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Two different quasiparticle scattering rates in the vortex-line liquid phase of layered
d-wave superconductors
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We carry out a quantum-mechanical analysis of the behavior of nodal quasiparticles in the vortex-line liquid
phase of planad-wave superconductors. Applying path-integral technique, we calculate a number of experi-
mentally relevant observables, and demonstrate that in the low-field regime the quasiparticle scattering rates
deduced from photoemission and thermal transport data can be markedly different from that extracted from
tunneling, specific heat, superfluid stiffness, or spin-lattice relaxation time.
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In recent years, the physics of nodal quasiparticles in plain the complete quasiparticle localization that, however, is
nard-wave superconductors such as the Higleuprates has still awaiting for experimental confirmatichin what fol-
attracted a lot of, both theoretical and experimental, attenlows, we focus on the ballistic regime of quasiparticle ener-
tion. The spectroscopic and transport properties of thesgies large as compared to the localization s¢ake below
Dirac-like quasiparticles with a linear dispersion have beerwhich is readily accessible by a number of standard probes
studied in quite detail, and elaborate analyses of variousuch as angular-resolved photoemissi&RPES, thermal
mechanisms of elastic scattering in the uniform supercontransport, tunneling, specific heat, muon spin rotation
ducting state have been carried out, including the effects of uSR), and spin-lattice relaxation.
potential’ Kondo-like? and extended impuritiésas well as In the quantum-mechanical approach of Ref. 6 the com-
twin boundarie$. bined effect of the external magnetic fidtl=V X A(r) and

In the mixed state, the recent quantum-mechanical geneswirling supercurrent characterized by the superfluid velocity
alization of the earlier semiclassical approdgiroposed in  vy(r)=(%/2)(V 5+ V ¢g) — (e/c)A does not amount solely
Ref. 6, allows one to account for the nonuniformity of theto the semiclassical Doppler shét—e—kgv(r) of the qua-
local d-wave order parametek(r)=A cos(,)exdie(r)] siparticle energiesThe latter is to be complemented by the
by means of a singular gauge transformation from the physivector potentiala(r)=(%/2)(V ¢o—V ¢g), which couples
cal electrons,(r) of spin o to the new fermionic quasipar- to the quasiparticles via their momentum-k—a(r), and
ticles. Unlike electrons, the latter are subject to the effectiveaccounts for the quantum-mechanical Berry phase corre-
magnetic field with zero mean, which, besides the physicasponding to their Bohm-Aharono(BA) scattering by the
field, also includes the supercurrent circulating outside vorvortices. Thus, the complete Hamiltonian of the noninteract-
tex cores. ing nodal quasiparticles contains both the scalarlike and the

Applying the gauge transformation of Ref. 6 to the elec-vectorlike random terms,
tronic states with energies small as compared to the maxi-
mum gap, one can represent them in terms of the Nambu
operators creating the auxiliary fermions with the momenta H=> Ar g Yokave(D + o vl pi—a () g . (2)

near the nodes ak (r), no
Co(T) o (€A (1) . :
R = etikerl , (1) In Eq. (2), we used the X 4 representation for the matrices
cL () n-Toe ey (1)

y,=(02,icy,i03)® o3 acting in the space of the Dirac bis-
wheren=1,2 labels the pairs of the opposite nodes, whilePinors — composed  of the Nambu spinorsi,
the choice of the phaseg, g(r) is only restricted by the =[(Uj,€,5V147), (Uzp:€gorV2qr) (01 o3)/\2].
condition pa(r) + ¢g(r)= ¢(r). In order to keep our discussion and formulas relatively
In the case of a regular vortex lattice, the representatiosimple, we consider the case of isotropic quasiparticle dis-
(1) was used to demonstrate that the structure of the quaspersion and use the units whewe=hc/2e=kg=1. More-
particle energy spectrum is that of the energy bands, rathaver, because of the predominantly small-angle nature of the
than the Landau levels. quasiparticle scattering by the vortices, we choose to neglect
In the present paper, we extend the analysis based on tlikee processes of internode scattering. While anticipating that
representation(l) to the experimentally well-documented neither of these simplifying assumptions will affect our main
vortex-line liquid (VLL ) phasé where the vortices are dis- conclusions, we recognize that a combination of the above
tributed totally randomly due to their strong pinning by co- factors in the case of the real cuprates may give rise to an
lumnar or other defects. additional one- to two-dimensional crossover regifhe.
Any disorder, including that induced by random vortices, As in the previous studies of the VLL phaSeye average
is expected to affect the behavior of tdevave quasiparti- over different vortex configurations by assuming the Gauss-
cles most strongly at the lowest energies, possibly resultingan distributions
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i j — — L — .0 2 0 T)= ~
(90,2 (DY 2 (— D) =W, 2 (D(5;— 6d;/q%)  (3) gR(e,rlvs.a)=J der() "o Dp i
0 r

(0)=0

for both g,=vs andg,=a. The striking difference between

wv(q)zal(q2+ a) and wa(q_)zalqz, which are both pro- Xexr{i J'Tdr’(kasnLﬂa

portional to the areal density of vortices=2wH, reflects 0 dr

the presence of screening for the scalarlike Doppler potential

and its absence for the vectorlike BA scattering. The longi- _if (Ve+a)dr’
. 2 S

tudinal (<q;q;/q“) part of the correlato(3) proves to con- c

tribute negligibly to all the quantities of intere&tesides, it is

suppressed by the Coulomb interactipns where we dropped, for the sake of compactness, the sum
In contrast to the previous analyses that focused solely oaver the nodal points and introduced the free fermion action,

the effect of Doppler scattering,we find that vortex disor-

der has a profound effect on the quasiparticle spectrum that . T A A

cannot be adequately modeled by a constant quasiparticle Sl 7]= JOdT [evotp(dridr’ —y)]. @)

width. In order to illustrate this point, we apply the standard

self-consistent Born equation Averaging over the disorder variables anda with the use
of Eq. (3) results in the electron Green’s functi®@f(e,r)
=(GR(e,r|vs,a)), which is given by Eq(6) where, instead
dq €+2(€,9) ) _ _
> SW(, a(pt+a) (4 of the exponential phase factor, the integrand contains a
(2m)° g°—[e+Z(e,q)]° product of two attenuation factors

, (6)

E(e,p)=f

to the separate contributions of the two scattering mecha- 1 dg (~ T
nisms towards the total quasiparticle width ¥p+Im3,. W, alr(m)]=expg — EJ o2y dTlfo droui(7y)
In the case of scalar disorder, B¢) yields Im3 o'/ (2m)
for small energies and momentae, p<a'?), while at
max(e,p)>a’? it behaves asca/max(e,p) which dominates ><Ui(Tz)W(v,a)(Q)eiq[r(Tl)_r(TZ)]l. ®)
over the scattering by the vortex cores whose rate is esti-
mated asca/A. )
At first sight, the effect of the BA scattering may seem toWith u,=ve—r/7 andu,=dr/d7—r/7. Thus, the presence
be much stronger, since a naive solutig of Eq. (4) with of the exponent of the line interal taken along the contour
the singular kernew,(q) is plagued with a logarithmic in- N Ed. (5) strongly reduces the effect of bothandvs, as
frared divergence of the momentum integral. compared to the case of the gauge-variant propagator of the
In order to avoid this spurious divergence, which stemsuxiliary fermions. This observation seems to have been
propagator, one has to proceed directly with computing thavhere the phase factor in question would either not appear at

manifestly gauge-invariaritetarded Green's function of the  lI*> or be averaged separately from the fermion propagator
physical electrons, computed in a different approximatidf.

Proceeding along the lines of the previous analyses of the

problem of nonrelativistic fermions subject to a random vec-
R _ * i et + tor potential’® one can show that in the ballistic regime
G(er) fo dte(c(t,r)c'(0.0) (which in the present case is defined by the conditéoon
>a'?) the path integral6) is dominated by the fermion

_ +ikDr s trajectories that only slightly depart from the straight line
n:12,2;¢ e <¢n(r)exr{ IJC(VS+aU3 ro(7)=vr. Evaluating the factolV, for such a trajectory,
one obtains
®1dr’ $n<0>>. (5

C)

W \/; \/F Zf”dq
olr(n]~exg —ri \ 7=\~ . 57 Wo(Q)
It turns out that the exponential decay of this functisee

below) makes it largely independent of the cont@iwhich  while the integral inW, turns out to be proportional to the
can then be chosen as the straight path between the erd-called Amperian area of the closed contour composed of a
pointsr andO. fermion trajectoryr(7) and the “return” path—rqy(7). Al-

To compute the amplitudés), we apply the path-integral though this purely geometrical term vanishes for the saddle-

representation of Ref. 12 to the propagator of the auxilianpoint trajectoryr(7)=rq(7), its expansion to first order in
Dirac fermions. First, for a fixed vortex configuration, we the transverse deviatian (7) yields

cast Eq.(5) in the form of a functional integral over the
space-time coordinate(7) and the conjugate momentum

p(7) parametrized by the proper time Wa[r(r)]wexr{ — EJ dr’

2 0 rJ_(T)

} . (10
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By analogy with the nonrelativistic problem studied in Ref. maximum,|e?—p?/<a, it can be shown to take the form
15, the path integra) with the W, factors given by Eqg9) - -

and (10) can be related to the resolvent of the Schinger Ale.p)~ (eyo—PYIVB

equation describing the transverse motion of the Dirac fer- P {(2—p?)2+ B[ 1+ (|elp|—1)414]} 3%
mion,

(13

whereB~ 7a/8, thereby demonstrating a replacement of the
bare pole by a branch cut of the function<{z)*? resulting

[02+ (€2—q?) + (aelq)?(|X| +Xo)?+ia sgnx]g(e,q|x,x") from the above convolution procedure. According to Eqg.
(13), the decay of the electron propagator in real space

=8(x=x"), (A1) [GR(e,r)=e(T/r)Y% 1" for r>1M] is governed byl (e)
«ale, which should be thought of as the actyahergy-
wherexy= (V] e/q]— \]a/ €])?/2a*2. dependentquasiparticle width.

By analogy with the results of Ref. 15, the averaged This direct experimental prediction can be tested by per-
physical electron propagatdR(e,p) can be obtained by forming ARPES measurements in the VLL phase of the cu-
convoluting the kernel 1 — q?)*? with the solution of Eq.  prates under the weak-field conditiongH<T<A).

(11) taken atx=x’'=0, which is given by the formula Also, comparing Eq(13) with the estimate for InX,, ob-
tained from Eq(4), we conclude that in the ballistic regime

d 1 both the BA and the Doppler scattering mechanisms appear
—In(U+U_)} , (12)  to be equally important, contrary to the conclusions drawn in
dx =0 Ref. 16.

Next, we compute thermal conductivity given by the av-
whereU . =U(a. ,\[X,*X]) is the parabollc cylinder func- eraged product of two electron propagators,
Oy, Parametera. =(¢1-aiaia)/a® and ) P i N e L pa)S
= . €, €,—

Turning now to the applications of E@5), we first dis- cosft(e/2T) & &
cuss the electron spectral function satisfying the dispersion (14)
relation GR(e,p)=[A(e',p)de’'/m(e—€'+i5). Near the The corresponding path integral reads as

9(€,9|0,0)=

~ ~ © riAr ) ==r a .n A
(9Menigne )= | Tanan [ T1 oropgietett [T Wi, r), s
0 r140)=0  a,=1.2 i=a,

where the factorsW(r,—rg) with a# g account for the by naively assuming that the quasiparticle width remains

vertex corrections, alongside the self-energy ones f3). constant [’ «HY? up to the energies~T (cf. Ref. 1).

Thus, the path-integral method of computing the Dirac fer- The analysis of the data of Ref. 17 taken in %,Baz0g o9

mion conductivity is capable of proceeding beyond the conshows that Eq.(16) should be expected to hold foF

ventional (noncrossing and fan-shapelddder series of the <30 K and 0. H/T=<1, where the vortex induceB+,

vertex corrections to the bare fermion bubkiee latter suf- dominates over the other mechanisms of scattering, includ-

fice only if the numbeN of the Dirac species is large, while ing potential impurities.

in the d-wave problemN=3% 1=2). Our approach also enables one to compute other averages,
Upon integrating over the “center-of-mass” variables  such as(GRGR)oe(I', /r)Y%e? <~ which controls the

+r, and p;+p, and rescaling the ones describing relativeeffect of vortex disorder on superfluid stiffness measured by

motion, we again arrive at Eq11). This time around, it is SR,

formulated in terms of the transverse relative cgoerinate

(ri,—r5), and its solution yields the average& "G

we(T1, /r)Y%e 1" wherel't,= 2T is now playing the ro>le ps(0)=ps(T)=—— Imf de tanh(€/2T)

of the momentum relaxation rate, in agreement with the

above estimate for the quasiparticle spectral width. Plugging

this asymptote into Eq(14), we find that in the low-field X f dr T(G™(€,1)G (e, = 1)

regime the thermal conductivity behaves as 5
=(2In2/m)T+ (H/8=T)In(T*/H). (17

- 2 3
Kol ToH) = (715 TE/H . (16 Notably, in contrast to the spectral and transport characteris-
While being in agreement with the estimate based on théics whose behavior is determined by the structure of the
kinetic equatiorke Tv/I', proportional to the linear density electron spectral function near its maximum, EL) is gov-
of states(DOS) v«T and ',«H/T, Eq. (16) is strikingly  erned by the overall momentum integral of the solution of
different from the result £ T?/H'?) that one would obtain the two-particle analog of Eq11).
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This behavior is common amongst the thermodynamic In summary, we carried out a fully quantum-mechnical
guantities associated with the averages of local bilinear opanalysis of the quasiparticle properties of the VLL phase of
erators (), (r) which are invariant under the gauge !ayeredd-wave superconductors. We demonstrated that both
transformation(1). In fact, averages such &(e,0) must the semiclassical Doppler shift and the intrinsically quantum-
be computed differently, since now the trajectories contrib/nechanical BA scattering have comparable effects on all the
uting to the path integralb) may deviate very strongly from Observables. Our path-integral approach enabled us to iden-
the semiclassical oneg(7) =0, although the mean square of tify the energy-dependent effective quasg)artlcle width
the distance over which a typical trajectoryr) ventures 1 (€)>H/e describing the near-maximune{~p?) behavior
from the origin still scales quadratically with timé2()) of the dlstlnc_tly non-Lorentzian electron spectral function
72 For 1A=, this allows one to evaluate the damping that can be directly measured by ARPES.
factors as Also, we exposed the striking difference between the two

2 dq rates:I't,~T'(T)<H/T displayed by the transport character-
Wi[f(T)]%eXF{— ff —wWi(a)|. (18 istics andT'' ~T' (HY?) «HY2 manifested by tunneling and
(27) thermodynamic quantities.
Plugging Eq.(18) instead of Eq(8) into Eq. (6) and com- In contrast, the real-space averaging procedure applied in
puting the resultingquadrati¢ path integral, we arrive at the the previous studies of the disordered vortex sthtes
correction to the linear DOS corresponding to the clean limithound to deliver the latter rate, because, focusing solely on
. the energy distribution, it does not faithfully represent the
v(e)=Im T ¥oGR(€,0)]= (ou/ 7)) F(eloy), (19  momentum dispersion of the averaged electron spectral func-
tion.
where o<H In(A%H) and JF(x) = w2 erf(x) + exp(=x°). We emphasize that the origithat is, a nontrivial energy
The effect ofl>/20rtex disorder is most pronounced at smalljependengef the different apparent quasiparticle rates, as
energiese=H ™", and it appears to be stronger than in theyeyealed by the different measurements, must be distin-
semiclassica(Doppler-only approximation(cf. Ref. 18. guished from the conventional juxtaposition of quasiparticle

Directly, this DOS correction can be extracted from theifetime versus transport time in photoemission and transport
tunneling conductandg (V)= »(V). Indirectly, it can also be  gxperiments.

manifested through the correction to electronic specific heat \ve expect that, albeit derived under a number of simpli-

=(elT)2v(e)de 18(3)T? aﬁ fying gssumptions, our main cpnclu_sions are robgst against
e + 16,72 (20 including factors such as spatial anisotropy, nonlinearity of
o COSIT(e/2T) & & the fermion dispersion as well as internode scattering, and,
Notably, the correctiom CoH2In(A%/H)/T? is smaller than most importantly, modifying the distribution&) with the
the result ACx«H) obtained in the situation where the int- purpose of describing partially ordered “vortex glass”
ervortex repulsion is stronger than random pinning, andstates:®
therefore the VLL is partially orderelf. Finally, the results of this paper can also be used to de-
Although the smallness of the disorder-induced term inscribe the effects of thermal phase fluctuations controlled by
Eq. (20) might hinder its detection, an alternate possibility is «>T in the pseudogap phase of the cuprafeéTo this end,
offered by the spin-lattice relaxation time, we predict that different measurements may return different
) 3 values of the effective quasiparticle width, which might ex-
1 Y (€)de :ETaJr TH 21) plain the inconsistency between the widths deduced from the
Ty(T)  Jo cosH(e/2T) 3 3752’ tunneling and ARPES data.

C(Mm=

where we dropped the overall prefactor proportional to the This research was supported by the NSF under Grant No.
ion-specific matrix elements. DMR-0071362.
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