−a2) sin t

1−2a cos t+a2
, t ∈R

cos�a(t) = (1+a2) cos t−2a

1−2a cos t+a2
, t ∈R

The above two lemmas allow us to give a formula for the Hilbert transform of the generalized Sinc-function.

Lemma 2.4
The Hilbert transform of Sinca is

H(Sinca)(t)= 1−cos�a(t)

t
, t ∈R (3)

Proof
From [4] we have the following result by Qian that

(H sin �a)(t)=−cos �a(t)−a

This leads to

H(Sinca(·))(t) = 1

�

∫ ∞

−∞
sin�a(y)

y

dy

t−y

= 1

�

∫ ∞

−∞
sin�a(y)

1

t

(
1

y
+ 1

t−y

)
dy

= 1

t

(
1

�

∫ ∞

−∞
sin�a(y)

y
dy+ 1

�

∫ ∞

−∞
sin�a(y)

t−y
dy

)

= 1

t
(−H(sin�a)(0)+H(sin�a)(t))= 1

t
(−(−cos�a(0))−cos�a(t))

= 1−cos�a(t)

t
�

In the same way we obtain the Hilbert transform of the function sin(2�a(t)) / 2t.

Lemma 2.5
The following formula holds:

H

(
sin(2�a(·))

2·
)

(t)= sin2 �a(t)

t
, t ∈R (4)
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This leaves us in condition to prove Theorem 2.1.

Proof of Theorem 2.1
Set �=Sinca. On one hand, using (4) the left-hand side of (1) equals to

H(Sinca(·) cos�a(·))(t)= 1

�

∫ ∞

−∞
sin�a(y)

y
cos �a(y)

dy

t−y
=H

(
sin(2�a(·))

2·
)

(t)= sin2 �a(t)

t
, t ∈R

On the other hand, using again Qian’s result (see [4]) that H cos �a(t)=sin �a(t) the right-hand side of (1) gives

Sinca(t)H(cos �a)(t)= sin2 �a(t)

t
, t ∈R �

3. Sufficient condition for Bedrosian identity

In this section we describe a sufficient condition for the Bedrosian identity to hold in case of our non-linear Fourier atoms. To that
effect, we remark that since (f + iHf )ei�a is an analytic signal we have the following theorem.

Theorem 3.1
The following equality holds:

H[(HSinca)(·) cos �a(·)](t)= (HSinca)(t)(H cos �a)(t)= (HSinca)(t) sin�a(t), t ∈R (5)

for a∈ (−1,+1).

This theorem together with Theorem 2.1 allows us to state the following sufficient condition for the Bedrosian identity.

Theorem 3.2
For arbitrary sequence pairs c={ck} and d ={dk} in l2(Z), the function

�(t)= ∑
k∈Z

ckSinca(t−2k�)+ ∑
k∈Z

dk(HSinca)(t−2k�) (6)

satisfies Equation (1).

Let us now characterize the space of such functions. To this end we need the following identity:

∞∑
l=1

∞∑
m=1

al−1am−1 min{l, m}= 1

(1−a)3(1+a)

This identity allows us to characterize the space L2(R) in terms of shifts of our generalized Sinc-function.

Theorem 3.3
The system {√(1−a) / �(1+a)Sinca(·−n�) : n∈Z} is an orthonormal system in L2(R).

Proof
We know that

Sinca(�t)=pa(�t) Sinc(�t)= (1−a2)
∞∑

l=1
al−1 sin l�t

�t

as well as the form of its Fourier transform

F[Sinca](�)= (1−a2)
∞∑

l=1
al−1 1√

2�
�[−l�,l�](�)
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Therefore, we get that, for any integer n, it holds

∫ ∞

−∞

√
1−a

1+a
Sinca(�t)

√
1−a

1+a
Sinca(�t−n) dt

= 1−a

1+a

(1−a2)2

2�

∫ ∞

−∞

∞∑
l=1

∞∑
m=1

al−1am−1�[−l�,l�](�)�[−m�,m�](�)ein� d�

= (1−a)3(1+a)

2�

∞∑
l=1

∞∑
m=1

al−1am−1
∫

[−l�,l�]∩[−m�,m�]
ein� d�

= (1−a)3(1+a)
∞∑

l=1

∞∑
m=1

al−1am−1 min{l, m}	n,0 =	n,0 �

We remark that while in Theorem 3.3 all entire shifts of our generalized Sinc-function appear, in Theorem 3.2 only even shifts are
considered. Furthermore, we would like to point out that, while the above system is an orthonormal one, it is not a basis of L2(R).
Thus, Theorem 3.2 will not be true for the whole of L2(R). This leads us to the following conclusion.

Theorem 3.4
Any function �∈span

{√
(1−a) / �(1+a)Sinca(·−n�) : n∈Z

}
with �((2k+1)�)=0, for all k ∈Z, fulfils (1).

4. Necessary condition for the Bedrosian identity

While in the previous section we obtain a sufficient condition we will now show that it also necessary, i.e. we want to show that
any function that satisfies (1) is necessarily of type (6). To facilitate our discussion, we introduce two subspaces of L2(R)

S1 = {f ∈L2(R): f satisfies (1)}
S2 = {f ∈L2(R): f satisfies (6)}

From Theorem 3.2, we know that S2 ⊂S1. Now we will prove S1 =S2. The outline of our proof is the following: taking a function
f ∈S1 which satisfies

〈f, Sinca(·−2k�)〉=0, 〈f, [HSinca](·−2k�)〉=0, k ∈Z (7)

we show that f =0.
First, we need to establish two additional facts.

Lemma 4.1
Suppose that f satisfies (7) and (1). Then f (2k�)=0 and [Hf ](2k�)=0 for any integer k ∈Z.

Proof
From condition (7) and the 2�-periodicity of sin�a and cos�a we get that∫ ∞

−∞
f (t)

sin(�a(t−2k�))

t−2k�
dt =−

∫ ∞

−∞
f (t) sin(�a(t))

2k�−t
dt =−H[f (·) sin(�a(·))](2k�)=0, k ∈Z

Using Bedrosian identity (1), we get

f (2k�) cos(�a(2k�))=−H[f (·) sin(�a(·))](2k�)=0, k ∈Z

From this we conclude that f (2k�)=0 since by Lemma 2.3 we know that cos(�a(2k�)) �=0.
We would like to remark that f ⊥ [HSinca](·−2k�) implies Hf ⊥Sinca(·−2k�). Therefore, similar arguments can be used in order

to conclude that [Hf ](2k�)=0. The proof of this lemma is completed. �

Lemma 4.2
Suppose that a real-valued f ∈L2(R) satisfies (1). Then the Fourier transform of f satisfies the equations

f̂ (�−n)=anf̂ (�) a.e. �∈ (−∞, 0), n∈Z+ (8)

and

f̂ (�+n)=anf̂ (�) a.e. �∈ (0,+∞), n∈Z+ (9)
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Proof
By Theorem 3.1, we know that Equation (1) leads to H(f (·)ei�a(·))(t)=−if (t)ei�a(t). Writing this equation in Fourier domain we obtain

F[f (·)ei�a(·)](�)=0 a.e. �∈ (−∞, 0)

which implies ∑
k∈Z

ck(ei�a(·))f̂ (�−k)=0 a.e. �∈ (−∞, 0)

Here ck(ei�a(·)) denotes the kth Fourier coefficient of ei�a(·), which is, by a direct calculation

ck(ei�a(·))=

⎧⎪⎪⎨
⎪⎪⎩

−a, k =0

(1−a2)ak−1, k�1

0, k <0

Therefore, we get

af̂ (�)= (1−a2)
∞∑

k=1
ak−1 f̂ (�−k) a.e. �∈ (−∞, 0) (10)

It is easy to check that

f̂ (�−1)=af̂ (�) a.e. �∈ (−∞, 0)

so that, by induction, we arrive at (8). In order to verify (9), we consider the conjugate function f (·)e−i�a(·), which has only negative
frequencies, i.e.,

F[f (·)e−i�a(·)](�)=0 a.e. �∈ (0,+∞)

A similar reasoning in terms of ck(e−i�a(·)) leads to

af̂ (�)= (1−a2)
−1∑

k=−∞
a|k|−1 f̂ (�−k)= (1−a2)

∞∑
k=1

a|k|−1 f̂ (�+k) a.e. �∈ (0,∞)

Using induction, we complete the proof of this lemma. �

From the above two lemmas, we obtain the following theorem.

Theorem 4.3
Suppose that a real-valued f ∈L2(R) satisfies (7) and (1). Then f =0.

Proof
Using Theorem 3.1 and applying the Poisson summation formula to the function f̂ , we get∑

k∈Z
f̂ (�+k)= ∑

k∈Z
f (−2k�)ei2k�� =0 a.e. �∈R

Now, we suppose that �>0. Applying (9), we observe that

∑
k∈Z

f̂ (�+k)= f̂ (�)+ ∑
k�1

f̂ (�+k)+ ∑
k�−1

f̂ (�+k)= f̂ (�)+ f̂ (�)
∑

k�1
ak + ∑

k�−1
f̂ (�+k)= f̂ (�)

1−a
+ ∑

k�−1
f̂ (�+k)

This means

f̂ (�)

1−a
+

∞∑
k=1

f̂ (�−k)=0 a.e. �∈ (0,+∞) (11)

Starting from (11), we establish a new iterative relation for f̂ . For a fixed non-negative integer m, suppose that �∈ (m, m+1). We
can rewrite the above series (11) as

∞∑
k=1

f̂ (�−k)=
m∑

k=1
f̂ (�−k)+

∞∑
k=m+1

f̂ (�−k)=
m∑

k=1
f̂ ((�−m)+(m−k))+

∞∑
k=m+1

f̂ ((�−m−1)−(k−m−1))

Let us remark that �−m∈ (0, 1) so, applying (9) and (8) to the above identity, we obtain

∞∑
k=1

f̂ (�−k)= f̂ (�−m)
m∑

k=1
am−k + f̂ (�−m−1)

∞∑
k=m+1

ak−m−1 = 1−am

1−a
f̂ (�−m)+ f̂ (�−m−1)

1−a

4
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Substituting this into (11) we arrive at

f̂ (�)+(1−am)f̂ (�−m)+ f̂ (�−m−1)=0, �∈ (m, m+1) (12)

In a similar way we get for Hf

(Hf )∧(�)+(1−am)(Hf )∧(�−m)+(Hf )∧(�−m−1)=0

that is to say,

sgn(�)f̂ (�)+(1−am)sgn(�−m)f̂ (�−m)+sgn(�−m−1)f̂ (�−m−1)=0

for all �∈ (m, m+1). This leads to

f̂ (�)+(1−am)f̂ (�−m)− f̂ (�−m−1)=0, �∈ (m, m+1) (13)

Now, comparing relations (12) and (13), we immediately obtain

f̂ (�−m−1)=0, �∈ (m, m+1) (14)

and

f̂ (�)+(1−am)f̂ (�−m)=0, �∈ (m, m+1) (15)

Using Lemma 4.2, we get

f̂ (�−m)=amf̂ (�−m)+(1−am)f̂ (�−m)= f̂ ((�−m)+m)+(1−am)f̂ (�−m)= f̂ (�)+(1−am)f̂ (�−m), �∈ (m, m+1)

so that

f̂ (�−m)=0, �∈ (m, m+1) (16)

Substituting (16) and (14) into (12) or (13), we obtain

f̂ (�)=0, �∈ (m, m+1) (17)

Finally, since m is arbitrary and by the hermitian property of f that f̂ (−·)= f̂ (·), we conclude f̂ (�)=0 for �∈R almost everywhere.
This completes the proof of this theorem. �

Summing up the above statements we get the following theorem.

Theorem 4.4
For any real-valued function f ∈L2(R) and −1<a<1 the Bedrosian identity

H(f cos�a)(t)= f (t)H(cos�a)(t), t ∈R

holds if and only if there exist sequence pairs c={ck} and d ={dk} in l2(Z) such that f has the form

f (t)= ∑
k∈Z

ck Sinca(t−2k�)+ ∑
k∈Z

dk(HSinca)(t−2k�)
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