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1. Introduction

In recent years, a great amount of theoretical and experimental
studies have shown that the diffractive properties of light in peri-
odically modulated dielectric media, such as in photonic crystals
(PCs), arrays of evanescently-coupled waveguides and optically-in-
duced lattices, are strongly affected by the complex spatial disper-
sive properties of the medium, with the relevant possibility of
controlling the magnitude and sign of diffraction. Of particular
interest is the self-collimation (or super-collimation) effect, by
which an optical beam can propagate with almost no diffraction
in a perfectly periodic (e.g. defect free) structure. The self-collima-
tion effect, which has potential applications in optical integration
of high-speed communication systems, was first predicted and ob-
served by Kosaka et al. in a 3D PC [1], followed by other experi-
ments (see, for instance [2–4]) till the recent demonstration of
super-collimation over a huge propagation distance in a large area
2D PC with a square lattice of holes in air [5]. In such PC structures,
self-collimation phenomena arise owing to the flattening of the
isofrequency PC band surfaces at frequencies usually close to a
band edge (see, for instance, [1,6,7]), strongly weakening the spa-
tial dispersion for light waves.
ll rights reserved.
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onghi).
Following the idea of diffraction management originally pro-
posed and demonstrated in Ref. [8], diffraction control has been
also extensively investigated and experimentally observed for dis-
cretized light in periodically-modulated arrays of evanescently
coupled optical waveguides [9–17], including the occurrence of
diffraction cancellation. Although diffraction cancellation (referred
to as self-imaging or dynamic localization in Refs. [9–11,15]) in
periodically-modulated waveguide arrays may bear a close con-
nection with self-collimation phenomena in PCs and these two
phenomena have been sometime referred using the same termi-
nology [13,17], there are some differences, both conceptually and
practically, that have been perhaps overlooked and that deserve
to be clarified. In particular: (i) self-collimation is generally related
to local flattening of a portion of the isofrequency curve in the re-
ciprocal k space and thus diffraction cancellation occurs solely at
low orders; conversely, self-imaging is a more stringent require-
ment as it implies diffraction suppression at any order and thus
needs a full collapse of the quasi-energy band of the modulated ar-
ray, (ii) self-imaging does not necessarily means beam spreading
suppression at any distance, rather a periodic refocusing of the
beam at the periodicity of the modulated array along the propaga-
tion direction, which may be larger than the diffraction length of
the beam [11,12,15] and (iii) self-collimation is typically a non-res-
onant effect, whereas self-imaging it is.

As one might of course agree that self-imaging observed in Refs.
[11,15] for discretized light is still an approximate effect (owing to
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such approximations as paraxiality, single-band or tight-binding
assumptions, etc.), one must emphasize that band flattening re-
quested for self-collimation is a rather common situation which
is not necessarily related to (and does not imply) a full band col-
lapse requested for self-imaging, which remains a rather extraordi-
nary circumstance. This is explicitly shown in this work by
comparing in detail the diffractive properties of two differently
engineered modulated waveguide arrays, using in both cases the
same degree of approximation in their analysis. The two structures,
which have been previously considered in [9–11,15] and [14] as
examples of engineered arrays for diffraction management, are
schematically depicted in Fig. 1 and consist the former of an array
of evanescently-coupled optical waveguides with a periodically-
curved axis (Fig. 1a), the latter of a binary array of evanescently-
coupled optical waveguides with a straight axis but with alternat-
ing and periodically varying waveguide width (Fig. 1b). Coupled
mode-equations in the single-band, tight-binding and nearest
neighbor approximations are used to describe discrete light dif-
fraction in the two arrays according to Refs.[10,14]. For the array
structure of Fig. 1(a), coupled equations for the mode amplitudes
cn trapped in the waveguides read [10,11]

i
dcn

dz
¼ �Dðcnþ1 þ cn�1Þ þ f ðzÞncn ; ð1Þ

whereas for the array structure of Fig. 1b coupled-mode equations
read [14]

i
dcn

dz
¼ �Dðcnþ1 þ cn�1Þ þ

ð�1Þn

2
f ðzÞcn: ð2Þ

In Eqs. (1) and (2), z is the paraxial propagation distance, 4D is the
width of the tight-binding band of the array in absence of modula-
tion, whereas f ðzÞ is a periodic function with period K and zero
mean related to the local curvature of waveguides for the structure
of Fig. 1a, and to the local propagation constant mismatch due to
waveguide narrowing for the structure of Fig. 1b. Typically, we will
consider a sinusoidal modulation as in Refs. [10] and [14]. Note that,
after setting cnðzÞ ¼ anðzÞ exp½�in

R z
0 dz0f ðz0Þ� in Eq. (1), and

cnðzÞ ¼ anðzÞ exp½�ð�1Þni
R z

0 dz0f ðz0Þ=2� in Eq. (2), the following
equivalent equations are obtained:

i
dan

dz
¼ �DðG�anþ1 þ Gan�1Þ; ð3Þ

for the structure of Fig. 1a, and

i
dan

dz
¼
�DGðanþ1 þ an�1Þ n even
�DG�ðanþ1 þ an�1Þ n odd

�
ð4Þ
x
a

z

x
a
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Fig. 1. Schematic of two modulated waveguide arrays for diffraction management:
(a) array of waveguides with periodically-curved axis; (b) bi-periodic array of
straight waveguides with periodically varying waveguide width.
for the structure of Fig. 1b, where we have set

GðzÞ � exp i
Z z

0
dz0f ðz0Þ

� �
: ð5Þ

Owing to the periodicity of coefficient G in Eqs. (3) and (4), Floquet
theory applies and any solution to either Eq. (3) or Eq. (4) is given by
an arbitrary linear superposition of Bloch-Floquet modes
cnðzÞ ¼ unðz; kxÞ exp½�ibðkxÞz�, which depend on the transverse wave
number kx, with kx chosen in the first Brillouin zone
�p=a 6 kx < p=a. unðz; kxÞ is periodic in z with period K, whereas
the Floquet exponent b ¼ bðkxÞ represents the quasi-energy band
of the periodically-modulated array (univocally defined apart from
multiplies of the spatial modulation frequency x ¼ 2p=K). Note
that, as for the array of Fig. 1a one has solely one band bðkxÞ, for
the array of Fig. 1b one expects two bands b�ðkxÞ since we are
dealing with a binary array. In absence of longitudinal modulation,
i.e. for f ¼ 0, for the array of Fig. 1a one obviously has bðkxÞ ¼
�2D cosðkxaÞ and unðkxÞ ¼ expð�ikxnaÞ, whereas for the array of
Fig. 1b one has b�ðkxÞ ¼ �2D cosðkxa=2Þ with corresponding Bloch
modes uþn ðkxÞ ¼ expð�ikxna=2Þ and u�n ðkxÞ ¼ ð�1Þn expð�ikxna=2Þ.
The phenomena of self-collimation and self-imaging are related to
the reshaping of the quasi-energy bands when the array is modu-
lated along the longitudinal z-direction. If the spatial modulation
frequency x is larger than the waveguide coupling strength D, the
flattening of the quasi-energy band b ¼ bðkxÞ at around a given
transverse wave number (for instance kx ¼ 0) corresponds to self-
collimation. On the other hand, collapse of the quasi-energy band,
i.e. the independence of bðkxÞ on kx, corresponds to self-imaging
(or dynamic localization, using a terminology drawn from solid-
state physics), regardless of the spatial periodicity K of the
modulation.

For the model (3), the quasi-energy band can be calculated in a
closed form and is given by the relation (see, for instance, [18])

bðkxÞ ¼ �2D
1
K

Z K

0
dz cos kxaþ

Z z

0
dz0f ðz0Þ

� �

¼ �2D
K

Re expðikxaÞ
Z K

0
dzGðzÞ

� �
ð6Þ

Note that a band collapse, corresponding to ob=okx ¼ 0, is attained
whenever
Z K

0
dzGðzÞ ¼

Z K

0
dz exp i

Z z

0
dz0f ðz0Þ

� �
¼ 0: ð7Þ

In particular, for a sinusoidal modulation f ðzÞ ¼ A cosðxzÞ one ob-
tains the well-known result [19,20]

bðkkÞ ¼ �2DJ0
A
x

� �
cosðkxnaÞ; ð8Þ

i.e. the quasi-energy band has the same shape as that of the not
modulated array, but with a width which is reduced from 4D to
4DJ0ðA=xÞ. In particular, band collapse corresponding to self-imag-
ing is attained whenever the ratio A=x is a root of the Bessel func-
tion J0. Therefore, for the model of Fig. 1a self-imaging is related to a
shrinking of the quasi-energy band, which however is not deformed
in shape by the modulation and remains sinusoidal [see Eq. (6)].
Obviously self-imaging leads to (exact) self-collimation for modula-
tion frequencies x larger than � D.

Let us now consider the modulated binary array of Fig. 1b, for
which self-collimation was previously predicted to occur in
Ref.[14]. To compute the quasi-energy bands of the array, let us
look for a solution to Eq. (4) of the form a2n ¼ AðzÞ expð�ikxnaÞ,
a2n�1 ¼ BðzÞ expð�ikxnaþ ikxa=2Þ. One then obtains the following
coupled equations for the amplitudes A and B

i
dA
dz
¼ �Dkx GðzÞB; i

dB
dz
¼ �Dkx G�ðzÞA; ð9Þ



Fig. 2. Behavior of quasi-energies bands b� versus transverse wave number kx for
the modulated waveguide array of Fig. 1(b) for D=x ¼ 0:25 and for a few increasing
values of normalized modulation amplitude A=x. 0, 0.1, 0.2, 0.3 and 0.4. The arrows
in the figure indicate the direction of increasing values of A=x.
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Fig. 3. (a)–(c) Numerically-computed quasi-energy spectrum b�=x in the first
Brillouin zone for the modulated array of Fig. 1(b) as a function of the normalized
modulation amplitude A=x and for decreasing values of the ratio D=x: (a)
D=x ¼ 0:5; (b) D=x ¼ 0:25; (c) D=x ¼ 0:125. Figure (d) shows the quasi energy
spectrum, corresponding to D=x ¼ 0:125 (the same as in Fig. 3(c)) as predicted by
the asymptotic analysis (Eq. (19)). In (c) and (d) the enlargements show the details
of the pseudo collapse that occur around the first zero of Bessel function J0.
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where we have set Dkx � 2D cosðkxa=2Þ. The solution to the periodic
system (9) is of the form ðAðzÞ; BðzÞÞT ¼ expðRzÞUðzÞðAð0Þ;Bð0ÞÞT,
where UðzÞ and R are two 2	 2 matrices, with UðzþKÞ ¼ UðzÞ
and UðzÞ ¼ I. The quasi-energies b�ðkxÞ are then calculated as the
eigenvalues of R, which are the Floquet exponents for the system
(9). It is easy to show that one has b�ðkxÞ ¼ �bþðkxÞ. The determina-
tion of the Floquet exponents can be done, in general, solely numer-
ically. As an example, in Fig. 2 it is shown the behavior of the quasi-
energy bands for a sinusoidal modulation f ðzÞ ¼ A cosðxzÞ, for
D=x ¼ 0:25 and for increasing values of A=x. Note that a flattening
of the quasi-energy band is observed near kx ¼ 0 for A=x �
0:2� 0:4, which corresponds in fact to the regime of self-collima-
tion previously considered in Ref.[14]. Now the main question can
be stated as follows: is it possible for the structure of Fig. 1b a col-
lapse of quasi-energy bands, which is more than simple band flat-
tening? In other words: are the arrayed structures in Fig. 1
equivalent in terms of diffraction cancellation? The answer is neg-
ative, in the sense that even if the binary array of Fig. 1b permits
self-collimation via band flattening, it is not a self-imaging structure
because it shows pseudo collapses of quasi-energies, as we are going
to demonstrate. Fig. 3 depicts, as an example, the detailed behavior
of the allowed quasi-energies b� versus the ratio A=x for a few
values of the ratio D=x. A shrinking of the quasi-energies is clearly
observed for values of the ratio A=x close to the roots of the Bessel
function J0, at least in the weak coupling limit where the ratio D=x
is small (see, for instance, Fig. 3c). However, an enlargement of the
quasi-energies near such shrinking regions always reveals the pres-
ence of a pseudo collapse of the band (see, for instance, the inset of
Fig. 3c). Owing to such a pseudo-collapse, suppression of discrete
diffraction is therefore solely a first order (approximate) result for
the structure of Fig.1b, whereas it is exact for the structure of
Fig. 1a. In an experiment with waveguide arrays, this could be sim-
ply checked by imaging the flow of discretized light under single
waveguide excitation at the input plane. Typical intensity light
patterns that one would observe are shown in Fig. 4 for parameter
values that may be typically achieved in practice (K ¼ 2 mm , D ¼
0:3927 mm�1, and A ¼ 7:555 mm�1, corresponding to D=x ¼
0:125 and A=x ¼ 2:405). Note that, owing to the pseudocollapse
(rather than a true collapse) of quasi-energies for the binary array
structure, in Fig. 4b light does not remain confined in the excited
waveguide, but clearly spreads into adjacent waveguides, whereas
in Fig. 4a suppression of discrete diffraction is achieved.

One might argue that, for small values of the ratio D=x, numer-
ics may get inaccurate, and that an exact collapse might actually
occur. This result might be naively suggested by the circumstance
that, at very small values of the ratio D=x, application of the aver-
aging technique to Eq. (9) with rapidly-varying coefficients would
lead to a set of equations analogous to Eq. (9) but with G replaced
by its cycle-averaged value GðzÞ ¼ J0ðA=xÞ. A collapse of quasi-
energies is thus expected at J0ðA=xÞ ¼ 0. But this is an approximate
result and a more appropriate asymptotic analysis is in order to
capture the refined behavior of quasi-energies for small values of
the ratio D=x. To this aim, we perform a multiple scale asymptotic
analysis of Eq. (9) assuming x � Oð1Þ (indeed, with a rescaling of z
one can always assume x ¼ 1) and D=x � Oð�Þ, where � is a small
parameter which organizes the asymptotic expansion (we will let
� ¼ 1 at the end of the calculations). Multiple scales for space are
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Fig. 4. Numerically-computed evolution of discrete light versus propagation
distance under single waveguide input excitation for the modulated arrays of
Fig. 1a and b [plots in (a) and (b), respectively] as predicted by coupled-mode Eqs.
(1) and (2). Parameter values are given in the text and correspond to D=x ¼ 0:125
and A=x ¼ 2:405.
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introduced according to Z0 ¼ z, Z1 ¼ �z, Z2 ¼ �2z,. . . We then look
for a solution to Eq. (9) in the form of power series

A ¼ Að0ÞðZ0; Z1; Z2; . . .Þ þ �Að1ÞðZ0; Z1; Z2; . . .Þ þ . . .

B ¼ Bð0ÞðZ0; Z1; Z2; . . .Þ þ �Bð1ÞðZ0; Z1; Z2; . . .Þ þ . . . ð10Þ

In developing the asymptotic analysis, it is worth writing the peri-
odic function GðzÞ as GðzÞ ¼ G0 þ

P
n6¼0Gn expðinxZ0Þ, where G0 is

the mean value of GðzÞ. For a sinusoidal modulation
f ðzÞ ¼ A cosðxzÞ, one has Gn ¼ JnðA=xÞ. The order of magnitude of
G0 as compared to � is left undetermined at this stage, and hence
we will write for the sake of convenience G0 ¼ Gð0Þ0 þ �G

ð1Þ
0 þ

�2Gð2Þ0 þ . . ., where the only non-vanishing term in the expansion de-
fines the order of magnitude of G0. For instance, if A=x is close to
the first root of Bessel function in such a way that J0ðA=xÞ � �2,
we will set GðnÞ0 ¼ 0 for n 6¼ 2. After setting Dkx ¼ �qðkxÞ with
qðkxÞ ¼ 2 cosðkxa=2Þ � Oð1Þ and using the derivative rule
d=dz ¼ oZ0 þ �oZ1 þ �2oZ2 . . ., substitution of Eq. (10) into Eq. (9)
yields a hierarchy of equations for successive corrections to A and
B. At leading order � �0, one simply obtains

Að0Þ ¼ F1ðZ1; Z2; . . .Þ; Bð0Þ ¼ F2ðZ1; Z2; . . .Þ ð11Þ

where the amplitudes F1 and F2 vary over the slow spatial scales Z1,
Z2,. . .. The evolution equations for F1 and F2 at the spatial scale Zn is
obtained from the solvability condition at order Oð�nÞ in the asymp-
totic expansion. At order Oð�Þ, for G0 � Oð1Þ one obtains

i
dAð1Þ

dZ0
¼ �i

dAð0Þ

dZ1
� qðGð0Þ0 þ TÞBð0Þ ð12Þ

i
dBð1Þ

dZ0
¼ �i

dBð0Þ

dZ1
� qðGð0Þ�0 þ T�ÞAð0Þ ð13Þ

where we have set TðZ0Þ ¼
P

n6¼0Gn expðinxZ0Þ. The solvability con-
dition at this order implies that the terms on the right hand sides in
Eqs. (12) and (13) do not contain dc terms, i.e. one obtains

i
oF1

oZ1
¼ �qGð0Þ0 F2; i

oF2

oZ1
¼ �qGð0Þ�0 F1: ð14Þ

Note that the asymptotic analysis can be stopped at this order pro-
vided that Gð0Þ0 6¼ 0. For a sinusoidal modulation, this means that the
ratio A=x must be far enough from any root of J0. In such a case, the
quasi-energy bands are simply calculated as the eigenvalues associ-
ated to Eq. (14). For a sinusoidal modulation they read explicitly

b�ðkxÞ ¼ �2DJ0
A
x

� �
cosðkxa=2Þ: ð15Þ
Note that the two quasi-energy bands have the same shape as those
of the not modulated array, apart from a reduction of the band
width from 4D to 4DJ0ðA=xÞ. This behavior closely resembles the
one found for the modulated array of Fig. 1a [see Eq. (8)]. However,
as Eq. (8) is an exact result, Eq. (15) is only approximate and, when
A=x gets close to any root of J0, the asymptotic expansion must be
pushed to higher orders because the evolution of amplitudes F1 and
F2 occurs on the slower spatial scale Z2. In such a case, assuming
that

P
n6¼0jGnj2=n ¼ 0, which holds for a sinusoidal modulation, at

order � �2 the solvability condition yields the following coupled
equations

i
oF1

oZ2
¼ �qGð1Þ0 F2; i

oF2

oZ2
¼ �qGð1Þ�0 F1 ð16Þ

which have the same form as Eq. (14). Therefore, for Gð1Þ0 6¼ 0, the
expression of the quasi-energies obtained by pushing the analysis
at order � �2 is again given by Eq. (15). For Gð1Þ0 ¼ 0, i.e. when A=x
gets very close to any root of J0 such that J0ðA=xÞ � �2, the determi-
nation of the quasi-energies requires to push the asymptotic analy-
sis to order �3. At such order, one can show that the solvability
condition yields

i
oF1

oZ3
¼ �q Gð2Þ0 þ

q2

x2 U
� �

F2; i
oF2

oZ3
¼ �q Gð2Þ�0 þ q2

x2 U�
� �

F1; ð17Þ

where we have set

U �
X

m;n 6¼0;m 6¼n

G�mGnGm�n

nðn�mÞ : ð18Þ

The quasi-energies are then calculated as the eigenvalues of Eq. (17)
and for a sinusoidal modulation read explicitly

b�ðkxÞ ¼ �2D cosðkxa=2Þ J0
A
x

� �
þ 4D2

x2 U
A
x

� �
cos2ðkxa=2Þ

����
���� ð19Þ

where

U
A
x

� �
�

X
m;n 6¼0;m 6¼n

JmðA=xÞJnðA=xÞJm�nðA=xÞ
nðn�mÞ : ð20Þ

Eq. (19), which very well reproduces the numerically-computed
behavior of quasi-energies for D=x
 1 (see Fig. 3d), clearly
shows that there is solely a pseudo-collapse of the quasi-energy
bands because at values A=x ’ 2:405; 5:520; . . . (corresponding
to one of the roots of Bessel function J0) one has UðA=xÞ 6¼ 0. It
should also be noted that the occurrence of a pseudo-collapse
for the waveguide array of Fig. 1b is expected to be a very general
feature, i.e. quite independent of the specific modulation profile
f ðzÞ, because it is unlikely that the term U vanishes simulta-
neously with G0. Even in this case, at higher-order spatial scales
the collapse of quasi-energies is expected to be removed. In other
words, band collapse (and hence self-imaging) found for model
(1) represents a rather extraordinary circumstance which is not
met in other models, such as in model (2) or in variations of
them. For instance, the introduction of even small perturbations
to model (1), such as non-neighboring coupling terms [15] or
truncation effects [18], are known to make the collapse imperfect
(at least for a general class of modulation profiles).

In conclusion, the phenomena of self-collimation and self-imag-
ing for discretized light have been critically revisited by means of a
comparative analysis of the diffractive properties of different ar-
rayed waveguide structures recently proposed for diffraction man-
agement. The comparative study indicates that self-collimation is a
much more common effect than self-imaging, the latter being an
extraordinary effect which is a fortuitous event related to band
collapse.
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